×
25.06.2020
220.018.2b26

Результат интеллектуальной деятельности: Преобразующий элемент молекулярно-электронного преобразователя диффузионного типа

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике в частности к чувствительным элементам (электродным узлам) молекулярно-электронных преобразователей диффузионного типа. Сущность изобретения заключатся в том, что в преобразующем элементе молекулярно-электронного преобразователя диффузионного типа, содержащем две пары выполненных из нитей сетчатых электродов, расположенных перпендикулярно потоку рабочей жидкости и подключенных к источнику напряжения таким образом, что в каждой паре сетчатых электродов потенциал одного из электродов - анода выше потенциала другого электрода - катода, поверхности нитей, из которых изготовлены катоды, покрыты диэлектрическим слоем со стороны, противоположной близлежащему аноду. Технический результат: обеспечение возможности повышения чувствительности преобразующего элемента молекулярно-электронного преобразователя диффузионного типа. 5 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике в частности, к чувствительным элементам (электродным узлам) молекулярно-электронных преобразователей диффузионного типа.

Преобразующие элементы молекулярно-электронных датчиков используют раствор электролита в качестве рабочей среды и преобразуют поток в электрический сигнал. Известные конструкции включают две пары электродов, помещенные в канал или в группу каналов, заполненных электролитом. В каждой паре один электрод находится при потенциале на 200 - 400 мВ более высоком относительно второго электрода.

В качестве рабочей жидкости чаще всего используется раствор йод-йодидного электролита, состоящего из высококонцентрированного водного раствора соли йодида (обычно используется йодид лития или йодид калия) с небольшой добавкой молекулярного йода. Концентрация йодида превышает концентрацию йода в 100 и более раз. Соль в растворе практически полностью диссоциирована, а йод находится в форме ионов три-йодида. Могут использоваться и другие окислительно-восстановительные системы.

Под действием указанной разности потенциалов на электродах происходит следующая электрохимическая реакция:

При этом на анодах происходит реакция образования ионов три-йодида, а на катодах протекает обратная реакция. При достаточно большой разности потенциалов (режим насыщения) величина токов определяется скоростью доставки к катодам ионов три-йодида, возникающих на анодах. Поэтому ионы три-йодида в рассматриваемой системе называют активными. В неподвижном электролите доставка активных ионов производится через механизм диффузии. Уменьшение расстояния между анодом и катодом увеличивает скорость диффузии, а, следовательно, межэлектродный ток. Если жидкость приходит в движение, то помимо диффузии перенос активных ионов осуществляется конвекцией. Ток катода возрастает, если жидкость течет по направлению от смежного анода и убывает при противоположном движении жидкости.

Математически перенос йонов три-йодида описывается уравнением конвективной диффузии:

где с - концентрация ионов D - коэффициент диффузии, - гидродинамическая скорость течения жидкости, определяемая обычно из решения уравнения Навье-Стокса. Электрический ток, протекающий через электроды преобразующего элемента рассчитывается через интеграл по поверхности электрода по следующей формуле:

q - электрический заряд, переносимый через поверхность электрода в единичной электрохимической реакции, - единичный вектор нормали к поверхности. Как правило, преобразующий элемент функционирует в линейном режиме. Это означает, что решение уравнения (1) можно представить в виде следующей суммы:

с0 - стационарное распределение концентрации активного компонента, то есть в условиях неподвижной жидкости, когда отличие концентрации от равновесного значения связано только с электрохимическими реакциям на электродах и диффузионными процессами, с1 добавка к концентрации, связанная с жидкости, линейную по гидродинамической скорости. Предполагается выполнение условия c1<<c0. Слагаемые, пропорциональные более высоким степеням скорости, отбрасываются.

В сделанных предположениях уравнение (2) можно представить в виде:

Физически, это уравнение можно интерпретировать следующим образом. Предположим, что у нас есть некоторое стационарное распределение концентрации, на которое накладывается гидродинамическое движение жидкости, вовлекающее ионы в движение. Если мы говорим только о нестационарной составляющей концентрации активных ионов с1, то согласно уравнению (4) их распределение определяется диффузионными процессами, а увлечение ионов потоком эквивалентно появлению в пространстве источников ионов. В общем случае, знак источников может быть как положительным (активные ионы заносятся потоком жидкости в рассматриваемую область пространства), так и отрицательным (активные ионы выносятся из рассматриваемой области).

Предложено и практически используется несколько типов конструкций чувствительного элемента. В классической конструкции Ларкама, Инглиша и Эвертсона (English, G.Е. (1975). Response characteristics of polarized cathode solion linear acoustic transducers. The Journal of the Acoustical Society of America, 58(1), 266, Larkam, C.W. (1965). Theoretical Analysis of the Solion Polarized Cathode Acoustic Linear Transducer. The Journal of the Acoustical Society of America, 37(4)) электроды были изготовлены из сеток, сплетенных из тонкой металлической проволоки. Расстояние между сетками составляло около 1 мм. Такая конструкция не нашла широкого распространения в силу ограничений частотного диапазона (активные ионы, возникшие на катоде за период изменения сигнала не успевали достичь катода из-за большого расстояния анод-катод), а также из-за высоких шумов естественной конвекции в межэлектродном пространстве.

Дальнейшее развитие технологии, основанной на применении сеточных электродов, проходило в направлении уменьшения межэлектродного расстояния, размещения в пространстве между электродами перфорированных диэлектрических прокладок, препятствующих развитию естественной конвекции, уменьшения диаметра проволоки («Введение в молекулярную электронику», под ред., Н.С. Лидоренко, М.,: Энергоатомиздат, 1984 г.). Современные преобразователи сеточного типа имеют межэлектродное расстояние ~40 мкм, изготовлены из металлической проволоки такого же диаметра и имеют частотный диапазон до 300 Гц (V.М. Agafonov, I.V. Egorov, and A.S. Shabalina, "Operating principles and technical characteristics of a small-sized molecular-electronic seismic sensor with negative feedback," Seism. Instruments, vol. 50, no. 1, pp. 1-8,2014.; Патент РФ №2394246).

Техническое решение, предложенное в (Патент РФ №2394246) можно рассматривать как прототип предлагаемого технического решения.

В целом, приборы, основанные на использовании сеточных электродов, демонстрируют высокие выходные параметры, на уровне лучших электромеханических аналогов, и используются в сейсмологии, сейсморазведке, мониторинге зданий и сооружений, при создании сейсмических систем охраны.

В тоже время, достигнутый уровень чувствительности оказывается недостаточным для решения некоторых важных технических задач. В частности, разработанные на основе молекулярно-электронной технологии датчики угловых движений, до сих пор, по чувствительности не удовлетворяют требованиям, необходимым для использования в сейсморазведке, что ограничивает область их использования, несмотря на множество потенциальных применений (Патенты WO 2012/037292, WO 2012/129277, US 2010/0274489). Другой пример - использование в широкополосных сейсмологических станциях в составе глобальных сейсмологических сетей. Многие из таких станций расположены в сейсмически очень тихих местах и используемые на них датчики должны иметь чувствительность достаточную для регистрации даже слабых сейсмических событий по всему земному шару. Молекулярно-электронные датчики не обладают достаточной чувствительностью и поэтому используются только на станциях с относительно высокими форовыми шумами.

Другой тип преобразующего элемента представляет собой систему электродов, нанесенных на поверхность, вблизи которой сформирован поток рабочей жидкости (US 8024971 B2. Convective accelerometer, Z. Sun, D. Chen, J. Chen, T. Deng, G. Li, and J. Wang, "A MEMS based electrochemical seismometer with a novel integrated sensing unit," Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2016, vol. 2016-Febru, pp. 247-250, G. Li et al., "A Flexible Sensing Unit Manufacturing Method of Electrochemical Seismic Sensor," Sensors, vol. 18, no. 4, p. 1165, 2018., Криштоп, Агафонов патент РФ №2444738,2012; Не, W.Т., Chen, D.Y., Wang, J.В., & Zhang, Z.Y. (2015). MEMS based broadband electrochemical seismometer. Optics and Precision Engineering, 23(2), 444-451; Krishtop, V.G., Agafonov, V.M., & Bugaev, a. S. (2012). Technological principles of motion parameter transducers based on mass and charge transport in electrochemical microsystems. Russian Journal of Electrochemistry, 48(7), 746-755.; Chen, D., Li, G., Wang, J., Chen, J., He, W., Fan, Y., Wang, P. (2013). A micro electrochemical seismic sensor based on MEMS technologies. Sensors and Actuators A: Physical, 202, 85-89).

Недостатком технических решений, основанных на использовании преобразующих элементов с электродами, нанесенными на поверхность, является сложность технологического процесса и необходимость использования дорогостоящего микроэлектронного оборудования.

Задачей и техническим результатом предлагаемого технического решения является повышение чувствительности преобразующего элемента молекулярно-электронного преобразователя диффузионного типа.

Поставленная задача решается тем, что в преобразующем элементе молекулярно-электронного преобразователя диффузионного типа, содержащем две пары выполненных из нитей сетчатых электродов, расположенных перпендикулярно потоку рабочей жидкости и подключенных к источнику напряжения таким образом, что в каждой паре сетчатых электродов потенциал одного из электродов - анода выше потенциала другого электрода -катода, поверхности нитей, из которых изготовлены катоды, покрыты диэлектрическим слоем со стороны противоположной близлежащему аноду. При этом толщина диэлектрического слоя не менее чем в 10 раз меньше диаметра нитей. При этом диэлектрический слой покрывает от 20 до 80 процентов общей площади поверхности нитей, образующих катоды. При этом диэлектрический слой изготовлен их химически стойкого стекла или из химически стойкого пластика, или из парилена.

Суть предлагаемого технического решения можно понять, если рассмотреть некоторый катод в момент времени, когда жидкость в его окрестности под действием внешнего сигнала движется по направлению от смежного анода. Согласно общим принципам работы преобразующего элемента, гидродинамический поток способствует доставке активных ионов к рассматриваемому катоду и электрический ток, протекающий через катод должен увеличиваться по своему абсолютному значению. Физически это означает, что поток жидкости за единицу времени подносит к рассматриваемому катоду больше ионов, чем относит от него. Математически, этому соответствует условие положительного знака в правой части уравнения (5). В свою очередь, положительным должно быть скалярное произведение векторов

Однако, для практически реализованных преобразующих элементов можно говорить только о выполнении условия положительности произведения в среднем. Локально, значение указанного скалярного произведения может быть как положительным, так и отрицательным. Таким образом, на практике, только в части пространства в окрестности катода поток жидкости увеличивает плотность активных ионов. Одновременно, имеются области пространства вблизи катода, где плотность активных ионов уменьшается.

Детали, признаки, а также преимущества настоящего изобретения следуют из описания вариантов реализации заявленного технического решения с использованием чертежей, на которых показано:

фиг. 1 - Схематическое изображение цилиндрического электрода, представляющего одиночную нить сетчатого катода, известного из уровня техники.

фиг. 2 - Схематическое изображение цилиндрического электрода, поверхность которого частично покрыта диэлектрической пленкой.

Рассмотрим проявление данного эффекта для преобразующего элемента, электроды в котором изготовлены в виде сеток. Сетку можно рассматривать как совокупность нитей, имеющих форму, близкую к цилиндру. На рисунке фиг. 1 схематически представлены фрагмент сетки катода, представляющую сбой одиночную нить 1, ориентированную перпендикулярно потоку жидкости и показанную на фиг. 1 в своем поперечном сечении, тонкими стрелками 2 представлены линии градиента стационарной концентрации активных ионов ∇c0, а толстой стрелкой 3 - направление течения жидкости. В данной схеме предполагается, что смежный анод расположен слева от рассматриваемого катода. В области 4, расположенной в левой части рисунка угол между векторами и ∇c0 меньше 90°, их скалярное произведение в правой части уравнения (4) имеет положительный знак. В области 5, расположенной вблизи линии, проходящей через центр нити, вектора и ∇c0, приблизительно, перпендикулярны друг другу и правая часть уравнения (4) близка к нулю, наконец в области 6 правая часть уравнения (4) отрицательна.

Таким образом, имеется область пространства 6 вблизи катода, в которой гидродинамическое течение жидкости в направлении от смежного анода уменьшает концентрацию активных ионов.

Можно сделать вывод, что использование известного из уровня техники обычного сеточного электрода не позволяет достичь максимально возможного коэффициента преобразования электродной системы, что обусловлено влиянием области пространства 6 вблизи части катода, наиболее удаленной от смежного анода.

Технический результат заявленного технического решения достигается за счет изменения конструкции катода таким образом, чтобы минимизировать размеры и влияние области в окрестности катода, в которой направление векторов и ∇c0 отличаются более чем на 90°. Для этого поверхности нитей, из которых изготовлены катоды, покрываются диэлектрическим слоем 7 со стороны противоположной близлежащему аноду, как это показано на фиг. 2. В частном случае, если слой этого материала достаточно тонкий, распределение линий гидродинамической скорости не отличаются от показанного на фиг. 1, в то время, как градиент концентрации в области 6 становится близким у нулю, что на фиг. 2 выражается в уменьшении плотности линий вектора ∇c0. Таким образом, уменьшаются размеры области, в которой произведение отрицательно, а абсолютное значение указанной величины в данной области, уменьшается. Соответственно, меньше будет отрицательное влияние указанной области на чувствительность преобразующего элемента.

Еще одним положительным эффектом от указанного технического решения будет увеличение электрического импеданса катода. В свою очередь, увеличение электрического импеданса уменьшает шумы по напряжению усилителя входного каскада сопутствующей электроники.

Для практической реализации заявленного технического решения сетку катода, изготовленную из нитей, полностью покрывали органическим полимером поливинилбутиралем в виде 5%-го спиртового раствора, а затем на одну сторону сетки наносили тонкий слой водной суспензии стекла НС-3. После этого катод обжигали при температуре 1000°С. В процессе обжига органический полимер выгорал, а стекло оплавлялось, образуя на одной стороне сетки катода сплошное диэлектрическое стеклянное покрытие.

В дальнейшем катод использовали для сборки преобразующего элемента - электропакета, состоящего из сетчатых анодов без покрытия и сетчатых катодов, покрытых с одной стороны слоем стекла НС-3. Электроды в пакете разделяли перфорированными диэлектрическими дистанцирующими прокладками. Указанные электроды и прокладки располагали в пакете в следующем порядке: анод-прокладка-катод-прокладка-катод-прокладка-анод. При этом катоды при сборке ориентировали таким образом, чтобы покрытая стеклом поверхность была обращена внутрь собранного электропакета.

Экспериментально измеренное значение коэффициента преобразования оказалось, примерно, на 40% выше, чем у стандартного сеточного преобразующего элемента того же размера.


Преобразующий элемент молекулярно-электронного преобразователя диффузионного типа
Преобразующий элемент молекулярно-электронного преобразователя диффузионного типа
Источник поступления информации: Роспатент

Showing 11-20 of 33 items.
19.10.2019
№219.017.d849

Способ изготовления молекулярно-электронной ячейки низкошумящего широкополосного гидрофона для донных исследований

Изобретение относится к измерительной технике. Предлагаемый способ изготовления молекулярно-электронной ячейки для гидрофона позволяет обеспечить измерение слабых низкочастотных сейсмических и акустических сигналов, распространяющихся в жидких, твердых и газообразных средах. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002703488
Дата охранного документа: 17.10.2019
30.10.2019
№219.017.dbab

Способ изготовления объемных микроразмерных структур из наночастиц и устройство для его осуществления

Группа изобретений относится к аддитивному изготовлению объемных микроразмерных структур из наночастиц путем спекания наночастиц на подложке. Получают поток аэрозоля с наночастицами в импульсно-периодическом газовом разряде в потоке транспортного газа, затем производят нагрев аэрозоля с...
Тип: Изобретение
Номер охранного документа: 0002704358
Дата охранного документа: 28.10.2019
30.10.2019
№219.017.dbb2

Аппарат для электрохимического получения слоистых металлических нанопроводов

Изобретение относится к устройствам для гальванического получения наноструктур. Аппарат для автоматизированного получения слоистых металлических нанопроводов с контролируемым составом вдоль их длинной оси включает набор емкостей с растворами электролитов и промывочными растворами, электроды,...
Тип: Изобретение
Номер охранного документа: 0002704363
Дата охранного документа: 28.10.2019
01.11.2019
№219.017.dca7

Способ определения значений параметров разрядного контура с нагруженным на газоразрядный межэлектродный промежуток емкостным накопителем энергии, обеспечивающих максимальную энергоэффективность получения наночастиц в импульсном газовом разряде

Способ определения значений параметров разрядного контура с нагруженным на газоразрядный межэлектродный промежуток емкостным накопителем энергии, обеспечивающих максимальную энергоэффективность получения наночастиц в импульсном газовом разряде может быть использован для повышения электрического...
Тип: Изобретение
Номер охранного документа: 0002704566
Дата охранного документа: 29.10.2019
27.11.2019
№219.017.e6ec

Инфракрасный детектор и способ его изготовления

Изобретение относится к области измерительной техники и касается инфракрасного детектора ИК-диапазона. Инфракрасный детектор включает в себя активный слой, содержащий коллоидные квантовые точки и плазмонные наноантенны, расположенные между встречно-штыревыми электродами. При этом при...
Тип: Изобретение
Номер охранного документа: 0002707202
Дата охранного документа: 25.11.2019
19.12.2019
№219.017.ef24

Оптический смеситель излучения четырехчастотного лазерного гироскопа зеемановского типа

Изобретение относится к области высокоточной лазерной гироскопии, а именно к детектированию сигналов четырехчастотного лазерного гироскопа зеемановского типа. Оптический смеситель служит для формирования сигнала четырехчастотного лазерного гироскопа зеемановского типа и имеет функцию...
Тип: Изобретение
Номер охранного документа: 0002709428
Дата охранного документа: 17.12.2019
07.06.2020
№220.018.253d

Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур

Изобретение относится к аддитивной 3D-технологии производства объемных микроразмерных структур из наночастиц. Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур содержит сообщенный с регулируемым источником 1 транспортного газа блок 2 получения...
Тип: Изобретение
Номер охранного документа: 0002722961
Дата охранного документа: 05.06.2020
12.06.2020
№220.018.26a4

Способ аддитивного изготовления объемных микроразмерных структур из наночастиц

Изобретение относится к аддитивной 3D-технологии изготовления объемных микроразмерных структур из наночастиц. Способ включает получение потока аэрозоля с наночастицами в потоке транспортного газа, нагрев аэрозоля в потоке транспортного газа с обеспечением получения наночастиц сферической формы...
Тип: Изобретение
Номер охранного документа: 0002723341
Дата охранного документа: 09.06.2020
25.06.2020
№220.018.2b0c

Способ обеспечения температурной стабильности параметров молекулярно-электронного преобразователя в области высоких частот

Изобретение относится к измерительной технике, в частности к способу обеспечения температурной стабильности параметров молекулярно-электронных преобразователей, используемых в линейных и угловых акселерометрах. Это изобретение может найти применение в сейсмодатчиках, датчиках для стабилизации...
Тип: Изобретение
Номер охранного документа: 0002724303
Дата охранного документа: 22.06.2020
25.06.2020
№220.018.2b0f

Молекулярно-электронный гидрофон с компенсацией статического давления

Изобретение относится к акустической метрологии. Молекулярно-электронный гидрофон с компенсацией статического давления содержит молекулярно-электронный преобразователь, жестко закрепленный внутри герметичного корпуса, заполненного легкосжимаемой жидкостью и разделенного на две камеры жесткой...
Тип: Изобретение
Номер охранного документа: 0002724296
Дата охранного документа: 22.06.2020
Showing 11-20 of 20 items.
20.02.2019
№219.016.c1b8

Способ газификации углеводородов для получения водорода и синтез-газа

Изобретение относится к экологически безопасным технологиям разработки месторождений и добычи углеводородов, в частности трудноизвлекаемых и нерентабельных залежей угля, сланцев, нефти и газового конденсата. Техническим результатом является повышение эффективности проведения подземной...
Тип: Изобретение
Номер охранного документа: 0002423608
Дата охранного документа: 10.07.2011
20.03.2019
№219.016.e423

Устройство для получения твердофазных наноструктурированных материалов

Изобретение относится к нанотехнологиям и может быть использовано при получении углеродных нанотрубок. В парогазогенераторе 4 готовят многофазную смесь исходного вещества и направляют ее под давлением в газодинамический резонатор 9, где смесь детонирует. Продукты детонационного горения через...
Тип: Изобретение
Номер охранного документа: 0002299849
Дата охранного документа: 27.05.2007
14.05.2019
№219.017.51ea

Низкочастотная двухкомпонентная донная сейсмическая коса

Изобретение относится к сейсмическим регистрирующим системам и может быть использовано при поисках и разведке углеводородов, а также мониторинге нефтегазовых месторождений. В частности, техническое решение относится к двухкомпонентным сейсмическим системам, основанным на одновременном измерении...
Тип: Изобретение
Номер охранного документа: 0002687297
Дата охранного документа: 13.05.2019
01.08.2019
№219.017.bb30

Глубоководный гидрофон

Изобретение относится к измерительной технике, в частности к прямому измерению параметров волн сжатия - разряжения, распространяющихся в жидких и газообразных средах, которые могут характеризоваться повышенным относительно нормальных условий статическим давлением в среде. Изобретение может...
Тип: Изобретение
Номер охранного документа: 0002696060
Дата охранного документа: 30.07.2019
01.09.2019
№219.017.c55a

Молекулярно-электронный гидрофон с обратной связью на основе магнитогидродинамического эффекта

Изобретение относится к измерительной технике, в частности к способам преобразования механического движения в электрический сигнал. Молекулярно-электронный гидрофон с обратной связью состоит из двух камер, заполненных проводящей жидкостью и разделенных мембраной. В одной из камер находится...
Тип: Изобретение
Номер охранного документа: 0002698527
Дата охранного документа: 28.08.2019
19.10.2019
№219.017.d849

Способ изготовления молекулярно-электронной ячейки низкошумящего широкополосного гидрофона для донных исследований

Изобретение относится к измерительной технике. Предлагаемый способ изготовления молекулярно-электронной ячейки для гидрофона позволяет обеспечить измерение слабых низкочастотных сейсмических и акустических сигналов, распространяющихся в жидких, твердых и газообразных средах. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002703488
Дата охранного документа: 17.10.2019
25.06.2020
№220.018.2b0c

Способ обеспечения температурной стабильности параметров молекулярно-электронного преобразователя в области высоких частот

Изобретение относится к измерительной технике, в частности к способу обеспечения температурной стабильности параметров молекулярно-электронных преобразователей, используемых в линейных и угловых акселерометрах. Это изобретение может найти применение в сейсмодатчиках, датчиках для стабилизации...
Тип: Изобретение
Номер охранного документа: 0002724303
Дата охранного документа: 22.06.2020
25.06.2020
№220.018.2b0f

Молекулярно-электронный гидрофон с компенсацией статического давления

Изобретение относится к акустической метрологии. Молекулярно-электронный гидрофон с компенсацией статического давления содержит молекулярно-электронный преобразователь, жестко закрепленный внутри герметичного корпуса, заполненного легкосжимаемой жидкостью и разделенного на две камеры жесткой...
Тип: Изобретение
Номер охранного документа: 0002724296
Дата охранного документа: 22.06.2020
01.07.2020
№220.018.2d75

Цифровой регистрирующий модуль для подводных исследований

Изобретение относится в целом к геофизическим измерительным системам, а конкретно к сейсмическим технологиям сбора данных и датчикам. Изобретение способно одновременно регистрировать сейсмические и акустические сигналы, реализуя принцип разделения сейсмических волн в зависимости от направления...
Тип: Изобретение
Номер охранного документа: 0002724964
Дата охранного документа: 29.06.2020
16.06.2023
№223.018.7d37

Молекулярно-электронный преобразующий элемент

Изобретение относится к измерительной технике, в частности к чувствительным элементам (электродным узлам) молекулярно-электронных преобразователей диффузионного типа. Молекулярно-электронный преобразующий элемент включает две группы электродов, в каждой из которых один электрод - анод находится...
Тип: Изобретение
Номер охранного документа: 0002746698
Дата охранного документа: 19.04.2021
+ добавить свой РИД