×
24.06.2020
220.018.2a5f

Способ получения фотокаталитически активного нанокристаллического диоксида титана в кристаллической модификации анатаз

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к технологии получения порошков нанокристаллического диоксида титана, которые могут быть использованы для фотокаталитической очистки и обеззараживания воздуха и воды, создания фотоэлектрических преобразователей энергии, новых композиционных и каталитических материалов, и может применяться в энергетике, в химической промышленности, в мебельной промышленности при изготовлении обеззараживающих покрытий для мебели, покрытий для портьер и жалюзи. Способ получения фотокаталитически активного нанокристаллического диоксида титана в кристаллической модификации анатаз включает приготовление исходных растворов - тетраизопропилата титана в абсолютном изопропаноле, воды в изопропаноле, их последующее смешивание и термообработку, при этом смешивание исходных растворов осуществляют в микрореакторе со сталкивающимися струями, угол между которыми в вертикальной плоскости задают в интервале от 70° до 120°, а расходы исходных растворов задают равными и обеспечивающими условия, при которых при столкновении струй образуется жидкостная пелена со средней толщиной порядка 10-20 мкм, в которой происходит контакт и интенсивное смешивание исходных растворов, после чего проводят отделение образовавшегося аморфного осадка от раствора и термообработку осадка при температуре 350°С в течение 30 минут, в процессе которой происходит формирование кристаллической фазы анатаза. Изобретение позволяет получать фотокаталитически активный нанокристаллический диоксид титана анатазной модификации при сокращении времени проведения реакции гидролиза и снижении суммарных энергетических затрат на получение единицы массы продукта в промышленном масштабе. 4 ил., 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к способам получения порошков нанокристаллического диоксида титана, которые могут быть использованы для фотокаталитической очистки и обеззараживания воздуха и воды, создания фотоэлектрических преобразователей энергии, новых композиционных и каталитических материалов, и может применяться в энергетике, в химической промышленности, в мебельной промышленности при изготовлении обеззараживающих покрытий для мебели, покрытий для портьер и жалюзи. Фотокатализ на диоксиде титана является перспективным методом уничтожения органических загрязнителей и патогенной микрофлоры в воздухе и воде.

Для оценки новизны заявленного решения рассмотрим ряд известных технических средств аналогичного назначения, характеризуемых совокупностью сходных с заявленным устройством признаков.

Значительная часть способов получения порошков диоксида титана основана на реакциях гидролиза солей титана в растворах, приводящих к выпадению в осадок гидратированных форм диоксида титана с последующим их выделением и высокотемпературной обработкой до получения кристаллического диоксида титана преимущественно с кристаллической модификацией рутил. Широко известны сульфатные способы, когда в качестве гидролизующейся соли используют титанилсульфат, выщелачиваемый серной кислотой из титансодержащего сырья (руды, титансодержащих шлаков и т.п.) (патент РФ №2317345 от 17.10.2003). Помимо титани л сульфата возможно использование для гидролиза других соединений титана (IV), например, тетрахлорида титана (патент РФ №2435733 от 20.07.2010, патент 2281913 от 14.10.2004), фтортитаната аммония (патент РФ №2392229 от 16.01.2006), тетралкоксида титана (патент РФ №2291839 от 10.11.2004).

Во всех перечисленных способах, основанных на гидролизе солей титана (IV), присутствует стадия высокотемпературной (500-1000°С) обработки выделенного осадка гидратированного оксида (гидроксида титана) для перевода его в кристаллический диоксид титана. Необходимость такой обработки усложняет аппаратное оформление процесса, кроме того, отжиг приводит к укрупнению частиц получаемого диоксида титана, снижению величины удельной поверхности материала в результате спекания, ограничивает возможности технологии получением только рутильной формы диоксида титана. Кроме того, в известных способах высокотемпературная термообработка занимается продолжительное время - порядка 24 часов, что приводит к существенным затратам времени и электроэнергии на единицу массы образуемого продукта.

Известно, что получение кристаллической формы диоксида титана возможно непосредственно кристаллизацией из раствора, если гидролиз проводить в гидротермальных условиях. В способах по патентам №2408427 от 20.07.2009 и №2408428 от 20.07.2009 получение фотокатализатора на основе мезопористых частиц диоксида титана с высокой удельной поверхностью осуществляют гидротермальным гидролизом кислого водного раствора сульфата титанила при температуре в диапазоне 100-250°С в течение 0,5-24 часа. Во втором случае раствор во время термообработки дополнительно облучают микроволновым излучением. Способы позволяют получать высокоактивный нанокристаллический порошок диоксида титана непосредственно из раствора, однако требуют сложного оборудования для работы под избыточным давлением.

Наиболее близким по совокупности существенных признаков к заявляемому изобретению является способ получения наноразмерных частиц диоксида титана, по патенту РФ №2349549, включающий гидролиз водного раствора, содержащего ионы титана Ti3+в присутствии кислоты при нагревании. При этом водный раствор, содержащий ионы титана Ti3+, получают растворением гидрида титана или металлического титана в 37% соляной или 96% серной кислоте, разбавленной водой, соответственно 1:2 или 1:3,4 до получения соотношения Ti3+:Cl-, равного 1:6, либо Ti3+:SO42-, равного 1:3. Полученный раствор, содержащий ионы трехвалентного титана, нагревают до температуры 100-150°С и выдерживают при этой температуре 15-20 часов, после чего охлаждают до комнатной температуры. Осадок отфильтровывают, промывают водой и этанолом и сушат при 80°С в течение 2 часов. По данным фазового анализа продукт представляет собой диоксид титана со структурой анатаза и, согласно электронно-микроскопическим исследованиям, состоит из частиц в форме нанопрутков диаметром 5-15 нм и длиной до 500 нм. Как установили авторы известного изобретения, ионы трехвалентного титана в растворе играют роль катализатора гидролиза и обеспечивают получение диоксида титана анатазной модификации в виде нанопрутков.

К недостаткам описанного способа следует отнести большую длительность процесса гидролиза (15-20 часов), необходимость нагревания и длительной выдержки раствора при высокой температуре (вплоть до 150°С). Все это технически усложняет процесс и снижает его производительность.

Задачей изобретения является получение фотокаталитически активного нанокристаллического диоксида титана анатазной модификации при сокращении времени проведения реакции гидролиза и снижении суммарных энергетических затрат на получение единицы массы продукта.

Сущность заявленного технического решения выражается в следующей совокупности существенных признаков, достаточной для решения указанной заявителем технической проблемы и получения обеспечиваемого изобретением технического результата.

Согласно изобретению способ получения фотокаталитически активного нанокристаллического диоксида титана в кристаллической модификации анатаз, включающий приготовление исходных растворов - тетраизопропилата титана в абсолютном изопропаноле, воды в изопропаноле, и их последующее смешивание и термообработку, характеризуется тем, что смешивание исходных растворов осуществляют в микрореакторе со сталкивающимися струями, при этом угол между струями в микрореакторе в вертикальной плоскости задают в интервале от 70° до 120°, а расходы исходных растворов задают равными и обеспечивающими условия, при которых при столкновении струй образуется жидкостная пелена со средней толщиной порядка 10-20 мкм, в которой происходит контакт и интенсивное смешивание исходных растворов, после чего проводят отделение образовавшегося аморфного осадка от раствора и термообработку осадка при температуре 350°С в течение 30 минут, в процессе которой происходит формирование кристаллической фазы анатаза.

Заявленная совокупность существенных признаков обеспечивает достижение технического результата, который заключается в том, что наиболее энергоемкий и продолжительный процесс проводится при умеренной температуре и за короткий промежуток времени, что и позволяет снизить суммарные энергетические затраты на получение единицы массы продукта.

Сущность заявляемого технического решения поясняется чертежом, на котором на фиг. 1 представлена схема микрореактора для реализации заявленного способа, на фиг. 2 - кривые потери массы и дифференциальной сканирующей калориметрии образцов 1 и 3, на фиг. 3 - рентгенограммы образцов 1 (без термообработки), 1-350, 1-500 и 1-850 (число после единицы означает температуру, при которой проводилась термообработка), на фиг. 4 - микрофотографии образца 1 после дополнительной термообработки при 350°С (а), 500°С (б) и 850°С (в). В таблице 1 приведены условия синтеза образцов 1-5.

Микрореактор со сталкивающимися струями содержит корпус 1, установленные в нем сопла 2, в которые насосами (на фиг. 1 условно не показаны) подаются исходные растворы. Истекающие из сопел 2 струи 3 при столкновении образуют жидкостную пелену 4, в которой происходит интенсивное перемешивание растворов. В нижней части корпуса находится коническое днище 5, а в верхней - полусферическая крышка 6. Через патрубок 7 отводятся продукты реакции, а через патрубок 8 происходит подсос воздуха из окружающего воздуха, что позволят поддерживать атмосферное давление в аппарате.

Заявленный способ реализуют следующим образом.

Заявленный способ включает следующие операции:

- приготовление исходных растворов, а именно, раствора тетраизопропилата титана в абсолютном изопропаноле и раствора воды в изопропаноле;

- смешивание исходных растворов в микрореакторе со сталкивающимися струями;

- отделение аморфного осадка от раствора любым известным методом;

- термообработка осадка при температуре 350°С в течение 30 минут.

Гидролиз тетраизопропилата титана происходит при смешивании растворов в микрореакторе со сталкивающимися струями, подаваемых с расходом 200 мл/мин через сопла диаметром 500±50 мкм. При столкновении струй образуется тонкая пелена, в которой происходит быстрое и эффективное перемешивание, способствующее гомогенизации растворов контактирующих реагентов и, как следствие, нуклеации (зародышеобразованию) наноразмерных частиц.

Угол между струями в вертикальной плоскости задают в интервале от 70° до 120°. Исследования показали, что при уменьшении угла менее 70° пелена быстро распадается, а при увеличении угла более 120° качество перемешивания по объему жидкостной пелены становится неудовлетворительным.

Расходы растворов исходных компонентов задают равными и обеспечивающими условия, чтобы при столкновении струй образовалась жидкостная пелена со средней толщиной порядка 10-20 мкм, в которой происходит контакт и интенсивное смешение растворов исходных компонентов. Равенство расходов растворов продиктовано необходимостью удерживать заданное стехиометрией соотношение тетраизопропилата титана и воды, а также создавать устойчивую и однородно перемешанную жидкостную пелену.

Процесс смешения в микрореакторе со сталкивающимися струями (МРСС) достаточно кратковременный (длится примерно 5 мс), и несколько превышает длительность реакции, т.е. за время смешения успевает произойти нуклеация, но для роста частиц времени недостаточно, что и позволяет получить наноразмерные частицы.

Для сравнения приведем суммарные энергетические затраты на получение единицы массы (1 кг) продукта по известному способу и по предлагаемому изобретению.

Известный сольвотермальный способ. Нагрев реагентов и растворителя в автоклаве в печи в течении 24 ч - 48 кВт-ч, затраты на центрифугирование - 2,5 кВт-ч, прокаливание полученного образца до 500°С - 4 кВт-ч. Итого 54,5 кВт-ч.

Заявленный способ с использованием МРСС. Работа двух насосов (при указанных выше параметрах потребляемая одним насосом мощность - 0,72 Вт), на получение 1 кг продукта потребуется 45 минут, за это время работы потребляемая двумя насосами энергия 1,087 Вт-ч, затраты на центрифугирование - 2,5 кВт-ч, прокаливание полученного образца до 500°С - 4 кВт-ч. Итого 6,5 кВт-ч, что в 8.4 раза меньше, чем по известному способу.

Таким образом, использование заявленного изобретения позволяет многократно снизить энергетические затраты, а при использовании печей непрерывного типа -увеличить производительность в сотни и тысячи раз по сравнению с известными аналогами. Это позволяет использовать заявленное изобретение в промышленном масштабе производства фотокаталитически активного нанокристаллического диоксида титана в кристаллической модификации анатаз.

Заявленный способ иллюстрируется следующим примером, в котором были проведены все стадии заявленного процесса.:

1 стадия. Для синтеза диоксида титана были использованы следующие реактивы: изопропилат титана (≥98%, Aldrich), абсолютированный изопропиловый спирт (ОСЧ, Вектон), дистиллированная вода, этанол.

2 стадия. Условия синтеза представлены в табл.1.

Полученные растворы с помощью перистальтических насосов подавали в корпус 1 микрореактора в виде тонких струй через патрубок 2 с соплом 3 со скоростью 16,98 м/с.В месте контакта струй образовывалась жидкая пелена молочного цвета. Образующуюся суспензию собирали в емкость под реактором. Продукты реакции отделяли центрифугированием и последовательно промывали изопропиловым спиртом и этанолом, после чего сушили в сушильном шкафу при 80°С в течение 12 часов. Затем проводили термообработку полученных порошков при температурах 350°С, 500°С и 850°С, поскольку для формирования кристаллической фазы анатаза требуется дополнительная термообработка продукта (фиг. 3, 4). После нагревания образцов до 350°С на дифрактограммах наблюдали рефлексы, соответствующие анатазу, которые были значительно уширены. При дальнейшем увеличении температуры происходил рост кристаллов, что выражалось в сужении пиков, а при 850°С анатаз переходил в рутил (фиг. 3, 4).

Исследование каталитической активности проводили под действием излучения ртутной лампы ДРЛ-100 высокого давления с использованием стеклянного фильтра (λ≥320 нм). Навеску катализатора (10,0 мг) суспендировали в 1 мл воды при обработке ультразвуком (20 минут), переносили в стакан, содержащий 150 мл водного раствора красителя метиленового синего (0.1 ммоль). Полученную суспензию облучали при перемешивании на магнитной мешалке, отбирая аликвоты по 3 мл, которые анализировали на УФ спектрометре СФ-2000. Изменение содержания красителя рассчитывалось по уменьшению интенсивности максимума поглощения за вычетом фонового поглощения при X - 460 нм.

Расчет энергии, затраченной на приготовление 1 кг продукта, дает значение 6,5 кВт-ч/кг.

Известный способ иллюстрируется следующим примером

В качестве образца сравнения использовали коммерческий порошок диоксида титана Aeroxide® Р25 со средним размером частиц 21 нм.

Расчет энергии, затраченной на приготовление 1 кг продукта, дает значение 54,5 кВт-ч/кг.

Таким образом, использование предлагаемого способа позволяет получить фотокаталитически активный нанокристаллический диоксид титана в кристаллической модификации анатаз при сниженных (по сравнению с известными техническими решениями) температурах и давлениях, снизить затраты энергии и обеспечить непрерывность процесса с возможностью его осуществления в промышленном масштабе.

Способ получения фотокаталитически активного нанокристаллического диоксида титана в кристаллической модификации анатаз, включающий приготовление исходных растворов - тетраизопропилата титана в абсолютном изопропаноле, воды в изопропаноле, и их последующее смешивание и термообработку, отличающийся тем, что смешивание исходных растворов осуществляют в микрореакторе со сталкивающимися струями, при этом угол между струями в микрореакторе в вертикальной плоскости задают в интервале от 70° до 120°, а расходы исходных растворов задают равными и обеспечивающими условия, при которых при столкновении струй образуется жидкостная пелена со средней толщиной порядка 10-20 мкм, в которой происходит контакт и интенсивное смешивание исходных растворов, после чего проводят отделение образовавшегося аморфного осадка от раствора и термообработку осадка при температуре 350°С в течение 30 минут, в процессе которой происходит формирование кристаллической фазы анатаза.
Способ получения фотокаталитически активного нанокристаллического диоксида титана в кристаллической модификации анатаз
Способ получения фотокаталитически активного нанокристаллического диоксида титана в кристаллической модификации анатаз
Способ получения фотокаталитически активного нанокристаллического диоксида титана в кристаллической модификации анатаз
Источник поступления информации: Роспатент

Showing 21-30 of 57 items.
10.08.2016
№216.015.531a

Способ получения композитного мультиферроика на основе ферромагнитного пористого стекла

Изобретение относится к технологии мультиферроиков. Технический результат - получение нанокомпозитов со свойствами мультиферроиков. Способ получения композитного мультиферроика включает термообработку железосодержащего щелочноборосиликатного стекла, выдержку двухфазного стекла в 3 М растворе...
Тип: Изобретение
Номер охранного документа: 0002594183
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.59cd

Способ термического синтеза наноразмерных частиц иттрий-алюминиевого граната в среде органических растворителей

Изобретение относится к технологии получения нанопорошка иттрий-алюминиевого граната, который используют в качестве исходного порошка оксидной керамики, в диспергированном состоянии в качестве наполнителя или пигмента или в качестве исходного порошка для получения монокристалла или покрытия,...
Тип: Изобретение
Номер охранного документа: 0002588227
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.838d

Керамический материал для интерконнекторов топливных элементов и способ его получения

Изобретение относится к твердооксидным топливным элементам (ТОТЭ), а именно к керамическому материалу. Керамический материал для интерконнекторов топливных элементов представляет собой твердый раствор на основе оксида индия с легирующей добавкой при следующем соотношении компонентов, мол. %:...
Тип: Изобретение
Номер охранного документа: 0002601436
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8650

Способ получения синтез-газа высокотемпературным каталитическим окислительным превращением метана

Изобретение относится к области химической технологии, а именно к высокотемпературным каталитическим окислительным способам превращения метана с получением синтез-газа. Способ заключается в подаче в реактор, в который помещен катализатор, свободный объем которого заполнен инертной насадкой,...
Тип: Изобретение
Номер охранного документа: 0002603662
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.91bc

Способ изготовления люминесцентного висмутсодержащего кварцоидного материала на основе высококремнеземного пористого стекла

Изобретение относится к технологии новых оптических стеклообразных кварцоидных материалов, обладающих люминесценцией в широком спектральном диапазоне, и может быть использовано в производстве волоконных световодов с лазерной генерацией в инфракрасном спектральном диапазоне и различных устройств...
Тип: Изобретение
Номер охранного документа: 0002605711
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.a22f

Лакокрасочная композиция для защиты подводных поверхностей от биообрастателей

Изобретение относится к средствам защиты от обрастания морскими организмами (водорослями, рачками, мидиями и другими биообрастателями) подводных частей корпусов судов и гидротехнических сооружений, в частности к противообрастательным краскам, и может быть использовано в судостроительной...
Тип: Изобретение
Номер охранного документа: 0002606777
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b0ab

Способ изготовления защитного покрытия

Способ изготовления защитного покрытия относится к технологии получения защитных покрытий и составов шихты для них и может быть использовано в металлургической, космической, ядерной технике, стекольной, химической, радиоэлектронной промышленности, а также в энергетике и машиностроении....
Тип: Изобретение
Номер охранного документа: 0002613397
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b329

Способ изготовления защитного покрытия и шихта для его осуществления

Способ изготовления защитного покрытия и состав шихты относятся к технологии получения защитных покрытий и составов шихты для них и могут быть использованы в металлургической, космической, ядерной технике, стекольной, химической, радиоэлектронной промышленности, а также в энергетике и...
Тип: Изобретение
Номер охранного документа: 0002613645
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b559

Способ жидкофазного синтеза многокомпонентного керамического материала в системе zro-yo-gdo-mgo для создания электролита твердооксидного топливного элемента

Изобретение может быть использовано для создания электролита твердооксидного топливного элемента. Жидкофазный синтез многокомпонентного керамического материала в системе ZrO-YO-GdO-MgO осуществляют путем выбора в качестве исходных реагентов солей ZrO(NO)⋅2HO, Y(NO)⋅5HO, Gd(NO)⋅6HO и Mg(NO)⋅6HO....
Тип: Изобретение
Номер охранного документа: 0002614322
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b7a2

Способ формирования защитно-декоративного покрытия на древесине хвойных пород

Изобретение относится к деревообрабатывающей промышленности, в частности к формированию защитно-декоративных покрытий на деревянных поверхностях. Наносят подготовительный пропиточный состав с последующей сушкой в течение суток на воздухе при комнатной температуре и его шлифовкой. Затем вторым...
Тип: Изобретение
Номер охранного документа: 0002614817
Дата охранного документа: 29.03.2017
Showing 21-29 of 29 items.
29.03.2019
№219.016.ed6a

Фотокаталитический микрореактор и способ его эксплуатации

Изобретение относится к аппаратам для проведения гетерогенных фотокаталитических реакций в системах жидкость-газ или жидкость-жидкость, в том числе в присутствии твердых частиц катализатора, и может быть использовано в химической, нефтехимической, фармацевтической, пищевой, биотехнологической и...
Тип: Изобретение
Номер охранного документа: 0002683108
Дата охранного документа: 26.03.2019
27.04.2019
№219.017.3cdc

Струйный микрореактор со сталкивающимися пульсирующими струями и способ управления им

Изобретение относится к микромасштабным реакторам со сталкивающимися микроструями двух потоков жидкости - устройствам для проведения различных быстропротекающих реакций, преимущественно с образованием твердых частиц в качестве продукта, и может быть использовано в химической и других...
Тип: Изобретение
Номер охранного документа: 0002686193
Дата охранного документа: 24.04.2019
09.06.2019
№219.017.76ea

Способ интенсификации реакционных и массообменных процессов в гетерогенных системах и аппарат для его осуществления

Изобретение относится к химической, нефтехимической, пищевой, фармацевтической и другим отраслям промышленности и может быть использовано для обработки гетерогенных систем: жидкость - твердые частицы, жидкость - жидкость, жидкость - газ и жидкость - газ - твердые частицы в различных...
Тип: Изобретение
Номер охранного документа: 0002264847
Дата охранного документа: 27.11.2005
03.07.2019
№219.017.a3d3

Устройство для предотвращения воронок в аппарате с мешалкой

Изобретение относится к устройствам для предотвращения образования воронок в аппаратах с перемешивающими устройствами (мешалками) за счет торможения вращения жидкости в непосредственной близости от поверхности стенок аппарата за счет отражательных перегородок и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002693155
Дата охранного документа: 01.07.2019
23.07.2019
№219.017.b7c3

Роторно-импульсный аппарат и способ его эксплуатации

Изобретение относится к роторно-импульсным аппаратам и может быть использовано в химической, фармацевтической, пищевой и других отраслях промышленности, нефтехимии и нефтепереработке для проведения процессов диспергирования, перемешивания, эмульгирования, экстрагирования, жидкостной экстракции,...
Тип: Изобретение
Номер охранного документа: 0002695193
Дата охранного документа: 22.07.2019
23.07.2019
№219.017.b7d2

Пульсационный аппарат с вставкой в пульсационной камере и способ управления им

Изобретение относится к аппаратам для проведения массообменных процессов в гетерогенных системах жидкость - твердые частицы и жидкость - жидкость (например, растворение, дегидратация, эмульгирование, экстрагирование), в том числе для процессов, в которых твердые частицы склонны к образованию...
Тип: Изобретение
Номер охранного документа: 0002695189
Дата охранного документа: 22.07.2019
12.04.2020
№220.018.1434

Микродиспергатор для генерирования капель

Изобретение относится к микродиспергаторам, в которых генерируются микрокапли преимущественно сферической формы нанолитрового и субнанолитрового объема, и далее сгенерированные капли могут быть использованы в химических, фармацевтических и других технологиях, в том числе для проведения...
Тип: Изобретение
Номер охранного документа: 0002718617
Дата охранного документа: 09.04.2020
12.04.2023
№223.018.431f

Микрореактор для синтеза наноразмерных частиц из растворов

Изобретение относится к микромасштабным устройствам для получения наноразмерных частиц, например ферритов кобальта, фторидов кальция, стронция, и может быть использовано в химических технологиях, в том числе нанотехнологиях. Микрореактор для синтеза наноразмерных частиц из растворов содержит...
Тип: Изобретение
Номер охранного документа: 0002793562
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.4a08

Способ получения нанокристаллического порошка на основе диоксида циркония

Изобретение относится к химической промышленности и может быть использовано при изготовлении керамики, протонообменных мембран, зубных протезов и топливных элементов. Сначала готовят исходные водные растворы оксинитрата циркония, нитрата иттрия и осадителя - аммиака. Полученные растворы...
Тип: Изобретение
Номер охранного документа: 0002793893
Дата охранного документа: 07.04.2023
+ добавить свой РИД