×
25.06.2020
220.018.2b10

Результат интеллектуальной деятельности: Способ определения сопротивления деформации металлических материалов при индентировании конусом

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерений и, в частности, предназначено для исследования изменения механических характеристик материалов, после пластического или термического упрочнения, методом внедрения индентора при статической нагрузке. Сущность: используются шлифы, подготовленные из неупрочненного и упрочненного материалов для зоны внедрения индентора, механизм вдавливания, индентор в форме конуса и средства измерения отпечатка. Осуществляют последовательное внедрение конического наконечника в поверхность шлифов неупрочненного и упрочненного материалов статической нагрузкой фиксированного значения, измерение геометрических параметров отпечатков на шлифе неупрочненного и упрочненного материалов и определение сопротивления деформации упрочненного материала по формуле. Внедрение осуществляется коническим наконечником с одинаковой испытательной нагрузкой для неупрочненного и упрочненного материалов. Технический результат: снижение трудоемкости и повышение точности применения способа, расширение функциональных возможностей способа и области его применения. 1 ил.

Изобретение относится к области измерений и, в частности, предназначено для исследования изменения механических характеристик материалов, после пластического или термического упрочнения, методом внедрения индентора при статической нагрузке.

Известен способ определения механических характеристик металлических материалов по новому числу твердости [Дрозд М.С. Определение механических свойств металла без разрушения. М.: Металлургия, 1965. 171 с.], которое определяется по специальным таблицам в зависимости от глубины восстановленного отпечатка сферического индентора и степени нагружения.

Недостаток этого способа заключается в невысокой точности, потому что новое число твердости определяется только по изменению глубины восстановленного отпечатка без учета влияния параметров очага деформации возникающего под индентором, внутри которого материал под действием окружающих объемов находится в условиях неравномерного всестороннего сжатия. Кроме того, с изменением глубины вдавливания сферического индентора степень деформации исследуемого материала меняется, что также вносит дополнительные погрешности в определение механических характеристик.

Сферический индентор может быть использован при исследовании механических характеристик только пластичных материалов, что также является недостатком данного способа. При этом способ обладает высокой трудоемкостью, что дополнительно ограничивает возможности его практического применения.

Наиболее близким по технической сущности к изобретению является способ определения интенсивности деформаций и напряжений в локальных зонах пластически деформированного материала [патент RU 2610936, МПК G01N 3/42, №2015153255, заяв. 11.12.2015, опубл. 17.02.2017, Бюл. №5], заключающийся во вдавливании сферического индентора в деформированный и недеформированный материал изделия с одинаковыми нагрузками и определением параметров их деформационного упрочнения, с учетом которых рассчитывают значения истинной предельной равномерной деформации для недеформированного и деформированного материала изделия, по разности которых определяют значение интенсивности деформаций в деформированном материале, а также рассчитывают значения истинного временного сопротивления для деформированного и недеформированного материала изделия, по разности которых определяют значение интенсивности напряжений в деформированном материале.

Данный способ имеет аналогичные недостатки, что и предыдущий. При этом параметры деформационного упрочнения определяются также без учета влияния объема материала находящегося в пластическом состоянии под индентором, что дополнительно снижает точность способа.

В заявленном способе достигается технический результат, заключающийся в снижении трудоемкости и повышении точности определения сопротивления деформации исследуемого материала, в расширении функциональных возможностей способа и области его применения путем использования конического индентора и увеличения числа факторов, которые учитываются при определении механических характеристик материалов методом внедрения индентора.

Технический результат достигается за счет того, что выполняют подготовку шлифов упрочненного и неупрочненного материалов для зон внедрения индентора, последовательное внедрение индентора в упрочненный и неупрочненный материал с одинаковой статической силой нагружения, определение размеров отпечатков на шлифах упрочненного и неупрочненного материалов, отличающийся тем, что при индентировании конусным наконечником сопротивление деформации упрочненного материала определяется по формуле

где σ - сопротивление деформации упрочненного материала;

σS0 - условный предел текучести неупрочненного материала;

d0 и dƒ - диаметр отпечатка конусного наконечника, соответственно, на неупрочненном и упрочненном материале.

Определение сопротивления деформации упрочненного материала по предлагаемой формуле позволяет учесть взаимное влияние геометрических параметров индентора, отпечатка, очага деформации возникающего при внедрении индентора, что повышает точность способа при снижении трудоемкости, расширяет его функциональные возможности и область применения.

На фигуре представлена схема образования геометрического очага пластической деформации возникающего при внедрении конусного наконечника в исследуемый материал в плоскости yz и проекция отпечатка на плоскость xy с основными геометрическими параметрами.

Геометрический очаг деформации возникающий при внедрении конусного наконечника построен с использованием приближенной модели распространения пластической деформации [Губкин С.И. Теория обработки металлов давлением. М.: Металлургиздат, 1947. 532 с. с. 62-66] основанной на построении конуса скольжения (см. фигуру), Конус скольжения, образуется линиями главных напряжений сдвига, которые проводят под углом 45° к нормалям n-n из точек А и В периметра (см. фигуру), ограничивающего поверхность контакта индентора и исследуемого материала. В данном случае фигура ACBG является сечением конуса скольжения в плоскости yz. Работа, совершаемая индентором расходуется на пластическое формоизменение материала расположенного внутри конуса скольжения, который и образует геометрический очаг деформации. Данное обстоятельство и объясняет необходимость определения сопротивления деформации исследуемого материала с учетом взаимного влияния параметров индентора, отпечатка и очага деформации.

На фигуре приняты следующие обозначения:

1 - индентор (конусный наконечник);

2 - исследуемый материал образца;

3 - линии главных напряжений сдвига;

4 - конус скольжения;

5 - отпечаток;

n-n - нормаль к образующей конусного наконечника;

h - глубина внедрения конусного наконечника;

Н - глубина распространения пластической деформации в материале при внедрении в него конусного наконечника (равна высоте конуса скольжения);

α - угол при вершине конусного наконечника;

d - диаметр отпечатка конусного наконечника;

β=45° - угол наклона линий главных напряжений сдвига;

- угол при основании конусного наконечника;

F - статическая сила индентирования.

Предлагаемая формула для определения сопротивления деформации упрочненного материала получена на основании известного положения о том, что работа пластической деформации прямо пропорционально зависит от сопротивления деформации металла и определяется следующим образом [Сторожев М.В. Теория обработки металлов давлением. М.: Машиностроение, 1977. 423 с. С. 226]

где А - работа пластической деформации;

σS - сопротивление деформации материала;

ε - интенсивность деформаций;

V - объем деформируемого материала.

На этом основании для двух образцов, изготовленных из одного материала, но с различной степенью упрочнения, после внедрения индентора можно записать соотношение

из которого получается функциональная зависимость между сопротивлением деформации упрочненного и неупрочненного материалов

где - степень деформации неупрочненного материала при внедрении в него конусного наконечника;

где h0 - глубина внедрения конусного наконечника в неупрочненный материал;

Н0 - глубина распространения пластической деформации в неупрочненном материале при внедрении в него конусного наконечника;

- степень деформации упрочненного материала при внедрении в него конусного наконечника;

где hƒ - глубина внедрения конусного наконечника в упрочненный материал;

Нƒ - глубина распространения пластической деформации в упрочненном материале при внедрении в него конусного наконечника;

- удельная работа пластической деформации при внедрении конусного наконечника в неупрочненный материал,

где A0 и VC0 - соответственно, работа пластической деформации и деформируемый объем при внедрении конусного наконечника в неупрочненный материал;

- удельная работа пластической деформации при внедрении конусного наконечника в упрочненный материал,

где Aƒ и V - соответственно, работа пластической деформации и деформируемый объем при внедрении конусного наконечника в упрочненный материал.

В процессе индентирования конусным наконечником получаются геометрически подобные отпечатки с неизменной степенью деформации исследуемого материала, что позволяет использовать упрощенные модели распространения пластической деформации. С учетом данного положения и обозначений, принятых на фигуре, степень деформации материала, расположенного в конусе скольжения, определяется по формуле

Таким образом, при использовании конусного наконечника ε0ƒ и сопротивление деформации упрочненного материала будет зависеть только от соотношения удельных работ пластической деформации (A и AV0) при внедрении пирамидального индентора в упрочненный и неупрочненный материал

Объем деформируемого материала при внедрении конусного наконечника в неупрочненный материал принимается равным объему конуса скольжения и определяется по формуле (см. фигуру)

где - смещенный объем материала при внедрении конусного наконечника в неупрочненный материал;

d0 - диаметр отпечатка конусного наконечника на неупрочненном материале;

Аналогичным образом определяется объем деформируемого материала при внедрении конусного наконечника в упрочненный материал

dƒ - диаметр отпечатка конусного наконечника на упрочненном материале;

Vƒ - смещенный объем материала при внедрении конусного наконечника в упрочненный материал.

Работа пластического деформирования при внедрении четырехгранной пирамиды в неупрочненный материал определяется по формуле [Сторожев М.В. Теория обработки металлов давлением. Москва: Машиностроение, 1977. 423 с.]

где - среднее нормальное давление на поверхности контакта конусного наконечника с неупрочненным материалом,

где - площадь проекции поверхности отпечатка конусного наконечника на неупрочненном материале.

Аналогичным образом определяется работа пластического деформирования при внедрении конусного наконечника в упрочненный материал

где - среднее нормальное давление на поверхности контакта конусного наконечника с упрочненным материалом,

где - площадь проекции поверхности отпечатка конусного наконечника на упрочненном материале.

В соответствии с принятыми обозначениями удельная работа пластической деформации при внедрении конусного наконечника в неупрочненный материал определяется по формуле

а удельная работа пластической деформации при внедрении конусного наконечника в упрочненный материал будет равна

С учетом полученных выражений сопротивление деформации упрочненного материала при использовании в качестве индентора конусного наконечника определяется по формуле

Таким образом, при использовании в качестве индентора конусного наконечника сопротивление деформации упрочненного материала изменяется прямо пропорционально квадрату отношения диаметра отпечатка на неупрочненном материале к диаметру отпечатка на упрочненном материале.

При этом с помощью индентора в форме конусного наконечника можно определять сопротивление деформации в заданной точке сечения детали изготовленной как из пластичных так и хрупких материалов. Сопротивление деформации материала, определяемое по предлагаемому способу, хорошо согласуется с результатами полученными другими экспериментальными методами.

Определение сопротивления деформации упрочненного материала по предлагаемому способу позволяет учесть взаимное влияние геометрических параметров индентора, отпечатка, очага деформации возникающего при внедрении индентора, а также удельную работу пластической деформации при внедрении индентора, что повышает точность способа, расширяет его функциональные возможности и область применения при снижении трудоемкости.


Способ определения сопротивления деформации металлических материалов при индентировании конусом
Способ определения сопротивления деформации металлических материалов при индентировании конусом
Способ определения сопротивления деформации металлических материалов при индентировании конусом
Источник поступления информации: Роспатент

Showing 11-20 of 50 items.
04.07.2018
№218.016.6a9e

Устройство для пластического объемного деформирования труб

Изобретение относится к области обработки металлов давлением и может быть использовано для объемного пластического деформирования металлических труб при их редуцировании, для правки и калибровки. Устройство содержит дифференциальный механизм обкатывания деформирующих роликов по обрабатываемой...
Тип: Изобретение
Номер охранного документа: 0002659551
Дата охранного документа: 02.07.2018
08.07.2018
№218.016.6d98

Способ оценки силы межмолекулярных взаимодействий в модельной системе "функционализированная полистироловая микросфера-функционализированное стекло" методом оптической ловушки

Изобретение относится к области иммунохимии и биомеханики и может быть использовано при изучении силы межмолекулярных взаимодействий в системах «антиген-антитело», «лиганд-рецептор» с использованием оптического пинцета. Способ количественной характеристики межмолекулярного взаимодействия в...
Тип: Изобретение
Номер охранного документа: 0002660556
Дата охранного документа: 06.07.2018
03.08.2018
№218.016.7827

Способ стабилизации концентрации солей токсинных тяжелых металлов в ванне улавливания гальванической линии с применением электродиализа

Изобретение относится к электрохимическим способам очистки сточных вод гальванических производств, в частности предназначено для удаления солей многозарядных ионов токсичных тяжелых металлов (ТТМ) из промывных вод методом электродиализа. В способе стабилизации концентрации солей ТТМ в ванне...
Тип: Изобретение
Номер охранного документа: 0002663161
Дата охранного документа: 01.08.2018
09.09.2018
№218.016.857d

Способ организации выполнения операции умножения двух чисел в модулярно-логарифмическом формате представления с плавающей точкой на гибридных многоядерных процессорах

Изобретение относится к вычислительной технике и предназначено для выполнения операции умножения двух чисел в модулярно-логарифмическом формате с плавающей точкой. Техническим результатом является упрощение выполнения операции умножения. Способ осуществляется на гибридных многоядерных...
Тип: Изобретение
Номер охранного документа: 0002666285
Дата охранного документа: 06.09.2018
23.09.2018
№218.016.8a7d

Патрон токарный самоцентрирующий механизированный

Патрон предназначен для закрепления цилиндрических загатовок при обработке на токарных станках и содержит зажимные кулачки, спиральный диск, предназначенный для жесткого закрепления на шпинделе станка, корпус, предназначенный для установки на шпинделе с возможностью относительного вращения,...
Тип: Изобретение
Номер охранного документа: 0002667564
Дата охранного документа: 21.09.2018
03.10.2018
№218.016.8ce8

Топливная эмульсия

Изобретение описывает топливную эмульсию для дизелей на основе дизельного топлива с добавлением спирта и эмульгатора, при этом она дополнительно содержит дисульфид молибдена при следующих соотношениях компонентов, мас. %: этанол 5,0÷50,0; алкенилсукцинимид 0,5; дисульфид молибдена 0,1÷0,5;...
Тип: Изобретение
Номер охранного документа: 0002668225
Дата охранного документа: 27.09.2018
13.12.2018
№218.016.a65b

Способ производства комплексных органоминеральных удобрений с аминокислотами на основе молочной сыворотки

Изобретение относится к сельскому хозяйству. Способ производства комплексных органоминеральных удобрений с аминокислотами на основе молочной сыворотки, включающих в качестве основы удобрения концентрат молочной сыворотки, содержащий 18÷30% сухих веществ, а именно лактозы, белков, органических...
Тип: Изобретение
Номер охранного документа: 0002674618
Дата охранного документа: 11.12.2018
27.12.2018
№218.016.ac5a

Способ получения органоминеральных удобрений на основе молочной сыворотки и глауконитсодержащего сорбента

Изобретение относится к сельскому хозяйству. Способ получения органоминеральных удобрений на основе молочной сыворотки и глауконитсодержащего сорбента включает пропускание молочной сыворотки через фильтрационную установку, заполненную сорбентом, состоящим из кварцево-глауконитового песка и...
Тип: Изобретение
Номер охранного документа: 0002676140
Дата охранного документа: 26.12.2018
15.03.2019
№219.016.dfe8

Способ снижения задержки воспламенения топлива в дизельном двигателе

Изобретение относится к области машиностроения, преимущественно двигателестроения. Предложен способ снижения задержки воспламенения топлива в дизельном двигателе, в котором к порции топлива, впрыскиваемого в камеру сгорания двигателя с помощью форсунки, посредством генератора высокочастотных...
Тип: Изобретение
Номер охранного документа: 0002681867
Дата охранного документа: 13.03.2019
17.05.2019
№219.017.5355

Способ управления фрезерованием проката

Изобретение относится к машиностроению и может быть использовано при фрезеровании плоских поверхностей цилиндрическими фрезами. Способ включает перемотку полосы проката относительно вращающихся фрез на режимах обработки, обеспечивающих получение фрезерованной поверхности заданной...
Тип: Изобретение
Номер охранного документа: 0002687638
Дата охранного документа: 15.05.2019
Showing 1-5 of 5 items.
10.01.2015
№216.013.1aa0

Устройство для пластического объемного деформирования металлических труб

Изобретение относится к области обработки металлов давлением и может быть использовано для объемного пластического деформирования металлических труб при их редуцировании, для правки и калибровки. Узел деформирования выполнен в виде дифференциального зубчатого механизма, содержащего водило,...
Тип: Изобретение
Номер охранного документа: 0002538244
Дата охранного документа: 10.01.2015
04.07.2018
№218.016.6a9e

Устройство для пластического объемного деформирования труб

Изобретение относится к области обработки металлов давлением и может быть использовано для объемного пластического деформирования металлических труб при их редуцировании, для правки и калибровки. Устройство содержит дифференциальный механизм обкатывания деформирующих роликов по обрабатываемой...
Тип: Изобретение
Номер охранного документа: 0002659551
Дата охранного документа: 02.07.2018
14.09.2018
№218.016.87fd

Жертвенный материал для ловушки расплава ядерного реактора

Изобретение относится к составу и способу изготовления жертвенного керамического материала для устройства локализации расплава ядерного реактора водо-водяного типа в случае его тяжелой аварии с выходом расплавленных масс из корпуса реактора. Для получения жертвенного керамического материала...
Тип: Изобретение
Номер охранного документа: 0002666901
Дата охранного документа: 13.09.2018
01.03.2019
№219.016.d05c

Способ неразъемного муфтового соединения труб

Изобретение относится к технологии прокладки, монтажа и ремонта трубопроводов различного назначения из труб с любым видом внутреннего антикоррозионного покрытия или без него. Объемное пластическое деформирование ведут несколькими локальными силами, которые располагают вокруг соединительной...
Тип: Изобретение
Номер охранного документа: 0002469237
Дата охранного документа: 10.12.2012
24.10.2019
№219.017.d980

Способ определения сопротивления деформации металлических материалов

Изобретение относится к области измерений и может быть использовано для исследования изменения механических характеристик металлических материалов, после пластического или термического упрочнения, методом внедрения индентора при статической нагрузке. Сущность: осуществляют приготовление шлифов...
Тип: Изобретение
Номер охранного документа: 0002703808
Дата охранного документа: 22.10.2019
+ добавить свой РИД