×
27.06.2020
220.018.2be7

Результат интеллектуальной деятельности: Система гелиотеплохладоснабжения

Вид РИД

Изобретение

Аннотация: Технической задачей предлагаемого изобретения является энергосберегающее обеспечение комфортных параметров воздуха в малоэтажных зданиях при длительной эксплуатации в изменяющихся погодно-климатических, в том числе и суточных, воздействиях окружающей среды, путем снижения тепловых потерь наружными поверхностями помещений, преимущественно животноводческих ферм, за счет покрытия их тонковолокнистым базальтовым материалом из витых пучков, продольно вытянутых по высоте от основания до верха здания. 3 ил.

Изобретение относится к теплоэнергетике и предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах.

Известна система гелиотеплохладоснабжения (см. патент РФ №2622449 МПК F24D 15/00 / F24J 2/42 опубл. 15.06.2017 Бюл. № 17) содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом – с помещением, а «горячим» – через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный – с помещением, при этом южный воздухопровод снабжен суживающимся соплом, которое установлено вне помещения и выполнено завихрителем, состоящим из четырех пластин, входные и выходные участки которых расположены один относительно другого под прямым углом, причем у входного отверстия суживающегося сопла на внутренней поверхности выполнена круговая канавка, соединенная с устройством удаления загрязнений.

Недостатком являются затраты системы гелиотеплохладоснабжения из-за отсутствия возможности регулирования мощности, потребляемой нагнетательным вентилятором для подачи атмосферного воздуха в помещение с обеспечением заданных параметров микроклимата, особенно во время перехода температуры окружающей среды с отрицательных значений на положительные, и наоборот, когда существенно изменяется плотность воздуха, перемещаемого по подпольному воздухопроводу.

Система гелиотеплохладоснабжения (см. патент РФ №2631040 МПК F24F 5/00 опубл. 15.09.2017 Бюл. № 26), содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом – с помещением, а «горячим» – через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный – с помещением, при этом южный воздухопровод снабжен суживающимся соплом, которое установлено вне помещения и выполнено с завихрителем, состоящим из четырех пластин, входные и выходные участки которых расположены один относительно другого под прямым углом, причем у входного отверстия суживающегося сопла на внутренней поверхности выполнена круговая канавка, соединенная с устройством удаления загрязнений, при этом подпольный воздухопровод соединен с нагнетательным вентилятором, который снабжен приводом с автоматизированной системой контроля и регулирования подачи атмосферного воздуха в помещении, причем автоматизированная система контроля и регулирования содержит регулятор скорости вращения в виде блока порошковых электромагнитных муфт и регулятор температуры с датчиком температуры атмосферного воздуха, установленный у входного отверстия суживающегося сопла, кроме того, регулятор температуры включает блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, а выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости в виде блока порошковых электромагнитных муфт привода нагнетательного вентилятора.

Недостатком является снижение надежности поддержания комфортных параметров в помещениях животноводческой фермы при длительной эксплуатации из-за тепловых потерь через наружные поверхности малоэтажных зданий, особенно при суточных колебаниях температуры наружного воздуха, когда с высокой частотой переключается привод нагнетательного вентилятора, обеспечивая нормированный температурный режим внутреннего воздуха.

Технической задачей предлагаемого изобретения является энергосберегающее обеспечение комфортных параметров воздуха в малоэтажных зданиях при длительной эксплуатации в изменяющихся погодно-климатических, в том числе и суточных, воздействиях окружающей среды, путем снижения тепловых потерь наружными поверхностями помещений, преимущественно животноводческих ферм, за счет покрытия их тонковолокнистым базальтовым материалом из витых пучков, продольно вытянутых по высоте от основания до верха здания.

Технический результат по поддержанию комфортных параметров воздуха внутри животноводческих ферм достигается тем, что система гелиотеплохладоснабжения, содержит южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом – с помещением, а «горячим» – через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный – с помещением, при этом южный воздухопровод снабжен суживающимся соплом, которое установлено вне помещения и выполнено с завихрителем, состоящим из четырех пластин, входные и выходные участки которых расположены один относительно другого под прямым углом, причем у входного отверстия суживающегося сопла на внутренней поверхности выполнена круговая канавка, соединенная с устройством удаления загрязнений, при этом подпольный воздухопровод соединен с нагнетательным вентилятором, который снабжен приводом с автоматизированной системой контроля и регулирования подачи атмосферного воздуха в помещении, причем автоматизированная система контроля и регулирования содержит регулятор скорости вращения в виде блока порошковых электромагнитных муфт и регулятор температуры с датчиком температуры атмосферного воздуха, установленный у входного отверстия суживающегося сопла, кроме того, регулятор температуры включает блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, а выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости в виде блока порошковых электромагнитных муфт привода нагнетательного вентилятора, при этом наружные поверхности помещения для подачи атмосферного воздуха покрыты тонковолокнистым базальтовым материалом в виде витых пучков, продольно вытянутых от основания до верха здания.

На фиг. 1 представлена схема системы гелиотеплохладоснабжения с покрытием наружных поверхностей помещения тонковолокнистым базальтовым материалом в виде витых пучков, продольно вытянутых от основания до верха здания, на фиг.2 – завихритель суживающегося сопла, на фиг. 3 – вентиляционная камера с нагнетательным вентилятором и приводом, снабженным системой автоматизированного контроля и регулирования подачи атмосферного воздуха.

Система содержит воздухопроводы: южный 1, подпольный 2, северный 3, теплообменный 4 и грунтовый 5 с грунтовыми теплопроводящими трубами 6, помещение 7, под которым расположен тепловой аккумулятор 8, вихревую трубу 9 с входом 10 для обрабатываемого воздуха, каналом «холодного» потока 11, соединенным с входом 12 фильтра 13 и каналом «горячего» потока 14, соединенным с грунтовым воздухопроводом 5, фильтр 13 своим выходом 15 соединен с внутренним объемом помещения 7, нагнетательный вентилятор 16, установленный в вентиляционной камере 17 и соединенный подпольным воздухопроводом 2 через воздушные заслонки 18 и 19 с входом 10 вихревой трубы 9 и с выходом 12 фильтра 13, вытяжной вентилятор 20, установленный в вентиляционной камере 21 и соединенный теплообменным 4 воздухопроводом с северным 3 воздухопроводом, осуществляющим выброс воздуха из помещения 7 в атмосферу.

Южный 1 воздухопровод снабжен суживающимся соплом 22, которое установлено вне помещения 7 и выполнено с завихрителем 23, состоящим из четырех 24, 25, 26 и 27 пластин, входные 28, 29, 30, 31 и выходные 32, 33, 34 и 35 участки которых расположены один относительно другого под прямым углом. У входного отверстия 36 суживающегося сопла 22 на внутренней поверхности 37 выполнена круговая канавка 38, соединенное с устройством удаления загрязнений 39.

В вентиляционной камере 17 подпольный воздуховод 2 соединен с нагнетательным вентилятором 16, который снабжен приводом 40 с автоматизированной системой 41 контроля и регулирований подачи атмосферного воздуха в помещение 7. Автоматизированная система 41 контроля и регулирования содержит регулятор скорости вращения 42 в виде блока порошковых электромагнитных муфт и регулятор температуры 43 с датчиком температуры 44 атмосферного воздуха, установленного у входного отверстия 36 суживающегося сопла 22 южного воздухопровода 1.

Регулятор температуры 43 включает блок сравнения 45 и блок задания 46, причем блок сравнения 45 соединен с входом электронного усилителя 47, оборудованного блоком нелинейной обратной связи 48, а вход электронного усилителя 47 соединен с входом магнитного усилителя 49 с выпрямителем, который на выходе подключен к регулятору скорости 42 в виде блока порошковых электромагнитных муфт привода 40 нагнетательного вентилятора 16.

Наружные поверхности 50 помещения 7 для подачи атмосферного воздуха покрыты тонковолокнистым базальтовым материалом 51 в виде витых пучков 52, продольно вытянутых от основания до верха здания.

Система гелиотеплохладоснабжения работает следующим образом.

При положительных температурах атмосферного наружного воздуха, особенно в дневное время суток с наличием солнечной радиации, тепловой поток поступает на наружную поверхность 50, конвективно ее нагревает и теплопроводностью материала стен помещения 7 передает тепловую энергию внутреннему воздуху здания, что приводит к изменению нормированного микроклимата в нем.

При низких, по сравнению с воздухом внутри здания, в том числе и отрицательных температурах атмосферного наружного воздуха наблюдается интенсивный отвод тепла от внутреннего воздуха помещения 7 в окружающую среду теплопроводностью через толщину материала стен с соответствующим отклонением от нормированных значений параметров микроклимата в здании.

Все это требует периодического включения вентилятора с дополнительными энергозатратами на подачу массы атмосферного воздуха с тепловым эквивалентом, необходимой для регулирования изменяющейся температуры внутри здания. Следовательно, наблюдается неэффективная и энергоемкая эксплуатация системы гелиотеплохладоснабжения.

Выполнение покрытия наружных поверхностей 50 тонковолокнистым базальтовым материалом 51 в виде витых пучков 52, обеспечивает не только теплозащиту внутреннего воздуха здания от потери тепла к наружному воздуху, но и аккумулирование тепловой энергии с последующим возвратом тепла во внутрь помещения (см., например, Волокнистые материалы из базальтов Украины. – Киев: Техника, 1971. – 76 с.).

Следовательно, достигается поддержание нормированного температурного режима внутреннего воздуха помещения как в дневное, особенно с солнечным излучением, так и в холодное и/или ночное время суток, без дополнительных энергозатрат на привод вентилятора, перемещающего массу атмосферного воздуха, обеспечивающую нормированный температурный режим внутри здания.

Под действием центробежных сил загрязненного атмосферного воздуха частицы загрязнений отбрасываются к внутренней поверхности 37 суживающегося сопла 22 и перемещаются к круговой канавке 38 у входного отверстия 36, откуда поступают в устройство удаления загрязнений 39 для последующего удаления вручную или автоматически.

Подачу атмосферного воздуха в помещение 7 осуществляет нагнетательный вентилятор 16, расположенный в вентиляционной камере 17 посредством перемешивания потока по подпольному воздуховоду 2. Атмосферный воздух поступает во входное отверстие 36 сужающегося сопла 22, расположенного на южном воздухопроводе 1. Датчик температуры 44, установленный у входного отверстия 36 сужающегося сопла 22, регистрирует температуру окружающей среды, определяемую как нормированную (например, 20°C) в зависимости от погодно-климатческих условий эксплуатации системы гелиотеплохладоснабжения, по которой с учетом оптимизации настраивается скорость вращения привода 42 автоматизированной системы 41 контроля и регулирования нагнетательного вентилятора 16 из расчета минимизации энергозатрат на обеспечение заданного микроклимата по поступлению атмосферного воздуха.

При отклонении температуры наружного (атмосферного) воздуха в сторону увеличения от нормированной сигнал, поступающий с датчика температуры 44, становится меньше, чем сигнал блока задания 46, и на выходе блока сравнения 45 регулятора температуры 43 появится сигнал положительной полярности, который поступает на вход электронного усилителя 47 одновременно с сигналом отрицательной нелинейной обратной связи 48. За счет этого в электронном усилителе 47 компенсируется нелинейность характеристики привода 40 нагнетаемого вентилятора 16. Сигнал с выхода электронного усилителя 47 поступает на вход магнитного усилителя 49, где усиливается по мощности, выпрямляется и поступает на редуктор скорости времени 42 в виде блока порошковых электромагнитных муфт. Положительная полярность сигнала электронного усилителя 47 вызывает увеличение тока возбуждения на выходе магнитного усилителя 49.

В результате повышается момент от привода 40 и вентилятор 16 увеличивает подачу воздуха в помещении 7, так как известно, что с увеличением температуры атмосферного воздуха уменьшается его плотность (см., например, стр. 214 Нащокин В.В. Техническая термодинамика и теплопередача.- М.: Высшая школа – 1980-469 с., ил.) и, как следствие, уменьшилась бы массовая подача атмосферного воздуха, поступающего в помещение 7 для поддержания заданного микроклимата.

При отклонении температуры атмосферного воздуха в сторону уменьшения по сравнению с нормированной (+20°C) сигнал, поступающий с датчика температуры 44, становится большим, чем сигнал блока задания 46, и на выходе блока сравнения 45 появляется сигнал отрицательной полярности, который поступает на вход электронного усилителя 47 одновременно с сигналом отрицательной нелинейной обратной связи 48.

За счет этого в электронном усилителе 47 компенсируется нелинейность характеристики привода 40 нагнетательного вентилятора 16. Сигнал с выхода электронного усилителя 47 поступает на вход магнитного усилителя 49, где усиливается по мощности, выпрямляется и поступает на регулятор скорости вращения 42 в виде блока порошковых электромагнитных муфт. Отрицательная полярность сигнала электронного усилителя 47 вызывает уменьшение тока возбуждения на выходе магнитного усилителя 49. В результате понижается момент от привода 40 и нагнетательный вентилятор 16 уменьшает подачу атмосферного воздуха с повышенной плотностью, сохраняя тем самым необходимое массовое количество атмосферного воздуха с поддержанием заданного микроклимата в помещении 7. Но при этом сокращаются энергозатраты на привод 40 нагнетательного вентилятора 16, т.е. обеспечивается снижение энергозатрат при эксплуатации системы гелиотеплохладоснабжения в условиях изменяющихся погодно-климатических воздействий.

При наличии каплеобразных частиц атмосферной и технологической влаги, а также твердых частиц пыли в атмосферном воздухе, поступающем по южному 1 воздухопроводу через подпольный воздухопровод 2 в нагнетательный вентилятор 16, его приводом затрачивается дополнительная энергия на транспортировку данной смеси на вход 10 вихревой трубы 9. Кроме того, загрязнения атмосферного воздуха интенсифицируют износ лопастей нагнетательного вентилятора 16 и, как следствие, снижается надежность системы гелиотеплохладоснабжения. Снабжение южного 1 воздухопровода суживающимся соплом 22 с завихрителем 23 приводит к тому, что атмосферный воздух с частицами загрязнений после входного отверстия 36 контактирует с входными участками 28, 29, 30, 31 четырех пластин 24, 25, 26 и 27, которые повернуты на прямой угол относительно входных участков 32, 33, 34 и 35. В результате всасываемый атмосферный воздух в суживающемся сопле разделяется на четыре потока и по мере движения перемещается на 90°, что приводит перед поступлением его в южный 1 воздухопровод во вращательное движение.

Следовательно, в нагнетательный вентилятор 16 поступает очищенный от загрязнения атмосферный воздух и привод его потребляет нормированное количество энергии, вне зависимости от погодно-климатических условий эксплуатации системы гелиотеплохладоснабжения.

В теплое время года при температурах атмосферного воздуха выше значений температуры, предусмотренных параметрами микроклимата внутри помещения 7, например, 25°C (воздушная заслонка 19 закрыта), атмосферный воздух по южному воздухопроводу 1 нагнетается в подпольный воздухопровод 2 вентилятором 16, установленным в вентиляционной камере 17. Из подпольного воздухопровода 2 по открытой воздушной заслонке 18 атмосферный воздух под избыточным давлением поступает на вход 10 вихревой трубы 9, в которой происходит расслоение на «холодный» (температура несколько ниже входящего в вихревую трубу атмосферного воздуха) и «горячий» (температура несколько выше входящего в вихревую трубу атмосферного воздуха) потоки воздуха. Холодный поток разделенного в вихревой трубе 9 атмосферного воздуха с заданной по условиям микроклимата внутри здания 7 температуры, например, 18°C по холодного каналу 11 вихревой трубы 9 поступает на вход 12 и в фильтр 13, где очищается от твердых частиц загрязнения, а также от жидких частиц сконденсировавшейся в процессе охлаждения парообразной влаги атмосферного воздуха, а, как известно, чем выше температура атмосферного воздуха, тем больше в нем влаги, при этом отделенные загрязнения в фильтре 13 удаляются из него через установку удаления загрязнений, например конденсатоотводчик поплавкового типа. «Горячий» поток атмосферного воздуха по горячему каналу 14 вихревой трубы 9 направляется в грунтовый воздухопровод 5, где охлаждается, отдавая тепло грунту, а сконденсировавшаяся в процессе охлаждения воздуха влага удаляется через теплопроводящие трубы 6 и дренируется в грунте. Охлажденный в грунтовом воздухопроводе 5 воздух поступает к входу 12 фильтра 13, где окончательно очищается от капельнообразных загрязнений и твердых частиц загрязнений, т.е. доводится до параметров, определяемых заданным микроклиматом в помещении 7. Из фильтра 13 обработанный воздух с заданными параметрами по температуре, влажности и степени очистки от твердых частиц поступает внутрь помещения 7.

Воздух из помещения 7 вентилятором 20, установленным в вентиляционной камере 21, направляется в теплообменный воздухопровод 4, где отдает тепло аккумулятору 8, и по северному воздухопроводу 3 выбрасывается в атмосферу.

Размещение вихревой трубы 9 в тепловом аккумуляторе 8 обеспечивает дополнительное накопление тепла, выделяемого через корпус вихревой трубы 9, в процессе расслоения обрабатываемого атмосферного воздуха на «холодный» и «горячий» потоки.

В результате, тепловой аккумулятор 8 накапливает тепловую энергию, поступающую как от теплообменного воздухопровода 4, так и от корпуса вихревой трубы 9.

При снижении температуры нагнетаемого вентилятором 16 атмосферного воздуха ниже гостированной для заданных условий микроклимата здания 7, например в ночное время температура около 15°C, открывается воздушная заслонка 19 (воздушная заслонка 18 закрыта). Атмосферный воздух по южному воздухопроводу 1 вентилятором 16 через открытую воздушную заслонку 19 подается в фильтр 13, где очищается до заданных условиями микроклимата в помещении 7 параметров. Тепловой аккумулятор 8 отдает тепло всасываемому атмосферному воздуху в подпольном воздухопроводе 2, нагревая его до необходимой температуры. Если тепловой энергии, отдаваемой тепловым аккумулятором 8 атмосферному воздуху, движущемуся по подпольному воздухопроводу 2, недостаточно, то осуществляется подогрев отопительной системой (не указано), затраты которой будут снижены, так как значительная часть тепла поступает от теплового аккумулятора 8 и грунта.

Размещение фильтра 13 после вихревой трубы 9 в тепловом аккумуляторе 8 обеспечивает снижение энергоемкости очистки нагнетаемого вентилятором 16 через южный 1 воздухопровод атмосферного воздуха внутрь помещения 7 за счет частичной очистки в процессе расслоения обрабатываемого воздуха (часть твердых загрязнений перемещается в горячий поток и дренируется в грунт по теплообменным трубам 6). Также полученное тепло от аккумулятора 8 при низких температурах атмосферного воздуха устраняет возможность обмерзания фильтрующих элементов, приводящего к возрастанию гидравлического сопротивления при температурах атмосферного воздуха, имеющих значение существенно более низкое, чем предусмотрено параметрами микроклимата внутри помещения 7, вихревая труба 9 воздушной заслонкой 18 отключается от подпольного воздухопровода 2. Всасываемый атмосферный воздух нагревается как в южном воздухопроводе 1 за счет использования тепла солнечной радиации (южный воздухопровод выполнен из поглощающего солнечную радиацию материала), так и от теплового аккумулятора 8 в подпольном воздухопроводе 2. В случае недостатка данного тепла для получения заданной температуры воздуха, нагнетаемого вовнутрь помещения 7, применяется отопительная система (не показано) незначительной мощности.

В результате, предлагаемое изобретение позволяет использовать солнечную энергию и аккумулирующие свойства грунта как при положительных, так и при отрицательных температурах атмосферного воздуха, обеспечивая снижение энергозатрат процесса получения заданных параметров микроклимата внутри помещения как по температуре, так и по степени очистки вентилируемого воздуха от загрязнений в виде твердых и каплеобразных загрязнений.

Оригинальность предлагаемого изобретения заключается в том, что оно позволяет снизить энергозатраты на привод вентилятора , подающего атмосферный воздух для поддержания нормированного микроклимата внутри помещения, путем устранения при суточных температурных изменениях окружающей среды, тепловых потерь за счет покрытия наружных поверхностей помещения тонковолокнистым базальтовым материалом из витый пучков, продольно вытянутых по высоте от основания до верха здания.

Система гелиотеплохладоснабжения, содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом – с помещением, а «горячим» – через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный – с помещением, причем южный воздухопровод снабжен суживающимся соплом, которое установлено вне помещения и выполнено с завихрителем, состоящим из четырех пластин, входные и выходные участки которых расположены один относительно другого под прямым углом, причем у входного отверстия суживающегося сопла на внутренней поверхности выполнена круговая канавка, соединенная с устройством удаления загрязнений, кроме того, подпольный воздухопровод соединен с нагнетательным вентилятором, который снабжен приводом с автоматизированной системой контроля и регулирования подачи атмосферного воздуха в помещении, причем автоматизированная система контроля и регулирования содержит регулятор скорости вращения в виде блока порошковых электромагнитных муфт и регулятор температуры с датчиком температуры атмосферного воздуха, установленный у входного отверстия суживающегося сопла, при этом регулятор температуры включает блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, а выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости в виде блока порошковых электромагнитных муфт привода нагнетательного вентилятора, отличающаяся тем, что наружные поверхности помещения для подачи атмосферного воздуха покрыты тонковолокнистым базальтовым материалом в виде витых пучков, продольно вытянутых от основания до верха здания.
Система гелиотеплохладоснабжения
Система гелиотеплохладоснабжения
Система гелиотеплохладоснабжения
Источник поступления информации: Роспатент

Showing 61-70 of 320 items.
25.08.2017
№217.015.b803

Измеритель параметров многоэлементных rlc- двухполюсников

Изобретение относится к измерительной технике и, в частности, к технике измерения параметров объектов в виде пассивных двухполюсников с сосредоточенными параметрами, имеющих многоэлементную схему замещения. Устройство содержит генератор тестовых импульсов напряжения, имеющих форму функции n-й...
Тип: Изобретение
Номер охранного документа: 0002615014
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.bafd

Вихревой теплообменный элемент

Изобретение относится к теплотехнике и может быть использовано в теплообменниках, применяемых в различных областях техники. Вихревой теплообменный элемент содержит соосно расположенные одна в другой теплообменные цилиндрические трубы большего диаметра и внутреннюю трубу с цилиндрическими...
Тип: Изобретение
Номер охранного документа: 0002615878
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bd08

Универсальный регенеративный роторный воздухоподогреватель

Изобретение относится к теплоэнергетике и может быть использовано в процессах очистки дымовых газов от вредных примесей. Универсальный регенеративный роторный воздухоподогреватель содержит короб, снабженный с верхней горячей стороны газового отсека патрубком входа дымовых газов, с холодной...
Тип: Изобретение
Номер охранного документа: 0002616430
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.c5fb

Электрический ракетный двигатель

Изобретение относится к области создания электрических реактивных двигателей. Для обеспечения надежной подачи твердого топлива в источник плазмообразующего вещества при длительной эксплуатации электрического ракетного двигателя в условиях низких отрицательных температур предложено поверхность...
Тип: Изобретение
Номер охранного документа: 0002618636
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c60d

Двухзвенный вездеход

Изобретение относится к транспортному машиностроению, в частности к транспортным средствам. Двухзвенный вездеход содержит два герметичных звена, оснащенных гусеничными движителями, торсионной независимой подвеской и грузовым отсеком, первым и вторым герметичными звеньями, связанными между собой...
Тип: Изобретение
Номер охранного документа: 0002618615
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.ce01

Устройство для смешения

Изобретение относится к устройствам для смешения жидких материалов и может быть использовано в химической, пищевой, микробиологической и других отраслях промышленности, а также при водоподготовке для очистки природных и сточных вод. Устройство для смешения содержит корпус с крышкой, днищем и...
Тип: Изобретение
Номер охранного документа: 0002620796
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce34

Смеситель-эмульсатор

Изобретение относится к смесителям и может быть использовано для приготовления эмульсий и суспензий для сжигания в топках энергетических установок, а также в химической технологии. Смеситель-эмульсатор содержит цилиндрический корпус, вал, установленный по оси корпуса, многолопастный ротор,...
Тип: Изобретение
Номер охранного документа: 0002620791
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce96

Устройство для очистки и комплексной утилизации сбросных газов

Предлагаемое изобретение относится к теплоэнергетике и сельскому хозяйству и может быть использовано в процессах очистки и утилизации сбросных газов теплоэнергетических установок и двигателей внутреннего сгорания для снижения загрязнений, выбросов парниковых газов в атмосферу и повышения...
Тип: Изобретение
Номер охранного документа: 0002620798
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cec0

Гидроклассификатор

Изобретение относится к переработке волокнистых материалов и может быть использовано в асбестовой и целлюлозно-бумажной промышленности. Гидроклассификатор включает корпус, расположенное вдоль корпуса просеивающее приспособление, установленные у противоположных по диагонали углов корпуса в его...
Тип: Изобретение
Номер охранного документа: 0002620819
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.ced9

Вихревой классификатор порошковых материалов

Изобретение относится к аппаратам для классификации дисперсных материалов и может быть использовано в строительной, химической и других отраслях промышленности. Вихревой классификатор порошковых материалов включает цилиндрическую прямоточную вихревую камеру с каналами вывода классифицируемого...
Тип: Изобретение
Номер охранного документа: 0002620821
Дата охранного документа: 30.05.2017
Showing 61-70 of 156 items.
25.08.2017
№217.015.b1bd

Шахтная печь для обжига сыпучего материала

Изобретение относится к технологии производства сахара, а именно к оборудованию по получению сатурационного газа, используемого для очистки диффузионного сока, и применяется при получении извести в шахтных печах в промышленности строительных материалов, химической и металлургической...
Тип: Изобретение
Номер охранного документа: 0002613260
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.ba95

Бесконтактный истинно двухосевой датчик угла поворота вала

Изобретение относится к измерительной технике, а именно к области бесконтактных измерений угла поворота вала. Бесконтактный истинно двухосевой датчик угла поворота вала использует магнитную систему на основе малого дипольного диаметрально намагниченного магнита, совершающего угловое движение с...
Тип: Изобретение
Номер охранного документа: 0002615612
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bafd

Вихревой теплообменный элемент

Изобретение относится к теплотехнике и может быть использовано в теплообменниках, применяемых в различных областях техники. Вихревой теплообменный элемент содержит соосно расположенные одна в другой теплообменные цилиндрические трубы большего диаметра и внутреннюю трубу с цилиндрическими...
Тип: Изобретение
Номер охранного документа: 0002615878
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.c5fb

Электрический ракетный двигатель

Изобретение относится к области создания электрических реактивных двигателей. Для обеспечения надежной подачи твердого топлива в источник плазмообразующего вещества при длительной эксплуатации электрического ракетного двигателя в условиях низких отрицательных температур предложено поверхность...
Тип: Изобретение
Номер охранного документа: 0002618636
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.ce34

Смеситель-эмульсатор

Изобретение относится к смесителям и может быть использовано для приготовления эмульсий и суспензий для сжигания в топках энергетических установок, а также в химической технологии. Смеситель-эмульсатор содержит цилиндрический корпус, вал, установленный по оси корпуса, многолопастный ротор,...
Тип: Изобретение
Номер охранного документа: 0002620791
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cec0

Гидроклассификатор

Изобретение относится к переработке волокнистых материалов и может быть использовано в асбестовой и целлюлозно-бумажной промышленности. Гидроклассификатор включает корпус, расположенное вдоль корпуса просеивающее приспособление, установленные у противоположных по диагонали углов корпуса в его...
Тип: Изобретение
Номер охранного документа: 0002620819
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.ced9

Вихревой классификатор порошковых материалов

Изобретение относится к аппаратам для классификации дисперсных материалов и может быть использовано в строительной, химической и других отраслях промышленности. Вихревой классификатор порошковых материалов включает цилиндрическую прямоточную вихревую камеру с каналами вывода классифицируемого...
Тип: Изобретение
Номер охранного документа: 0002620821
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.d09f

Трехслойная ресурсосберегающая железобетонная панель

Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий. Технический результат: поддержание заданной надежной эксплуатации трехслойной ресурсосберегающей железобетонной панели при землетрясениях за счет резонансных всплесков сейсмических волн в...
Тип: Изобретение
Номер охранного документа: 0002621240
Дата охранного документа: 01.06.2017
26.08.2017
№217.015.d457

Вихревой теплообменный элемент

Изобретение относится к теплотехнике и может быть использовано в теплообменниках, применяемых в различных отраслях техники, в частности в регенеративных теплообменниках газотурбинных установок. Изобретение заключается в том, что в вихревом теплообменном элементе, содержащем пакеты ребер,...
Тип: Изобретение
Номер охранного документа: 0002622340
Дата охранного документа: 14.06.2017
26.08.2017
№217.015.d4b8

Система гелиотеплохладоснабжения

Изобретение относится к теплоэнергетике и предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения содержит южный и северный воздухопроводы, расположенные на соответствующих сторонах здания,...
Тип: Изобретение
Номер охранного документа: 0002622449
Дата охранного документа: 15.06.2017
+ добавить свой РИД