×
27.06.2020
220.018.2ba6

Результат интеллектуальной деятельности: Способ лазерного разделения изотопов кислорода

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу лазерного разделения изотопов кислорода и может быть использовано для получения изотопически обогащенного кислорода, а также для последующего синтеза изотопа фтора F, важного в медицинской диагностике. Способ включает облучение кислорода резонансным инфракрасным излучением с длиной волны: 6,811 мкм, 3,431 мкм, 2,304 мкм, 1,741 мкм, 1,403 мкм, 1,178 мкм, 1,017 мкм, 897,0 нм, 803,5 нм или 728,8 нм, последующее воздействие сильным лазерным излучением оптического или инфракрасного диапазона и интенсивностью, превышающей 3×10 Вт/см, и экстракцию образованных положительных ионов, при этом время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния О. Изобретение обеспечивает повышение эффективности выделения изотопов кислорода лазерным излучением. 2 ил.

Изобретение относится к молекулярной физике, а именно к области разделения изотопов кислорода, и может быть использовано для получения изотопически обогащенного кислорода, а также для последующего синтеза изотопа фтора 18F, важного в медицинской диагностике.

Известен способ разделения изотопов кислорода методом дистилляции [Патент RU 2598094 С1, МПК B01D 59/04, B01D 59/28, С01В 13/02, B01D 3/14, Н01М 8/00, опубл. 20.09.2016], включающий получение кислорода, содержащего первично обогащенный изотоп кислорода, с помощью дистилляции кислородного сырья при использовании первого дистилляционного устройства, получение воды с помощью гидрогенизации кислорода, содержащего первично обогащенный изотоп кислорода, получение оксида азота, отводимого при дистилляции сырья оксида азота, при использовании второго дистилляционного устройства, и получение оксида азота и воды с помощью осуществления реакции химического обмена между водой и отведенным оксидом азота, в результате чего получают оксид азота, имеющий повышенную концентрацию изотопа кислорода, и воду, имеющую пониженную концентрацию изотопа кислорода, при чем оксид азота, имеющий повышенную концентрацию изотопа кислорода, подают во второе дистилляционное устройство, а кислород, полученный электролизом воды, имеющей пониженную концентрацию изотопа кислорода, возвращают в первое дистилляционное устройство. Изобретение обеспечивает эффективное обогащение изотопа кислорода.

Известен способ разделения изотопов кислорода методом центрифугирования [Патент RU 2092234 С1, МПК B01D 59/20, B01D 59/50, опубл. 10.10.1997]. Способ заключается в химическом превращении кислородсодержащего неорганического соединения, обогащенного по целевому изотопу кислорода, в газообразное одноатомное неорганическое соединение кислорода с моноизотопными элементами и последующем разделении изотопов кислорода центробежным методом.

Методы лазерного разделения изотопов являются эффективными методами получения химических элементов определенного изотопического состава [Летохов В.С, Мур С.Б. Квантовая электроника т. 3, вып. 3, 4, 1976 г.], что связано с возможностью значительного изотопического обогащения за один цикл. Лазерные методы разделения изотопов основаны на селективном возбуждении лазерным излучением электронных или колебательных уровней атомов или молекул определенного изотопического состава. Метод избирательной стимуляции одного молекулярного компонента в смеси [W0 9712373; B01D 53/00; B01D 59/34; G01N 21/63, опубл. 03.04.1997] предполагает переход обоих компонентов в первое возбужденное состояние при первом импульсе лазерного излучения и выборочный переход одного компонента во второе возбужденное состояние при втором импульсе лазерного излучения длительностью порядка 10-15 с.

Способ разделения и обогащения стабильных изотопов в газовой фазе с использованием принципов спектрометрии ионной подвижности при атмосферном давлении (760 мм рт. ст.) и при комнатной температуре (298 К), согласно патенту US6831271 [B01D 59/46; B01D 59/48; G01N 27/62; G01N 27/64; H01J 49/04; H01J 49/40; H01J 49/42, опубл. 14.12.2004], может быть использован для разделения и обогащения изотопов фтора. Электроспрей-ионизация используется для создания газовой смеси ионов, и ионные пучки на выходе из сильного поля с асимметричной формой волны спектрометра подвижности ионов попадают в масс-спектрометр для идентификации изотопов.

Известен способ [патент RU 2652260, опубл. 25.04.2018] лазерного разделения изотопов лития, согласно которому облучение исходного газа резонансным инфракрасным излучением, последующее воздействие сильным лазерным излучением и экстракцию образованных положительных ионов, отличающийся тем, что в качестве исходного газа используются пары хлористого лития (LiCl), длина волны резонансного инфракрасного излучения должна иметь одно из значений 14,79 мкм, 7,451 мкм, 5,006 мкм, 3,783 мкм, 3,050 мкм, 2,562 мкм, 2,213 мкм или 1,952 мкм, диапазон лазерного излучения оптический или инфракрасный, а интенсивность сильного лазерного излучения превышает 1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния LiCl.

Известен способ [патент RU 2651338, опубл. 19.04.2018] лазерного разделения изотопов йода, согласно которому облучение исходного газа резонансным инфракрасным излучением, последующее воздействие сильным лазерным излучением и экстракцию образованных положительных ионов, отличающийся тем, что в качестве исходного газа используются пары йода (1 г), длина волны резонансного инфракрасного излучения 47,62 мкм, диапазон лазерного излучения оптический или инфракрасный, а интенсивность сильного лазерного излучения превышает 1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния I2.

Известен способ [патент RU 2620051, опубл. 22.05.2017] лазерного разделения изотопов фтора, согласно которому облучение исходного газа производят резонансным инфракрасным излучением, последующее воздействие сильным лазерным излучением и экстракцию образованных положительных ионов, отличающийся тем, что в качестве исходного газа используется фтороводород (HF), длина волны резонансного инфракрасного излучения 2,419 мкм, диапазон лазерного излучения оптический или инфракрасный, а интенсивность сильного лазерного излучения превышает 1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния HF.

Известен способ [патент RU 2530062, опубл. 10.10.2014] лазерного разделения изотопов хлора, согласно которому облучение исходного газа резонансным инфракрасным излучением, последующее воздействие сильным лазерным излучением и экстракцию образованных положительных ионов, отличающийся тем, что в качестве исходного газа используется хлористый водород (HCl), длина волны резонансного инфракрасного излучения 3,782 мкм, диапазон лазерного излучения оптический или инфракрасный, а интенсивность сильного лазерного излучения превышает 1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния HCl.

Известен способ [патент RU 2531178, опубл. 20.10.2014] лазерного разделения изотопов водорода облучением исходного газа резонансным инфракрасным излучением, последующее воздействие лазерным излучением и экстракцию образованных положительных ионов, отличающийся тем, что в качестве исходного газа используется хлористый водород (смесь HCl и DCl), длина волны резонансного инфракрасного излучения 4,662 мкм, диапазон лазерного излучения оптический или инфракрасный, а интенсивность превышает 1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния DCl.

Известен способ разделения различных изотопов по патенту GB1529391 (B01D 59/34; G02B 27/00; H01S 3/08, опубл. 18.10.1978), согласно которому пар, содержащий смесь изотопов, облучают для возбуждения изотопов одного типа до повышенного колебательного состояние и перехода возбужденных изотопов на более высокий электронный уровень, на котором электронные заряды разделяются. Пар обеспечивает сильно насыщенную атмосферу, которая не является растворителем для изотопов.

Известен способ [патент GB1473330, МПК B01D 59/34; B01J 19/12; G02B 27/00; H01S 3/00; H01S 3/094; H01S 3/22, опубл. 11.05.1977] лазерного разделения изотопов, взятый за прототип, основанный на изотопически-селективном возбуждении молекул газовой фазы в процессе инфракрасного поглощения фотонов, который включает в себя следующие стадии: облучение молекул ИК-излучением с помощью ИК лазера при интенсивности, по крайней мере, 104 Вт/см2, в течение времени от 10-10 до 5×10-5 с, причем молекулы, содержащие желаемый изотоп или изотопы, преимущественно возбуждены резонансным излучением и поглощают больше, чем один квант ИК-излучения; преобразование возбужденных молекул в процессе облучения лазером оптического или УФ диапазона для осуществления фотодиссоциации, в котором возбужденные молекулы могут быть отделены от невозбужденных.

Селективное колебательное возбуждение считается наиболее трудным методом [Летохов В.С, Мур С.Б., цит. соч., стр. 253]. Это связано с тем, что, несмотря на простоту селективного колебательного возбуждения, затруднено дальнейшее выделение колебательно возбужденных молекул.

Задачей изобретения является устранение недостатков, присущих прототипу.

Технический результат заключается в повышении эффективности выделения изотопов кислорода лазерным излучением.

Технический результат достигается тем, что в способе лазерного разделения изотопов кислорода, включающем облучение исходного газа резонансным инфракрасным излучением, последующее воздействие сильным лазерным излучением и экстракцию образованных положительных ионов, согласно изобретению в качестве исходного газа используется кислород О2, длина волны резонансного инфракрасного излучения должна иметь одно из следующих значений: 6,811 мкм, 3,431 мкм, 2,304 мкм, 1,741 мкм, 1,403 мкм, 1,178 мкм, 1,017 мкм, 897,0 нм, 803,5 нм или 728,8 нм, диапазон сильного лазерного излучения оптический или инфракрасный, а интенсивность превышает 3×1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния О2.

Предлагается использовать эффект анти-стоксова усиления туннельной ионизации молекул. Этот эффект, предложенный в работе [Kornev A. S., Zon B. A., Phys. Rev. А 86, 043401 (2012); 97, 033413 (2018)] и более детально рассмотренный в работах [Kornev A. S., Zon B. A., Laser Phys. 24, 115302 (2014)] применительно к молекуле HF, [Kornev A. S., Zon В. A., Phys. Rev. А 92, 033420 (2015)] применительно к N2, [Kopytin I. V., Komev A. S., Zon B. A., Laser Phys. 29, 095301 (2019)] применительно к молекуле O2 состоит в значительном увеличении вероятности туннельного эффекта в лазерном поле для колебательно-возбужденных молекул. При туннельном эффекте в лазерном поле возможен неупругий процесс, когда часть энергии передается туннелирующему электрону от иных степеней свободы в атомах [Komev A. S. et al., Phys. Rev. A 68, 065403 (2003); 69, 065401 (2004); 79, 063405 (2009); 84, 053424 (2011); 85, 035402 (2012); Komev A. S. et al., Laser Phys. Lett. 10, 085301 (2013); Komev A. S., Zon B. A., Laser Phys. Lett. 16, 105301 (2019)] или молекулах [Komev A. S., Zon B. A., Phys. Rev. A 86, 043401 (2012); 92, 033420 (2015); Komev A. S., Zon B. A. Laser Phys. 24, 115302 (2014); Komev A. S., Zon B. A., Phys. Rev. A 97, 033413 (2018); Kopytin I. V. et al., Laser Phys. 29, 095301 (2019)]. Для молекул такими иными степенями свободы могут являться колебательные степени свободы ядер атомов, образующих молекулу. Предварительное возбуждение ядерных колебаний позволяет в результате туннельного эффекта образовывать ионы с преимущественным содержанием определенных изотопов, поскольку нейтральные молекулы разного изотопического состава имеют разные частоты колебательных переходов.

На Фиг. 1 показана зависимость отношения вероятности образования ионов О2+ из возбужденного колебательного состояния (υi=1) к вероятности образования ионов О2+ из основного колебательного состояния (υi=0), в зависимости от интенсивности лазерного излучения I.

На Фиг. 2 представлена таблица значений длин волн резонансного инфракрасного излучения для разных возбужденных колебательных состояний (υi =1, 2, …, 10).

В природе встречаются три стабильных изотопа кислорода: 16O (99,738-99,776%), 17O (0,037-0,040%) и 18O (0,188-0,222%). В живой природе фильтрация тяжелых изотопов (17O, 18O) происходит естественным биохимическим путем в ходе фотосинтеза [Yeung L. Y, Ash J. L, Young E. D. Science 348, 431 (2015)]. В результате тяжелые изотопы связываются в биомассе, а изотоп 16O выделяется в атмосферу. Данный процесс непригоден для практического использования ввиду малой скорости фотосинтеза. Для целей медицины важен изотоп 18O, из которого в результате бомбардировки протонным пучком синтезируется долгоживущий β+-активный изотоп 18F, используемый в некоторых диагностических процедурах. В газовой смеси, содержащей различные изотопы кислорода (О, 17O, 18O), молекулы облучаются инфракрасным излучением с длиной волны λр в соответствии с данными из Фиг. 2 для заселения υi-го колебательного состояния молекулы 18О2. После этого на объем газа, подвергшийся облучению с указанной выше длиной волны, воздействуют лазерным излучением оптического или ИК диапазона, причем интенсивность излучения I должна быть достаточно высокой, чтобы ионизация проходила вследствие туннельного эффекта, то есть удовлетворять неравенству

Здесь Е0 - потенциал ионизации молекулы, λ - длина волны ионизирующего излучения, - атомная единица длины (боровский радиус), Еа=27,2 эВ=4,36×1018 Дж - атомная единица энергии, Ia=3,51х1016 Вт см-2=3,51×1020 Вт м-2 - атомная единица интенсивности, ае=7,23×10-3 - постоянная тонкой структуры.

Для молекулы кислорода O20=12,077 эВ) эта интенсивность должна превышать 3.8×1013 Вт/см2 при длине волны ионизирующего излучения 1,3 мкм или 1.6×1013 Вт/см2 при длине волны ионизирующего излучения 2,0 мкм. Интервал времени между облучением резонансным инфракрасным излучением и мощным лазерным излучением не должен превышать времени жизни колебательного состояния, зависящего от давления и температуры газа. Вследствие туннельного эффекта преимущественно ионизуются колебательно-возбужденные молекулы, то есть молекулы 18О2. Далее, путем экстракции положительных ионов, получают кислород с повышенным по сравнению с исходным содержанием изотопа 18O.

Из зависимости на Фиг. 1 видно, что в оптимальных условиях, при интенсивности лазерного излучения ~3×1013 Вт/см2, вероятность образования 18О2+ превышает вероятность образования ионов 16О2+ более, чем в 10 раз.

Способ лазерного разделения изотопов кислорода, включающий облучение исходного газа резонансным инфракрасным излучением, последующее воздействие сильным лазерным излучением и экстракцию образованных положительных ионов, отличающийся тем, что в качестве исходного газа используется кислород - О, длина волны резонансного инфракрасного излучения должна иметь одно из следующих значений: 6,811 мкм, 3,431 мкм, 2,304 мкм, 1,741 мкм, 1,403 мкм, 1,178 мкм, 1,017 мкм, 897,0 нм, 803,5 нм или 728,8 нм, диапазон сильного лазерного излучения оптический или инфракрасный, а интенсивность превышает 3×10 Вт/см, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния О.
Способ лазерного разделения изотопов кислорода
Источник поступления информации: Роспатент

Showing 11-20 of 86 items.
10.05.2018
№218.016.4e0f

Способ количественного спектрофотометрического определения таурина и аллантоина при совместном присутствии в лекарственной форме гель

Изобретение относится к области медицины и фармации, а именно к количественному определению таурина и аллантоина при совместном присутствии в лекарственных формах и смесях методом спектрофотомерии. Способ количественного спектрофотометрического определения таурина и аллантоина при совместном...
Тип: Изобретение
Номер охранного документа: 0002652355
Дата охранного документа: 25.04.2018
18.05.2018
№218.016.5147

Способ дифференциации ключевых пород медоносных пчел в россии на основе мутагенной пцр-пдрф

Изобретение относится к биохимии. Описан способ дифференциации пород медоносных пчел России на основе мутагенной ПЦР-ПДРФ. Изобретение может быть использовано для идентификации пород пчел в пчеловодческих предприятиях и пасеках. Технический результат заключается в проведении дифференциации...
Тип: Изобретение
Номер охранного документа: 0002653435
Дата охранного документа: 08.05.2018
18.05.2018
№218.016.51f8

Магнитоэлектрический композиционный материал для датчика магнитного поля

Использование: для получения МЭ композиционных материалов с внутренним постоянным магнитным полем. Сущность изобретения заключается в том, что магнитоэлектрический композиционный материал для датчика магнитного поля содержит магнитострикционную и пьезоэлектрическую из керамики цирконат-титаната...
Тип: Изобретение
Номер охранного документа: 0002653134
Дата охранного документа: 07.05.2018
09.06.2018
№218.016.5d91

Способ получения водорастворимых полисахаридов из листьев лопуха большого

Изобретение относится к получению биологически активных веществ из лекарственного растительного сырья и может быть использовано для получения водорастворимых полисахаридов из листьев лопуха большого. Способ предусматривает трехкратное экстрагирование растительного сырья очищенной горячей водой,...
Тип: Изобретение
Номер охранного документа: 0002656398
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.5e2c

Способ использования в качестве стимуляторов роста для видов рода rhododendron l. соединений ряда пиримидин-карбоновых кислот

Изобретение относится к области сельского хозяйства, и в частности к регуляторам роста растений, и может быть использовано для регулирования роста видов рода Rhododendron L. Способ использования в качестве стимуляторов роста для видов рода Rhododendron L. соединений ряда пиримидин-карбоновых...
Тип: Изобретение
Номер охранного документа: 0002656393
Дата охранного документа: 05.06.2018
11.06.2018
№218.016.606c

Арифметическое устройство по модулю м

Изобретение относится к области автоматики и вычислительной техники и может быть использовано в вычислительных структурах, работающих с дискретно-фазированным представлением чисел модулярной системы счисления. Техническим результатом является осуществление выполнения любой модулярной...
Тип: Изобретение
Номер охранного документа: 0002656992
Дата охранного документа: 07.06.2018
20.06.2018
№218.016.6514

Конфокальный спектроанализатор флуоресцентных изображений

Изобретение относится к устройствам сканирования возбуждаемого лазерным источником излучения спектра флуоресценции поверхности объекта исследований и представления результата в виде изображений в видимом и ИК-диапазонах. В устройстве использован оптоволоконный световод, преобразующий линейные...
Тип: Изобретение
Номер охранного документа: 0002658140
Дата охранного документа: 19.06.2018
05.07.2018
№218.016.6b5a

Фазированный ключ по модулю m

Изобретение относится к области автоматики, измерительной и вычислительной техники и может быть использовано в вычислительных структурах, работающих с дискретно-фазированным представлением чисел модулярной системы счисления. Целью изобретения является расширение функциональных возможностей...
Тип: Изобретение
Номер охранного документа: 0002659866
Дата охранного документа: 04.07.2018
05.07.2018
№218.016.6b5c

Способ использования в качестве регуляторов роста однолетника сальвии блестящей соединений ряда пиримидин-карбоновых кислот

Изобретение относится к области сельского хозяйства, а именно к регуляторам роста растений, и может быть использовано для регулирования роста однолетника сальвии блестящей. Способ использования в качестве регуляторов роста однолетника сальвии блестящей соединений ряда пиримидин-карбоновых...
Тип: Изобретение
Номер охранного документа: 0002659828
Дата охранного документа: 04.07.2018
06.07.2018
№218.016.6d47

Устройство повышения степени охлаждения и энергетической эффективности масляного трансформатора

Изобретение относится к электротехнике, в частности к конструктивным элементам трансформаторов, и может быть использовано для эффективного охлаждения масляных трансформаторов. Технический результат состоит в увеличении энергетической эффективности при повышении степени его охлаждения. В системе...
Тип: Изобретение
Номер охранного документа: 0002660142
Дата охранного документа: 05.07.2018
Showing 1-9 of 9 items.
10.04.2014
№216.012.b40c

Термический метаматериал

Изобретение относится к теплотехнике, а именно к материалу, излучающая/поглощающая способность которого близка к излучающей/поглощающей способности абсолютно черного тела. Метаматериал представляет собой периодически чередующиеся полоски проводящего материала (металла) и диэлектрика, причем...
Тип: Изобретение
Номер охранного документа: 0002511809
Дата охранного документа: 10.04.2014
10.10.2014
№216.012.fad8

Способ лазерного разделения изотопов хлора

Изобретение относится к молекулярной физике, а именно к области разделения изотопов хлора, и может быть использовано для получения изотопически обогащенного хлора. Способ лазерного разделения изотопов хлора включает облучение исходного газа в качестве которого используется хлористый водород HCl...
Тип: Изобретение
Номер охранного документа: 0002530062
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.ff2a

Способ лазерного разделения изотопов водорода

Изобретение относится к молекулярной физике, а именно к области разделения изотопов водорода, и может быть использовано для выделения изотопа дейтерия D. Способ лазерного разделения изотопов водорода включает облучение исходного газа в качестве которого используется хлористый водород НСl...
Тип: Изобретение
Номер охранного документа: 0002531178
Дата охранного документа: 20.10.2014
27.05.2016
№216.015.43d9

Резонансная камера нагрева для устройств с источником излучения свч диапазона

Изобретение относится к СВЧ технике и предназначено для повышения однородности СВЧ поля при нагреве, сушке и других применениях теплового воздействия электромагнитного излучения СВЧ диапазона. Резонансная камера нагрева для устройств с источником излучения СВЧ диапазона, выполненная в форме...
Тип: Изобретение
Номер охранного документа: 0002585258
Дата охранного документа: 27.05.2016
25.08.2017
№217.015.cb41

Способ лазерного разделения изотопов фтора

Изобретение относится к способу разделения изотопов фтора. Способ включает облучение фтористого водорода резонансным инфракрасным излучением, с длиной волны 2,419 мкм, последующее воздействие лазерным излучением оптического или инфракрасного диапазона и интенсивностью, превышающей 3×10 Вт/см,...
Тип: Изобретение
Номер охранного документа: 0002620051
Дата охранного документа: 22.05.2017
20.01.2018
№218.016.116b

Способ измерения функции распределения коллоидных частиц по размерам в водном растворе

Изобретение относится к физике коллоидов и может быть использовано для определения функции распределения коллоидных частиц по размерам. Заявлен способ измерения функции распределения коллоидных частиц по размерам в водных растворах, включающий помещение исследуемого коллоидного раствора в...
Тип: Изобретение
Номер охранного документа: 0002634096
Дата охранного документа: 23.10.2017
10.05.2018
№218.016.49b2

Способ лазерного разделения изотопов йода

Изобретение относится к области разделения изотопов йода и может быть использовано для получения изотопически обогащенного йода, а также при утилизации радиоактивных отходов. Способ лазерного разделения изотопов йода включает облучение паров йода (I) резонансным инфракрасным излучением с длиной...
Тип: Изобретение
Номер охранного документа: 0002651338
Дата охранного документа: 19.04.2018
10.05.2018
№218.016.4d34

Способ лазерного разделения изотопов лития

Изобретение относится к области разделения изотопов лития и может быть использовано для получения изотопически обогащенного лития. Способ лазерного разделения изотопов лития включает облучение паров хлористого лития (LiCl) резонансным инфракрасным излучением с длиной волны 14,79 мкм, 7,451 мкм,...
Тип: Изобретение
Номер охранного документа: 0002652260
Дата охранного документа: 25.04.2018
01.03.2019
№219.016.ce34

Способ физиотерапии с применением импульсного света

Изобретение относится к медицине, а именно к физиотерапии. Способ включает воздействие на объект терапии модулированным электромагнитным излучением низкой интенсивности видимого или инфракрасного диапазона. При воздействии используют импульсы излучения длительностью от 2 до 4 мс. Длительность...
Тип: Изобретение
Номер охранного документа: 0002429889
Дата охранного документа: 27.09.2011
+ добавить свой РИД