×
24.06.2020
220.018.2998

Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области создания новых структурированных гибридных нанокомпозитных магнитных материалов на основе электроактивных полимеров. Гибридный нанокомпозитный магнитный материал включает полимерную матрицу - полидифениламин (ПДФА) и диспергированные в ней металлические наночастицы железа (Fe) и кобальта (Со) при общем содержании наночастиц Co-Fe в материале 2-45 масс. % от массы полимерной матрицы. Способ получения гибридного нанокомпозитного магнитного материала включает ИК-нагрев прекурсора. Прекурсор получают совместным растворением полидифениламина (ПДФА) и солей кобальта и железа в органическом растворителе с последующим удалением растворителя при температуре 60-85°С. ИК-нагрев осуществляют в атмосфере аргона при температуре 400-600°С в течение 2-10 мин. Обеспечивается повышение намагниченности насыщения, термостойкости, упрощение получения гибридного нанокомпозитного магнитного материала. 2 н. и 3 з.п. ф-лы, 18 ил., 1 табл., 23 пр.
Реферат Свернуть Развернуть

Изобретение относится к области создания новых структурированных гибридных нанокомпозитных магнитных материалов на основе электроактивных полимеров с системой полисопряжения и биметаллических наночастиц Co-Fe и может быть использовано в системах магнитной записи информации, медицине, гипертермии, при создании электромагнитных экранов, контрастирующих материалов для магниторезонансной томографии, как антистатические покрытия и материалы, поглощающие электромагнитное излучение в различных диапазонах длины волны, для получения антикоррозионных покрытий, в органической электронике, при создании компонентов электронной техники, микроэлектромеханических систем, для каталитического удаления органических загрязнителей воды в комбинации с магнитным сепарированием для очистки воды.

Одним из путей эффективного предотвращения агрегирования магнитных наночастиц является их стабилизация за счет полимерной матрицы [1-3]. Гибридные нанокомпозиты сочетают полезные свойства полимеров и металлических наночастиц. Материалы на основе полимеров с системой полисопряжения и магнитных наночастиц привлекают особое внимание благодаря их уникальным физико-химическим свойствам [3]. Это обусловливает высокий потенциал их практического использования.

В большинстве работ для получения гибридных нанокомпозитов с магнитными наночастицами, диспергированными в матрице полимера с системой полисопряжения, чаще всего использовали метод in situ полимеризации мономера в присутствии магнитных наночастиц [4-7]. В качестве мономеров наиболее часто используют анилин, пиррол, этилендиокситиофен. Полимеризацию ведут в реакционной среде, содержащей магнитные наночастицы Fe3O4, γ-Fe2O3, α-Fe2O3, Co3O4, в присутствии окислителей (NH4)2S2O8, Н2О2 или FeCl3. Полученные гибридные наноматериалы являются суперпарамагнетиками благодаря малым размерам и высокой дисперсности магнитных наночастиц. Намагниченность насыщения сильно зависит от состава нанокомпозитов и варьируется в пределах MS ~ 0.06-80.4 Гс⋅см3/г.

Наиболее близкими к предложенным являются синтезированный впервые авторами металл-полимерный магнитный материал на основе ароматического производного полианилина - полидифениламина (ПДФА) и наночастиц Fe3O4 и способ получения этого магнитного материала в процессе термических превращений полимера в присутствии железа (III) хлорида FeCl3⋅6H2O в условиях ИК-нагрева [8]. Наличие точечных рефлексов, расположенных на Дебаевских кольцах электронной дифракции, свидетельствует о том, что кристаллические образования достаточно крупные. Коэффициент прямоугольности петли гистерезиса kn=0.024-0.12 свидетельствует о значительной доле суперпарамагнитных наночастиц.

Недостатком известного материала и способа является низкая намагниченность насыщения MS - не выше 7.09 Гс⋅см3/г, большая коэрцитивная сила HC=72-118 Э, недостаточная термостабильность нанокомпозита Fe3O4/ПДФА. При этом ИК-нагрев необходимо осуществить при Т=700°С, так как снижение температуры синтеза приводит к резкому падению намагниченности насыщения. Например, при 500°С намагниченность насыщения MS не выше 2.26 Гс⋅см3/г. При этом за время менее 10 мин наноструктурированный композитный материал Fe3O4/ПДФА не успевает формироваться, а увеличение времени синтеза до 60 мин мало влияет на структуру нанокомпозита. Основные процессы термоокислительной деструкции нанокомпозита Fe3O4/ПДФА начинаются при 350°С. Нанокомпозит теряет половину первоначальной массы на воздухе при 467°С. В инертной среде при 920°С остаток не превышает 69%.

Задача предлагаемого изобретения заключается в создании гибридного нанокомпозитного магнитного материала с суперпарамагнитными свойствами, высокой намагниченностью насыщения и термостойкостью (термостабильностью), и разработке простого и эффективного способа его получения.

Поставленная задача решается тем, что предложен гибридный нанокомпозитный магнитный материал, включающий полимерную матрицу - полидифениламин (ПДФА) и диспергированные в ней металлические наночастицы железа (Fe), который дополнительно содержит наночастицы кобальта (Со) при общем содержании наночастиц Co-Fe в материале 2-45 масс. % от массы полимерной матрицы.

Синтезированный впервые авторами ПДФА представляет собой ароматический полиамин с системой полисопряжения, в котором дифениленовые звенья разделены аминогруппами [9-11]. ПДФА имеет молекулярную массу Mw=(9-11)×103 и следующую структуру:

Выбор полимера обусловлен его высокой термостабильностью (до 450°С на воздухе и до 600-650°С в инертной атмосфере [11]).

Поставленная задача также решается тем, что в способе получения гибридного нанокомпозитного магнитного материала путем ИК-нагрева полимерной матрицы - полидифениламин (ПДФА) в присутствии соли Fe (III), для получения заявленного материала прекурсор получают совместным растворением полидифениламина (ПДФА) и солей кобальта и железа в органическом растворителе с последующим удалением растворителя при температуре 60-85°С, а ИК-нагрев осуществляют в атмосфере аргона при температуре 400-600°С.

При ИК-излучении благодаря переходу системы в колебательно-возбужденное состояние оказывается возможным резко повысить скорость химических реакций и значительно сократить время процесса.

ПДФА предпочтительно получают окислительной полимеризацией в межфазном процессе, в котором осуществляют взаимодействие мономера, находящегося в органической фазе, и окислителя, находящегося в водной фазе, при соотношении объемов водной и органической фаз - 1:2, и рост полимера происходит на границе раздела фаз [9].

В качестве соли Со (II) могут использовать его ацетат Co(OOCCH3)2⋅4H2O или ацетилацетонат Со(СН3СОСН=С(СН3)O)2, или карбонат CoCO3⋅6H2O, или нитрат Co(NO3)2⋅6H2O при содержании кобальта [Со]=1-15 масс. % от массы полимерной матрицы.

В качестве соли Fe (III) могут использовать его хлорид FeCl3⋅6H2O или нитрат Fe(NO3)3⋅6H2O, или ацетилацетонат Fe(CH3COCH=C(CH3)O)3 при содержании железа [Fe]=2-30 масс. % от массы полимерной матрицы.

В качестве органического растворителя могут использовать диметилформамид (ДМФА), диметилсульфоксид (ДМСО) или N-метилпирролидон.

Для синтеза ПДФА в межфазном процессе мономер - дифениламин растворяют в органическом растворителе (например, толуоле), а окислитель (например, персульфат аммония) и кислоту (например, соляную кислоту) - в воде. Соотношение объемов водной и органической фаз составляет 1:2. Растворы органической и водной фаз смешивают сразу без постепенного дозирования реагентов. По окончании синтеза полученный продукт осаждают, удаляют остатки реагентов и сушат.

Для синтеза нанокомпозита Co-Fe/ПДФА готовят совместный раствор ПДФА, солей кобальта (II) (ацетата Со(ООССН3)2⋅4H2O, ацетилацетоната Со(СН3СОСН=С(СН3)O)2, карбоната CoCO3⋅6H2O или нитрата Co(NO3)2⋅6H2O) и железа (III) (хлорида FeCl3⋅6H2O, нитрата Fe(NO3)3⋅6H2O или ацетилацетоната Fe(CH3COCH=C(CH3)O)3) - в диметилформамиде (ДМФА). Концентрация ПДФА в растворе ДМФА составляет 2 масс. %, содержание кобальта [Со]=1-15 масс. % и железа [Fe]=2-30 масс. % от массы полимера. Прекурсор, состоящий из ПДФА, солей кобальта (II) и железа (III), получают удалением растворителя (ДМФА) при Т=60-85°С. Прекурсор подвергают ИК-излучению с использованием автоматизированной установки ИК-нагрева в атмосфере Ar при разных температурах образца в интервале Т=400-600°С в течение 2-10 мин.

Гибридный нанокомпозит Co-Fe/ПДФА представляет собой черный порошок, нерастворимый в органических растворителях (N-МП, ДМФА, ДМСО).

Образование нанокомпозита Co-Fe/ПДФА подтверждено данными ИК-спектроскопии (ATR) и рентгеноструктурного исследования, сканирующей электронной микроскопии (СЭМ), представленными на фиг. 1-11, где I -интенсивность, 2θ - угол, I/I0 - соотношение интенсивностей падающего и прошедшего излучения, ν - частота излучения.

На фиг. 1 представлен ИК-спектр (ATR) ПДФА.

На фиг. 2 представлен ИК-спектр (ATR) нанокомпозита Co-Fe/ПДФА, полученного при 400°С в течение 10 мин при [Со]=5 масс. % и [Fe]=10 масс. % по загрузке.

На фиг. 3 представлен ИК-спектр (ATR) нанокомпозита Co-Fe/ПДФА, полученного при 450°С в течение 10 мин при [Со]=5 масс. % и [Fe]=10 масс. % по загрузке.

На фиг. 4 представлена дифрактограмма ПДФА.

На фиг. 5 представлена дифрактограмма нанокомпозита Co-Fe/ПДФА, полученного при 600°С в течение 10 мин при [Со]=5 масс. % и [Fe]=10 масс. % по загрузке.

На фиг. 6 представлено СЭМ изображение нанокомпозита Co-Fe/ПДФА, полученного при 600°С в течение 10 мин при [Со]=5 масс. % и [Fe]=10 масс. % по загрузке.

На фиг. 7 представлено СЭМ изображение нанокомпозита Co-Fe/ПДФА, полученного при 600°С в течение 2 мин при [Со]=5 масс. % и [Fe]=10 масс. % по загрузке.

На фиг. 8 представлено СЭМ изображение нанокомпозита Co-Fe/ПДФА, полученного при 600°С в течение 10 мин при [Со]=10 масс. % и [Fe]=10 масс. % по загрузке.

На фиг. 9 представлено СЭМ изображение нанокомпозита Co-Fe/ПДФА, полученного при 500°С в течение 5 мин при [Со]=5 масс. % и [Fe]=5 масс. % по загрузке.

На фиг. 10 представлено СЭМ изображение нанокомпозита Co-Fe/ПДФА, полученного при 600°С в течение 10 мин при [Со]=5 масс. % и [Fe]=20 масс. % по загрузке.

На фиг. 11 представлено СЭМ изображение нанокомпозита Co-Fe/ПДФА, полученного при 600°С в течение 10 мин при [Со]=3 масс. % и [Fe]=22 масс. % по загрузке.

При ИК-нагреве ПДФА в присутствии солей Со (II) и Fe (III) в инертной атмосфере при температуре образца T=400-600°С одновременно происходит рост полимерной цепи за счет реакции поликонденсации кристаллических олигомеров дифениламина, дегидрирование фениленаминовых структур с образованием сопряженных связей C=N и восстановление металлов за счет выделяющегося водорода с образованием биметаллических наночастиц Co-Fe. В результате формируется наноструктурированный гибридный композитный материал, в котором биметаллические наночастицы Co-Fe диспергированы в полимерной матрице ПДФА.

Методом ИК-спектроскопии показано, что при ИК-нагреве ПДФА в присутствии Со(CH3CO2)2⋅4H2O и FeCl3⋅6H2O происходит дегидрирование фениленаминовых структур с образованием сопряженных связей C=N. Сравнение ИК-спектров (ATR) полимера и нанокомпозитного материала показало, что в ИК-спектрах нанокомпозита сохраняются все основные полосы, характеризующие химическую структуру ПДФА (фиг. 1-3). По данным ИК-спектроскопии об образовании сопряженных связей C=N свидетельствует сдвиг и уширение полос при 1593 и 1489 см-1, соответствующих валентным колебаниям связей νC-C в ароматических кольцах. Интенсивность полос поглощения при 3380 и 3020 см-1, соответствующих валентным колебаниям связей νN-H и νC-H в фениленаминовых структурах, уменьшается по мере увеличения температуры синтеза. Так же, как в ПДФА, полоса поглощения при 810 см-1 обусловлена неплоскими деформационными колебаниями δС-H 4,4/-замещенных бензольных колец [9]. Увеличение интенсивности полосы поглощения при 810 см-1 свидетельствует о росте полимерной цепи ПДФА. Также из фиг. 2 и 3 видно, что по мере увеличения температуры образца уменьшается интенсивность полосы поглощения при 695 см-1 монозамещенного фенильного кольца, т.е. заметно уменьшается количество концевых групп полимера. Регистрацию ИК-спектров в режиме отражения с поверхности (ATR) выполняют на ИК микроскопе HYPERION-2000, сопряженном с ИК Фурье-спектрометром "IFS 66v" Bruker в области 4000-600 см-1 (скан. 150, кристалл ZnSe, разрешение 2 см-1).

Установлено, что в условиях ИК-нагрева в присутствии солей Со (II) и Fe (III) рост полимерной цепи происходит за счет реакции поликонденсации содержащихся в полимере кристаллических олигомеров дифениламина (фиг. 4) с одновременным восстановлением металлов за счет выделяющегося водорода. Об этом свидетельствует отсутствие на дифрактограммах нанокомпозита пиков отражения в области углов рассеяния 2θ=20-50°, характеризующих кристаллические олигомеры дифениламина.

Восстановление металлов с образованием биметаллических наночастиц Co-Fe подтверждено методом рентгенофазового анализа. На дифрактограмме нанокомпозита четко идентифицируются пики отражения биметаллических наночастиц Co-Fe в области дифракционных углов рассеяния 2θ=69.04°, 106.5° (фиг. 5), соответствующие твердому раствору. Рентгеноструктурные исследования проводят при комнатной температуре на рентгеновском дифрактометре «Дифрей-401» с фокусировкой по Бреггу-Брентано на CrKα-излучении.

Данные элементного анализа подтверждают дегидрирование фениленаминовых структур (B-NH-B). В ПДФА в присутствии солей Со (II) и Fe (III) (например, Со(CH3CO2)2⋅4H2O и FeCl3⋅6H2O) при увеличении температуры ИК-нагрева происходит уменьшение содержания водорода от 5.8% до 1.4%. Выделяющийся при этом водород способствует восстановлению металлов.

По данным СЭМ наночастицы Co-Fe имеют размеры 400<d<900 нм (фиг. 6-11). Как видно на фиг. 6-11, помимо наночастиц сферической формы образуются более крупные наночастицы прямоугольной формы. По данным атомно-абсорбционной спектрометрии содержание Со=1-20% масс, a Fe=1-35% масс. Электронно-микроскопические исследования осуществляют на настольном сканирующем электронном микроскопе Hitachi ТМ 3030 с увеличением до 30 000 и расширением 30 нм. Содержание металлов в нанокомпозите Co-Fe/ПДФА количественно определяют методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (АЭС-ИСП) на спектрофотометре ICPE-9000 фирмы SHIMADZU.

На фиг. 12 представлена намагниченность нанокомпозита Co-Fe/ПДФА, полученного при температуре образца 600°С в течение 10 мин при [Со]=5 (1, 2), 10 масс. % (3) и [Fe]=10 (1, 3), 20 масс. % (2) по загрузке, как функция приложенного магнитного поля при комнатной температуре.

Исследование магнитных свойств при комнатной температуре показало, что полученные нанокомпозиты Co-Fe/ПДФА проявляют гистерезисный характер перемагничивания. Как видно из фиг. 12, остаточная намагниченность наноматериала MR составляет до 0.06-0.18 Гс⋅см3/г, коэрцитивная сила HC - до 5-42 Э, тогда как по прототипу MR=0.17-0.28 Гс⋅см3/г, HC=72-118 Э.

Намагниченность насыщения заявленного материала растет с увеличением концентрации кобальта и достигает MS=15-60 Гс⋅см3/г, тогда как по прототипу она не превышает 7.09 Гс⋅см3/г. Константа прямоугольности петли гистерезиса kn, представляющая собой отношение остаточной намагниченности MR к намагниченности насыщения MS, составляет kn=MR/MS=0.003-0.011, что подтверждает его суперпарамагнитные свойства. Полученная величина MR/MS характерна для одноосных, однодоменных частиц. По прототипу kn=0.024-0.12. Для измерения магнитных характеристик систем используют вибрационный магнитометр. Ячейка вибрационного магнитометра представляет собой проточный кварцевый микрореактор, позволяющий исследовать химические превращения в условиях in situ. Проводят измерения удельной намагниченности J в зависимости от величины магнитного поля Н и на их основании определяют магнитные характеристики образцов при комнатной температуре.

Такие нанокомпозитные материалы, обладающие магнитными свойствами, могут быть использованы в системах магнитной записи информации, медицине, гипертермии, для создания контрастирующих материалов для магниторезонансной томографии, электромагнитных экранов, для каталитического удаления органических загрязнителей воды в комбинации с магнитным сепарированием для очистки воды, как антистатические покрытия и материалы, поглощающие электромагнитное излучение в различных диапазонах длины волны и др.

В инертной среде при температуре образца в интервале 520-600°С и длительности ИК-нагрева 2-10 мин при концентрациях [Со]=1-15 масс. % и [Fe]=2-30 масс. % по загрузке (соотношение солей Со (II) и Fe (III) от 1:1.2 до 1:2) регистрируются только биметаллические наночастицы Co-Fe. Чтобы предотвратить образование наночастиц β-Со с кубической гранецентрированной решеткой, что подтверждается наличием рефлексов в области углов дифракции 2θ=68.12°, 80.94°, а также наночастиц Fe3O4, имеющие пики отражения в области 2θ=46.01°, 54.08°, 66.54°, 84.27°, 90.82°, 101.46° (фиг. 13) при температурах 400-500°С, ИК-нагрев проводят в интервале 8-10 мин. При [Со]=10 масс. % и [Fe]=5-10 масс. % на дифрактограмме нанокомпозита идентифицируются пики отражения биметаллических наночастиц Co-Fe и β-Со (рис. 14). При [Со]=1-5 масс. % и [Fe] выше 20 масс. % по загрузке появляются наночастицы Fe3O4 (фиг. 15).

На фиг. 13 представлена дифрактограмма нанокомпозита Co-Fe/ПДФА, полученного при 450°С в течение 10 мин при [Со]=5 масс. % и [Fe]=10 масс. % по загрузке.

На фиг. 14 представлена дифрактограмма нанокомпозита Co-Fe/ПДФА, полученного при 600°С в течение 10 мин при [Со]=10 масс. % и [Fe]=5 масс. % по загрузке.

На фиг. 15 представлена дифрактограмма нанокомпозита Co-Fe/ПДФА, полученного при 600°С в течение 10 мин при [Со]=3 масс. % и [Fe]=22 масс. % по загрузке.

За время менее 2 мин наноструктурированный композитный материал, содержащий только наночастицы Co-Fe, не успевает формироваться, а увеличение времени синтеза более 10 мин мало влияет на структуру нанокомпозита.

При температуре ниже 400°С нанокомпозит, содержащий только наночастицы Co-Fe, не образуется, а при температуре выше 600°С нет необходимости проводить синтез, в нанокомпозите присутствуют только наночастицы Co-Fe. При этом увеличение температуры выше 600°С приводит к образованию более крупных наночастиц Co-Fe.

Термическая стабильность нанокомпозита Co-Fe/ПДФА исследована методами ТГА и ДСК.

На фиг. 16 показана температурная зависимость уменьшения массы ПДФА (1, 2) и нанокомпозита Co-Fe/ПДФА (3, 4), полученного при температуре образца 600°С в течение 10 мин при [Со]=5 масс. % и [Fe]=10 масс. % по загрузке, при нагревании до 1000°С со скоростью 10°С/мин в токе азота (1, 3) и на воздухе (2, 4).

На фиг. 17 показаны ДСК-термограммы нанокомпозита Co-Fe/ПДФА, полученного при температуре образца 600°С в течение 10 мин при [Со]=5 масс. % и [Fe]=10 масс. % по загрузке, при нагревании в токе азота до 350°С со скоростью 10°С/мин (7 - первое нагревание, 2 - второе нагревание).

Нанокомпозит Co-Fe/ПДФА характеризуется высокой термостабильностью (фиг. 16). 8%-ная потеря массы происходит из-за присутствия влаги в нанокомпозите, что также подтверждается данными ДСК (фиг. 17). На термограмме ДСК нанокомпозита присутствует эндотермический пик при 100°С. При повторном нагревании этот пик отсутствует. После удаления влаги на воздухе масса нанокомпозита не изменяется вплоть до 350°С. Процессы термоокислительной деструкции нанокомпозита Co-Fe/ПДФА начинаются при 380°С, а ПДФА - при 470°С. Для ПДФА 50%-ная потеря массы на воздухе наблюдается при 698°С. На воздухе нанокомпозит Co-Fe/ПДФА теряет половину первоначальной массы при 660°С. Более высокая термическая стабильность ПДФА на воздухе связана с тем, что при повышении температуры в полимере идет процесс дальнейшей полимеризации олигомеров, индуцируемый кислородом воздуха [11]. При этом наблюдается увеличение степени полимеризации ПДФА и резкое уменьшение содержания кристаллической фракции. В нанокомпозите Co-Fe/ПДФА на воздухе при 1000°С остаток составляет 20%. При этом по данным ААС в нанокомпозите содержится 5.4% Со и 7.0% Fe. В инертной среде в нанокомпозите Co-Fe/ПДФА наблюдается постепенная потеря массы и при 1000°С остаток составляет 77%. ПДФА теряет половину первоначальной массы в инертной атмосфере при 880°С, и при 960°С остаток составляет 40%. Термический анализ осуществляют на приборе TGA/DSC1 фирмы "Mettler Toledo" в динамическом режиме в интервале 30-1000°С на воздухе и в токе азота. Навеска полимеров - 100 мг, скорость нагревания 10°С/мин, ток азота - 10 мл/мин. В качестве эталона используют прокаленный оксид алюминия. Анализ образцов проводят в тигле AI2O3. ДСК-анализ проводят на калориметре DSC823e фирмы "Mettler Toledo". Нагрев образцов осуществляют со скоростью 10°С/мин, в атмосфере аргона при его подаче 70 мл/мин. Обработка результатов измерения проводят с помощью сервисной программы STARe, поставляемой в комплекте с прибором.

В выбранных условиях формируется термостойкий гибридный наноструктурированный композитный материал, в котором магнитные наночастицы Co-Fe с размерами 400<d<900 нм гомогенно диспергированы в электроактивной полимерной матрице ПДФА. Полимер сохраняет электроактивность в диапазоне значений рН 1-3 (фиг. 18).

На фиг. 18 представлены циклические вольт-амперограммы электродов, модифицированных ПДФА, в серной кислоте при рН 1 (1), рН 2 (2) и рН 3 (3). Скорость развертки потенциала 20 мВ/с.

Константа прямоугольности петли гистерезиса kn=MR/MS=0.003-0.011, что подтверждает суперпарамагнитные свойства гибридного наноматериала. По прототипу kn=0.024-0.12. При этом намагниченность насыщения заявленного материала - MS - 15-60 Гс⋅см3/г, тогда как по прототипу она не превышает 7.09 Гс⋅см3/г. В инертной среде при 1000°С остаток составляет 77-85%, тогда как по прототипу при 920°С остаток не превышает 69%. Основные процессы термоокислительной деструкции заявленного материала начинаются при 380-470°С, тогда как по прототипу при 350°С. Нанокомпозитный материал Co-Fe/ПДФА представляет собой черный порошок, нерастворимый в органических растворителях. Такие нанокомпозитные материалы могут быть использованы в органической электронике, для создания микроэлектромеханических систем, тонкопленочных транзисторов, перезаряжаемых батарей, сенсоров, суперконденсаторов, солнечных батарей, дисплеев и других электрохимических устройств.

Новизна предлагаемых методов и подходов к созданию гибридного дисперсного материала определяется тем, что впервые полимерный компонент нанокомпозита представляет собой термостойкий электроактивный полимер ПДФА, а в качестве магнитных частиц используют биметаллические наночастицы Co-Fe.

Преимущества предложенного материала и способа:

1. Предлагаемый одностадийный метод формирования гибридного нанокомпозитного материала в условиях ИК-нагрева прекурсора на основе ПДФА и солей Со (II) и Fe (III) позволяет получать биметаллические наночастицы Co-Fe различного состава и разной формы с размерами 400<d<900 нм. Константа прямоугольности петли гистерезиса kn, представляющая собой отношение остаточной намагниченности MR к намагниченности насыщения MS, составляет 0.003-0.011, что подтверждает суперпарамагнитные свойства заявленного материала. По прототипу kn=0.024-0.12. Остаточная намагниченность материала MR составляет 0.06-0.18 Гс⋅см3/г, коэрцитивная сила - HC=5-42 Э, тогда как по прототипу MR=0.17-0.28 Гс⋅см3/г, HC=72-118 Э. Намагниченность насыщения заявленного материала - MS=15-60 Гс⋅см3/г, тогда как по прототипу она не превышает 7.09 Гс⋅см3/г. Такие магнитные материалы могут быть использованы в медицине, гипертермии, для создания контрастирующих материалов для магниторезонансной томографии, как материалы, поглощающие электромагнитное излучение в различных диапазонах длины волны и др.

2. Формирование гибридного наноматериала Co-Fe/ПДФА осуществляется в инертной атмосфере под действием некогерентного ИК-излучения в импульсном режиме, что позволяет исключить сложное оборудование и существенно снизить энергозатраты, т.е. резко повысить скорость химических реакций и значительно сократить время процесса.

3. Так как полимерная матрица является электроактивной, нанокомпозит на основе ПДФА может быть использован для создания электрохимических устройств, например сенсоров и биосенсоров, перезаряжаемых батарей, суперконденсаторов.

4. Высокая термостабильность нанокомпозита Co-Fe/ПДФА определяется высокой термической стабильностью ПДФА на воздухе и в инертной среде. Высокая термостабильность полимерной матрицы на воздухе (до 380-470°С) и в инертной атмосфере (при 1000°С остаток составляет 77-85%) обеспечивает возможность использования предложенного нанокомпозитного дисперсного материала Co-Fe/ПДФА в высокотемпературных процессах, например в качестве катализаторов Фишера-Тропша.

Авторами предложенного изобретения впервые получены гибридные нанокомпозитные магнитные материалы, в которых биметаллические наночастицы Co-Fe гомогенно диспергированы в термостойкой полимерной матрице ПДФА.

Примеры получения гибридного нанокомпозитного дисперсного материала Co-Fe/ПДФА. Характеристики полученных по примерам нанокомпозитных материалов: содержание Fe и Со, размеры наночастиц Co-Fe, термостойкость (термостабильность) и магнитные характеристики (намагниченность насыщения MS, остаточная намагниченность MR, константа прямоугольности петли гистерезиса kn=MR/MS, коэрцитивная сила HC) приведены в таблице 1.

Пример 1

Для синтеза ПДФА в межфазном процессе 0.2 моль/л (6.0 г) дифениламина растворяют в органическом растворителе - толуоле (90 мл), а 0.25 моль/л (10.26 г) персульфата аммония и 1.0 моль/л (15.0 мл) соляной кислоты - в дистиллированной воде (75.0 мл). Соотношение объемов водной и органической фаз составляет 1:1. Растворы органической и водной фаз смешивают сразу без постепенного дозирования реагентов. Процесс осуществляют при интенсивном перемешивании с помощью электронной мешалки с верхним приводом RW 16 Basic компании "Ika Werke" в узкой цилиндрической круглодонной двугорлой колбе (для увеличения эффективности перемешивания) при 0°С в течение 4 ч. По окончании синтеза реакционную смесь осаждают в пятикратный избыток изопропилового спирта (400 мл). Полученный продукт отфильтровывают и многократно промывают дистиллированной водой для удаления остатков реагентов. Нейтрализацию ПДФА проводят в 3%-ном растворе NH4OH (200 мл) в течение 1 суток, после чего полимер отфильтровывают и многократно промывают избытком дистиллированной воды до нейтральной реакции, а затем сушат под вакуумом над КОН до постоянной массы. Выход ПДФА составляет 5.15 г (85.83%).

Получение нанокомпозита Co-Fe/полидифениламин (Co-Fe/ПДФА) проводят следующим образом. В кристаллизационной чашке объемом 100 мл в 15 мл ДМФА растворяют 0.2 г ПДФА, полученного в межфазном процессе, и 0.04225 г Со(ООССН3)2⋅4H2O и 0.0968 г FeCl3⋅6H2O (содержание кобальта [Со]=5 масс. % и железа [Fe]=10 масс. % от массы полимера). После удаления растворителя (ДМФА) при Т=85°С прекурсор, состоящий из ПДФА и солей ацетата кобальта и хлорида железа (III), подвергают ИК-излучению с использованием автоматизированной установки ИК-нагрева в атмосфере Ar при Т=600°С в течение 10 мин. Выход Co-Fe/ПДФА составляет 0.19 г (63.55%).

Пример 2

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.12675 г Со(ООССН3)2⋅4H2O и 0.2904 г FeCl3⋅6H2O (содержание кобальта [Со]=15 масс. % и железа [Fe]=30 масс. % от массы полимера).

Пример 3

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.04225 г Со(ООССН3)2⋅4H2O и 0.0484 г FeCl3⋅6H2O (содержание кобальта [Со]=5 масс. % и железа [Fe]=5 масс. % от массы полимера). Прекурсор подвергают ИК-излучению при Т=500°С в течение 5 мин.

Пример 4

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.0845 г Со(ООССН3)2⋅4H2O и 0.0484 г FeCl3⋅6H2O (содержание кобальта [Со]=10 масс. % и железа [Fe]=5 масс. % от массы полимера).

Пример 5

Способ получения нанокомпозита проводят аналогично примеру 1, но прекурсор подвергают ИК-излучению при Т=400°С.

Пример 6

Способ получения нанокомпозита проводят аналогично примеру 3, но берут 0.07605 г Со(ООССН3)2⋅4H2O и 0.1452 г FeCl3⋅6H2O (содержание кобальта [Со]=9 масс. % и железа [Fe]=15 масс. % от массы полимера). Прекурсор подвергают ИК-излучению при Т=490°С.

Пример 7

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.0845 г Со(ООССН3)2⋅4H2O и 0.0968 г FeCl3⋅6H2O (содержание кобальта [Со]=10 масс. % и железа [Fe]=10 масс. % от массы полимера).

Пример 8

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.04225 г Со(ООССН3)2⋅4H2O и 0.1936 г FeCl3⋅6H2O (содержание кобальта [Со]=5 масс. % и железа [Fe]=20 масс. % от массы полимера).

Пример 9

Способ получения нанокомпозита проводят аналогично примеру 5, но берут 0.00845 г Со(ООССН3)2⋅4H2O и 0.01936 г FeCl3⋅6H2O (содержание кобальта [Со]=1 масс. % и железа [Fe]=2 масс. % от массы полимера). Прекурсор подвергают ИК-излучению при Т=400°С в течение 2 мин.

Пример 10

Способ получения нанокомпозита проводят аналогично примеру 5, но берут 0.09295 г Со(ООССН3)2⋅4H2O и 0.242 г FeCl3⋅6H2O (содержание кобальта [Со]=11 масс. % и железа [Fe]=25 масс. % от массы полимера). Прекурсор подвергают ИК-излучению при Т=520°С в течение 8 мин.

Пример 11

Способ получения нанокомпозита проводят аналогично примеру 2, но берут 0.02535 г Со(ООССН3)2⋅4H2O и 0.21296 г FeCl3⋅6H2O (содержание кобальта [Со]=3 масс. % и железа [Fe]=22 масс. % от массы полимера).

Пример 12

Способ получения нанокомпозита проводят аналогично примеру 5, но прекурсор подвергают ИК-излучению при Т=550°С.

Пример 13

Способ получения нанокомпозита проводят аналогично примеру 12, но прекурсор подвергают ИК-излучению при Т=450°С.

Пример 14

Способ получения нанокомпозита проводят аналогично примеру 12, но прекурсор подвергают ИК-излучению при Т=500°С.

Пример 15

Способ получения нанокомпозита проводят аналогично примеру 1, но прекурсор подвергают ИК-излучению в течение 2 мин.

Пример 16

Способ получения нанокомпозита проводят аналогично примеру 3, но берут 0.05915 г Со(ООССН3)2⋅4H2O и 0.06776 г FeCl3⋅6H2O (содержание кобальта [Со]=7 масс. % и железа [Fe]=7 масс. % от массы полимера). Прекурсор подвергают ИК-излучению в течение 2 мин.

Пример 17

Способ получения нанокомпозита проводят аналогично примеру 12, но прекурсор подвергают ИК-излучению в течение 2 мин.

Пример 18

Способ получения нанокомпозита проводят аналогично примеру 13, но прекурсор подвергают ИК-излучению в течение 2 мин.

Пример 19

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.0436 г Со(СН3СОСН=С(СН3)O)2 и 0.0968 г FeCl3⋅6H2O (содержание кобальта [Со]=5 масс. % и железа [Fe]=10 масс. % от массы полимера).

Пример 20

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.04065 г CoCO3⋅6H2O и 0.0968 г FeCl3⋅6H2O (содержание кобальта [Со]=5 масс. % и железа [Fe]=10 масс. % от массы полимера).

Пример 21

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.0521 г Со(NO3)2⋅6H2O и 0.0968 г FeCl3⋅6H2O (содержание кобальта [Со]=5 масс. % и железа [Fe]=10 масс. % от массы полимера).

Пример 22

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.04225 г Со(ООССН3)2⋅4H2O и 0.1253 г Fe(NO3)3⋅6H2O (содержание кобальта [Со]=5 масс. % и железа [Fe]=10 масс. % от массы полимера).

Пример 23

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.04225 г Со(ООССН3)2⋅4H2O и 0.1265 г Fe(CH3COCH=C(CH3)O)3 (содержание кобальта [Со]=5 масс. % и железа [Fe]=10 масс. % от массы полимера).

Выбор растворителя из ДМФА, ДМСО или N-метилпирролидона практически не сказывается на свойствах полученного магнитного материала.

Источники информации

1. Помогайло А.Д., Розенберг А.Т., Уфлянд И.Е. Наночастицы металлов в полимерах. М.: Химия, 2000. 672 с.

2. Губин СП., Кокшаров Ю.А., Хомутов Г.Б., Юрков Г.Ю. Магнитные наночастицы: методы получения, строение и свойства. // Успехи химии. 2005. Т. 74. №6. С. 539-574.

3. Карпачева Г.П. Гибридные магнитные нанокомпозиты, включающие полимеры с системой сопряжения. // Высокомолек. соед. С. 2016. Т. 58. №1. С. 142-158.

4. Yang С., Du J., Peng Q., Qiao R., Chen W., Xu C., Shuai Z., Gao M. Polyaniline/Fe3O4 nanoparticle composite: synthesis and reaction mechanism. // J. Phys. Chem. B. 2009. V. 113. №15. P. 5052.

5. Aphesteguy J.C., Jacobo S.E. Composite of polyaniline containing iron oxides. // Physica B. 2004. V. 354. №1-4. P. 224.

6. Qiu G., Wang Q., Nie M. Polyaniline/Fe3O4 magnetic nanocomposite prepared by ultrasonic irradiation. // J. Appl. Polym. Sci. 2006. V. 102. №3. P. 2107.

7. Zhang Z., Wan M. Nanostructures of polyaniline composites containing nano-magnet. // Synth. Met. 2003. V. 132. №2. P. 205.

8. Озкан С.Ж., Дзидзигури Э.Л., Карпачева Г.П., Чернавский П.А., Ефимов М.Н., Бондаренко Г.Н. Металлополимерный нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Fe304. // Известия Академии Наук. Серия химическая. 2015. №1. С. 196-201.

9. Орлов А.В., Озкан С.Ж., Бондаренко Г.Н., Карпачева Г.П. Окислительная полимеризация дифениламина. Методы синтеза, структура полимеров. // Высокомолек. соед. Б. 2006. Т. 48. №1. С. 126-133.

10. Орлов А.В., Озкан С.Ж., Карпачева Г.П. Окислительная полимеризация дифениламина. Механизм реакции. // Высокомолек. соед. Б. 2006. Т. 48. №1. С. 134-141.

11. Озкан С.Ж., Карпачева Г.П., Орлов А.В., Дзюбина М.А. Термическая стабильность полидифениламина, синтезированного окислительной полимеризацией дифениламина. // Высокомолек. соед. Б. 2007. Т. 49. №2. С. 365-370.


Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц Co-Fe и способ его получения
Источник поступления информации: Роспатент

Showing 61-70 of 141 items.
29.12.2017
№217.015.fe80

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения перспективных энергоносителей, в частности к реактору и способу совместного получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья, и может быть использовано при получении топливных элементов, полупроводников, в...
Тип: Изобретение
Номер охранного документа: 0002638350
Дата охранного документа: 13.12.2017
20.01.2018
№218.016.143d

Способ переработки горючего сланца

Изобретение относится к способу получения из горючих сланцев топливно-энергетических и химических продуктов, в частности моторных топлив. Измельченный горючий сланец (ГС) смешивают с измельченным твердым органическим компонентом, температура максимальной скорости разложения вещества которого...
Тип: Изобретение
Номер охранного документа: 0002634725
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1452

Аддитивный сополимер 3,3,4-трис(триметилсилил)трициклононена-7 и 3-триметилсилилтрициклононена-7, способ его получения и способ разделения газовых смесей с его применением

Изобретение относится к синтезу новых аддитивных сополимеров на основе трициклононенов и разделению газовых смесей с помощью мембран на основе этих сополимеров. Предложен аддитивный сополимер 3,3,4-трис(триметилсилил)трициклононена-7 и 3-триметилсилилтрициклононена-7 формулы (I), где n и m –...
Тип: Изобретение
Номер охранного документа: 0002634724
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1631

Нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц feo, закрепленных на одностенных углеродных нанотрубках, и способ его получения

Изобретение относится к области создания новых нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц FeO, закрепленных на одностенных углеродных нанотрубках, и может быть использовано в органической электронике и электрореологии для создания...
Тип: Изобретение
Номер охранного документа: 0002635254
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.16c6

Гибридный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и одностенных углеродных нанотрубок и способ его получения

Изобретение предназначено для органической электроники, электрореологии, медицины и может быть использовано при изготовлении микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей,...
Тип: Изобретение
Номер охранного документа: 0002635606
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.171b

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья и интегрированному мембранно-каталитическому реактору для осуществления способа и может быть использовано в получении топливных элементов, полупроводников, химическом...
Тип: Изобретение
Номер охранного документа: 0002635609
Дата охранного документа: 14.11.2017
13.02.2018
№218.016.1fa7

Способ получения наноразмерного катализатора синтеза фишера-тропша и способ синтеза фишера-тропша с его применением

Изобретение относится к нефтехимической промышленности, а именно к способам получения алифатических углеводородов из оксида углерода и водорода, и может быть использовано в нефтепереработке и нефтехимии. Способ получения наноразмерного катализатора трехфазного синтеза Фишера-Тропша, содержащего...
Тип: Изобретение
Номер охранного документа: 0002641299
Дата охранного документа: 17.01.2018
10.05.2018
№218.016.446b

Способ получения синтетической нефти из природного или попутного нефтяного газа (варианты)

Настоящее изобретение относится вариантам способа получения синтетической нефти из природного или попутного нефтяного газа. Один из вариантом способа включает стадию синтеза оксигенатов из исходного синтез-газа, полученного из указанного сырья, в присутствии металлооксидного катализатора, с...
Тип: Изобретение
Номер охранного документа: 0002649629
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.4703

Способ измерения скорости циркуляции мелкодисперсного катализатора

Изобретение относится к химической технологии и может быть использовано в процессах с циркулирующим потоком мелкодисперсного катализатора. Способ определения скорости циркуляции мелкодисперсного катализатора в линии циркуляции между реактором и регенератором, включающей подъемник катализатора,...
Тип: Изобретение
Номер охранного документа: 0002650623
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4c18

Способ получения винилиденовых олефинов

Изобретение относится к области промышленного получения ненасыщенных углеводородов с заданной структурой, а именно к способу получения винилиденовых олефинов. Способ включает димеризацию альфа-олефинов, таких как гексен-1, октен-1, децен-1, в присутствии продукта взаимодействия...
Тип: Изобретение
Номер охранного документа: 0002652118
Дата охранного документа: 25.04.2018
Showing 11-14 of 14 items.
01.09.2018
№218.016.81b6

Гибридный электропроводящий материал на основе полимера и углеродных нанотрубок и способ его получения

Изобретение относится к области создания новых структурированных гибридных наноматериалов на основе электроактивных полимеров с системой сопряжения и одностенных углеродных нанотрубок (ОУНТ) и может быть использовано в качестве носителей для катализаторов, в том числе в топливных элементах с...
Тип: Изобретение
Номер охранного документа: 0002665394
Дата охранного документа: 29.08.2018
20.02.2019
№219.016.c03a

Способ получения термостабильного нанокомпозита cu/полиакрилонитрил

Изобретение относится к нанотехнологии изготовления термостабильного нанокомпозита Cu/полиакрилонитрил (ПАН). Описан способ получения термостабильного нанокомпозита Cu/ПАН, включающий приготовление смеси CuCl, HNO (С=37%) и ПАН (М=1×10), выдерживание до растворения CuCl и ПАН в HNO, выпаривание...
Тип: Изобретение
Номер охранного документа: 0002330864
Дата охранного документа: 10.08.2008
17.06.2023
№223.018.7fb2

Нанокомпозитный магнитный материал на основе полисопряженного полимера и смеси магнитных наночастиц и способ его получения

Настоящее изобретение относится к группе изобретений: нанокомпозитный магнитный материал; способ получения нанокомпозитного магнитного материала. Нанокомпозитный магнитный материал включает полимерную матрицу из полисопряженного полимера, в которой диспергированы кобальт- и железосодержащие...
Тип: Изобретение
Номер охранного документа: 0002768158
Дата охранного документа: 23.03.2022
17.06.2023
№223.018.7fb5

Нанокомпозитный электромагнитный материал и способ его получения

Настоящее изобретение относится к группе изобретений: полимер-металл-углеродный нанокомпозитный электромагнитный материал, способ получения полимер-металл-углеродного нанокомпозитного электромагнитного материала. Полимер-металл-углеродный нанокомпозитный электромагнитный материал включает...
Тип: Изобретение
Номер охранного документа: 0002768155
Дата охранного документа: 23.03.2022
+ добавить свой РИД