×
21.06.2020
220.018.2959

Результат интеллектуальной деятельности: СИСТЕМА И СПОСОБ ДИНАМИЧЕСКОГО ОПРЕДЕЛЕНИЯ И КОРРЕКЦИИ ПАРАМЕТРОВ УПРАВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: В настоящем изобретении раскрыта система и способ динамического определения и повторной коррекции параметров управления. Система содержит модуль сбора данных, модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, модуль повторной коррекции параметров управления и главную систему управления. Причем при работе приводной системы с постоянным магнитом малой дальности действия врубовой машины после получения рабочих данных приводной системы в реальном времени модулем сбора данных и определения полученных рабочих данных модулем определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия результат определения вводят в модуль повторной коррекции параметров управления. Причем модуль повторной коррекции параметров управления выполняет корректировку параметров управления в реальном времени, так что параметр управления в реальном времени сопоставляют с параметром, требуемым для фактической работы. Затем главная система управления регулирует и управляет приводной системой с постоянным магнитом малой дальности действия в соответствии со скорректированными параметрами управления с достижением таким образом ожидаемого эффекта управления, улучшением эффективности резки, сохранением энергии, снижением частоты отказов и обеспечением безопасной и надежной работы режущего блока врубовой машины. 2 н. и 3 з.п. ф-лы, 2 ил.

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к системе и способу динамического определения и повторной коррекции параметров управления, в частности, к системе и способу динамического определения и повторной коррекции параметров управления, подходящим для врубовой машины.

УРОВЕНЬ ТЕХНИКИ

В связи с тем, что горные машины разрабатываются для обеспечения энергосберегающих, интеллектуальных операций и работы в автоматическом режиме, в области горного оборудования широко применяются энергосберегающая технология управления с преобразованием частоты и способ диагностики неисправностей. Врубовые машины относятся к полностью механизированному оборудованию для автоматизации добычи полезных ископаемых, и частота отказов приводной системы с постоянным магнитом малой дальности действия напрямую влияет на эффективность добычи угля и безопасность эксплуатации оборудования. Однако в настоящее время при применении энергосберегающей технологии управления с преобразованием частоты, определение параметров для приводной системы с постоянным магнитом малой дальности действия в основном является первоначальным определением параметров управления с преобразованием частоты в соответствии с конфигурацией параметров системы, и процессы способов диагностики неисправностей в основном выполняются автономно. В процессе резания угольной породы врубовой машиной двигатель приводной системы с постоянным магнитом малой дальности действия со временем нагревается, и в связи с этим параметры системы двигателя изменяются с изменением температуры; кроме того, при резании конечный крутящий момент зависит от твердости разрезаемого угольного пласта и, следовательно, параметры двигателя, подлежащие регулированию, также являются отличающимися. Однако в настоящее время при определения параметров системы двигателя всегда используют первоначальную определение параметров управления с преобразованием частоты в соответствии с конфигурацией параметров системы и параметры двигателя невозможно регулировать в реальном времени в соответствии с фактической обстановкой. Следовательно, в таком способе присутствует потенциальный риск, поскольку очень сложно гарантировать, что данные, используемые в модели, применяемой в системе управления, будут полностью соответствовать данным машины в рабочих условиях в реальном времени. В результате, разработанные параметры управления не соответствуют фактическим условиям, способ не может обеспечить ожидаемого эффекта управления, не может улучшить эффективность резания, не может экономить энергию, не может снизить частоту отказов и напрямую влияет на безопасную и надежную работу режущего блока врубовой машины.

РАСКРЫТИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Учитывая вышеупомянутые проблемы в предшествующем уровне техники, настоящее изобретение предусматривает систему и способ динамического определения и повторной коррекции параметров управления, обеспечивающих возможность корректировки параметров управления в реальном времени в соответствии с полученными рабочими данными в реальном времени в процессе работы приводной системы с постоянным магнитом малой дальности действия, и тем самым обеспечивающих возможность повышения эффективности резки, экономии энергии, снижения частоты отказов и обеспечения безопасной и надежной работы режущего блока врубовой машины.

Для решения задачи, описанной выше, настоящее изобретение применяет следующую техническую схему: система динамического определения и повторной коррекции параметров управления содержит модуль сбора данных, модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, модуль повторной коррекции параметров управления и главную систему управления, причем модуль сбора данных получает и передает рабочие данные приводной системы с постоянным магнитом малой дальности действия в модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, а модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия определяет данные, полученные модулем сбора данных и вводит результат определения в модуль повторной коррекции параметров управления, при этом модуль повторной коррекции параметров управления корректирует и упорядочивает параметры управления приводной системы с постоянным магнитом малой дальности действия в соответствии с результатом определения, относящимся к приводной системе с постоянным магнитом малой дальности действия, и выводит скорректированные параметры управления в главную систему управления, и главная система управления управляет работой приводной системы с постоянным магнитом малой дальности действия в соответствии со скорректированными параметрами управления.

Кроме того, модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия содержит блок определения в реальном времени параметров системы двигателя, блок определения крутящего момента на оконечной нагрузке, и блок определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия; причем блок определения в реальном времени параметров системы двигателя выполняет определение параметра системы двигателя в реальном времени на основе рабочих данных приводной системы с постоянным магнитом малой дальности действия, полученных модулем сбора данных, и вводит результат определения параметров системы двигателя в реальном времени в модуль повторной коррекции параметров управления; а блок определения крутящего момента на оконечной нагрузке определяет заданный сигнал крутящего момента на выходе двигателя и сигнал обратной связи фактического крутящего момента на оконечной нагрузке из рабочих данных приводной системы с постоянным магнитом малой дальности действия, полученных модулем сбора данных, и вводит результат определения в модуль повторной коррекции параметров управления; причем блок определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия выполняет определение форма колебаний конструкции для системы зубчатой передачи на основе данных, полученных модулем сбора данных, и вводит результат определения в модуль повторной коррекции параметров управления.

Способ динамического определения и повторной коррекции параметров управления включает следующие этапы:

А. получение данных:

во время работы приводной системы с постоянным магнитом малой дальности действия модуль сбора данных получает рабочие данные приводной системы с постоянным магнитом малой дальности действия в реальном времени и передает рабочие данные в модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, причем рабочие данные содержат параметр системы двигателя в реальном времени, заданный сигнал крутящего момента на выходе двигателя, сигнал обратной связи фактического крутящего момента на оконечной нагрузке, скорость двигателя, частоту зацепления зубчатой передачи и ускорение приводной системы;

В. определение данных:

модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия считывает данные, полученные модулем сбора данных; блок определения в реальном времени параметров системы двигателя, блок определения крутящего момента на оконечной нагрузке и блок определения форма колебаний конструкции приводной системы с постоянным магнитом малой дальности действия считывают и определяют параметры системы двигателя в реальном времени, заданный сигнал крутящего момента на выходе двигателя, сигнал обратной связи фактического крутящего момента на оконечной нагрузке, скорость двигателя, частоту зацепления зубчатой передачи и ускорение приводной системы, соответственно, и вводят определенные данные в модуль повторной коррекции параметров управления, соответственно;

C. повторную коррекцию параметров управления:

модуль повторной коррекции параметров управления выполняет сравнение и анализ данных, определенных модулем определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия с первоначально заданными параметрами управления, корректирует первоначально заданные параметры управления в соответствии с определенными данными, и затем вводит скорректированные параметры управления в главную систему управления;

D. регулировку работы приводной системы с постоянным магнитом малой дальности действия:

главная система управления контролирует и упорядочивает рабочие данные приводной системы с постоянным магнитом малой дальности действия, в соответствии со скорректированными параметрами управления.

Кроме того, конкретные процессы определения, выполняемые блоком определения в реальном времени параметров системы двигателя, блоком определения крутящего момента на оконечной нагрузке и блоком определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия являются следующими:

процесс определения, выполняемый блоком определения в реальном времени параметров системы двигателя, выполняют следующим образом: полученные рабочие данные приводной системы с постоянным магнитом малой дальности действия вычисляют и обрабатывают в соответствии с первоначальными определенными параметрами системы двигателя с последующей установкой интервала времени определения, равным 10 минут, для обеспечения блоку определения в реальном времени параметров системы двигателя возможности выполнения автоматического определения каждые 10 минут, причем конкретное определение заключается в том, что параметр системы двигателя, полученный в предыдущий момент, обновляется в реальном времени при помощи улучшенного рекурсивного алгоритма наименьших квадратов, и полученный в каждый момент результат определения вводят в модуль повторной коррекции параметров управления;

процесс определения, выполняемый блоком определения крутящего момента на оконечной нагрузке, выполняют следующим образом: заданный сигнал крутящего момента на выходе двигателя и сигнал обратной связи фактического крутящего момента на оконечной нагрузке определяют из полученных рабочих данных приводной системы с постоянным магнитом малой дальности действия, причем конкретное определение заключается в том, что для эквивалентного моделирования используют систему первого порядка и модель линии задержки путем считывания заданного сигнала крутящего момента на выходе двигателя и сигнала обратной связи крутящего момента на оконечной нагрузке, время задержки и постоянную времени системы первого порядка сравнивают, и затем определенные данные вводят в модуль повторной коррекции параметров управления;

процесс определения, выполняемый блоком определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия, выполняют следующим образом: сигналы во временной области, в том числе скорость двигателя, частота зацепления зубчатой передачи и ускорение приводной системы, определяют и считывают из полученных рабочих данных приводной системы с постоянным магнитом малой дальности действия, сигналы во временной области преобразуют в сигналы частотного спектра для получения распределения плотности спектра мощности, и затем анализируют формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия и вводят в модуль повторной коррекции параметров управления.

Кроме того, конкретный процесс повторной коррекции параметров управления выполняют следующим образом: модуль повторной коррекции параметров управления выполняет сопоставление каждого из рабочих параметров в реальном времени, определенных модулем определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, с первоначально заданными параметрами управления; если какой-либо из рабочих параметров в реальном времени не соответствует соответствующему первоначально заданному параметру управления, повторно устанавливают модель повторной коррекции для параметров управления на основе рабочих параметров в реальном времени, и получают параметр управления в модели повторной коррекции, и наконец скорректированные параметры управления вводят в главную систему управления.

По сравнению с предшествующим уровнем техники настоящее изобретение использует комбинацию модуля сбора данных, модуля определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия и модуля повторной коррекции параметров управления. При работе приводной системы с постоянным магнитом малой дальности действия врубовой машины, после получения рабочих данных приводной системы в реальном времени и определения полученных рабочих данных, результат определения вводится в модуль повторной коррекции параметров управления; затем модуль повторной коррекции параметров управления выполняет корректировку параметров управления в реальном времени, так что параметр управления в реальном времени сопоставляется с параметром, требуемым для фактической работы, с достижением таким образом ожидаемого эффекта управления, улучшением эффективности резки, сохранением энергии, снижением частоты отказов и обеспечением безопасной и надежной работы режущего блока врубовой машины.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг. 1 представлена блок-схема всей конструкции системы согласно настоящему изобретению; и

На фиг. 2 представлена блок-схема принципа работы модуля определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия согласно настоящему изобретению.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Далее в данном документе настоящее изобретение будет более подробно описано со ссылкой на варианты осуществления и чертежи.

Как показано на фиг. 1, в настоящем изобретении предложена система динамического определения и повторной коррекции параметров управления, содержащая модуль сбора данных, модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, модуль повторной коррекции параметров управления и главную систему управления, причем модуль сбора данных получает и передает рабочие данные приводной системы с постоянным магнитом малой дальности действия в модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, а модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия определяет данные, полученные модулем сбора данных, и вводит результат определения в модуль повторной коррекции параметров управления, при этом модуль повторной коррекции параметров управления корректирует и упорядочивает параметры управления приводной системы с постоянным магнитом малой дальности действия в соответствии с результатом определения, относящимся к приводной системе с постоянным магнитом малой дальности действия и выводит скорректированные параметры управления в главную систему управления, и главная система управления управляет работой приводной системы с постоянным магнитом малой дальности действия в соответствии со скорректированными параметрами управления.

Как показано на фиг. 2, модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия дополнительно содержит блок определения в реальном времени параметров системы двигателя, блок определения крутящего момента на оконечной нагрузке и блок определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия; причем блок определения в реальном времени параметра системы двигателя выполняет определение параметра системы двигателя в реальном времени на основе рабочих данных приводной системы с постоянным магнитом малой дальности действия, полученных модулем сбора данных, и вводит результат определения параметров системы двигателя в реальном времени в модуль повторной коррекции параметров управления; а блок определения крутящего момента на оконечной нагрузке определяет заданный сигнал крутящего момента на выходе двигателя и сигнал обратной связи фактического крутящего момента на оконечной нагрузке из рабочих данных приводной системы с постоянным магнитом малой дальности действия, полученных модулем сбора данных, и вводит результат определения в модуль повторной коррекции параметров управления; причем блок определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия выполняет определение форма колебаний конструкции для системы зубчатой передачи на основе данных, полученных модулем сбора данных, и вводит результат определения в модуль повторной коррекции параметров управления.

В настоящем изобретении дополнительно предложен способ динамического определения и повторной коррекции параметров управления для врубовых машин, включающий следующие этапы:

А. получение данных:

во время работы приводной системы с постоянным магнитом малой дальности действия модуль сбора данных получает рабочие данные приводной системы с постоянным магнитом малой дальности действия в реальном времени и передает рабочие данные в модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, причем рабочие данные содержат параметр системы двигателя в реальном времени, заданный сигнал крутящего момента на выходе двигателя, сигнал обратной связи фактического крутящего момента на оконечной нагрузке, скорость двигателя, частоту зацепления зубчатой передачи и ускорение приводной системы;

B. определение данных:

модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия считывает данные, полученные модулем сбора данных; блок определения в реальном времени параметров системы двигателя, блок определения крутящего момента на оконечной нагрузке и блок определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия считывают и определяют параметры системы двигателя в реальном времени, заданный сигнал крутящего момента на выходе двигателя, сигнал обратной связи фактического крутящего момента на оконечной нагрузке, скорость двигателя, частоту зацепления зубчатой передачи и ускорение приводной системы соответственно, и вводят определенные данные в модуль повторной коррекции параметров управления соответственно;

C. повторную коррекцию параметров управления:

модуль повторной коррекции параметров управления выполняет сравнение и анализ данных, определенных модулем определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, с первоначально заданными параметрами управления, корректирует первоначально заданные параметры управления в соответствии с определенными данными, и затем вводит скорректированные параметры управления в главную систему управления;

D. регулировку работы приводной системы с постоянным магнитом малой дальности действия:

главная система управления контролирует и упорядочивает рабочие данные приводной системы с постоянным магнитом малой дальности действия в соответствии со скорректированными параметрами управления.

Кроме того, конкретные процессы определения, выполняемые блоком определения в реальном времени параметров системы двигателя, блоком определения крутящего момента на оконечной нагрузке и блоком определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия, являются следующими:

процесс определения, выполняемый блоком определения в реальном времени параметров системы двигателя, выполняют следующим образом: полученные рабочие данные приводной системы с постоянным магнитом малой дальности действия вычисляют и обрабатывают в соответствии с первоначальными определенными параметрами системы двигателя с последующей установкой интервала времени определения, равным 10 минут, для обеспечения блоку определения в реальном времени параметров системы двигателя возможности выполнения автоматического определения каждые 10 минут; причем конкретное определение заключается в использовании улучшенного рекурсивного алгоритма наименьших квадратов, введении формулы рекурсии P(k)=F-1(k) в улучшенный рекурсивный алгоритм наименьших квадратов, упрощении алгоритма квадратов по принципу матричной инверсии и, наконец, введении фактора исключения в диапазоне значений 0,95-0,99, таким образом, что параметры системы двигателя, полученные в предыдущий момент, обновляются в реальном времени, и затем полученный в каждый момент результат определения вводят в модуль повторной коррекции параметров управления;

процесс определения, выполняемый блоком определения крутящего момента на оконечной нагрузке, выполняют следующим образом: заданный сигнал крутящего момента на выходе двигателя и сигнал обратной связи фактического крутящего момента на оконечной нагрузке определяют из полученных рабочих данных приводной системы с постоянным магнитом малой дальности действия, причем конкретное определение заключается в том, что для эквивалентного моделирования используют система первого порядка и модель линии задержки путем считывания заданного сигнала крутящего момента на выходе двигателя и сигнала обратной связи крутящего момента на оконечной нагрузке, время задержки и постоянную времени системы первого порядка получают путем сравнения, и затем определенные данные вводят в модуль повторной коррекции параметров управления;

процесс определения, выполняемый блоком определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия, выполняют следующим образом: сигналы во временной области, в том числе скорость двигателя, частота зацепления зубчатой передачи и ускорение приводной системы, определяют и считывают из полученных рабочих данных приводной системы с постоянным магнитом малой дальности действия, сигналы во временной области преобразуют в сигналы частотного спектра для получения распределения плотности спектра мощности, и затем анализируют формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия и вводят в модуль повторной коррекции параметров управления.

Кроме того, конкретный процесс повторной коррекции параметров управления выполняют следующим образом: модуль повторной коррекции параметров управления выполняет сопоставление каждого из рабочих параметров в реальном времени, определенных модулем определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, с первоначально заданными параметрами управления; если какой-либо из рабочих параметров в реальном времени не соответствует соответствующему первоначально заданному параметру управления, повторно устанавливают модель повторной коррекции для параметров управления на основе рабочих параметров в реальном времени, и получают параметр управления в модели повторной коррекции, и наконец скорректированные параметры управления вводят в главную систему управления.


СИСТЕМА И СПОСОБ ДИНАМИЧЕСКОГО ОПРЕДЕЛЕНИЯ И КОРРЕКЦИИ ПАРАМЕТРОВ УПРАВЛЕНИЯ
СИСТЕМА И СПОСОБ ДИНАМИЧЕСКОГО ОПРЕДЕЛЕНИЯ И КОРРЕКЦИИ ПАРАМЕТРОВ УПРАВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 21-30 of 104 items.
25.08.2017
№217.015.b629

Способ управления вентильным реактивным электродвигателем с шаговым свободным ходом и без позиционного датчика

Изобретение относится к электротехнике, а именно к способу управления вентильным реактивным электродвигателем с шаговым свободным ходом и без позиционных датчиков. Способ предназначен для вентильного реактивного электродвигателя с двумя переключателями на каждую фазу. Когда верхний транзистор...
Тип: Изобретение
Номер охранного документа: 0002614524
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.ba21

Многоточечное уплотнительное устройство вспомогательного водомета высокого давления для механизма резки, используемого в горном оборудовании

Изобретение относится к механизму резки водомета высокого давления, используемого в горном оборудовании. Технический результат - уплотнение с длительным сроком и повышение эффективности вспомогательной резки водометом высокого давления. Многоточечное уплотнительное устройство вспомогательного...
Тип: Изобретение
Номер охранного документа: 0002615546
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bb4f

Устройство для контроля крутящего момента главного вала подъемной машины, основанное на измерении угла кручения

Заявленное изобретение относится к устройству для контроля крутящего момента главного вала подъемной машины, основанному на измерении угла кручения. Заявленное устройство для контроля крутящего момента главного вала подъемной машины содержит первое основание, второе основание, генераторный блок...
Тип: Изобретение
Номер охранного документа: 0002615793
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bca8

Ведущая система текущего контроля для зарядки суперконденсатора

Использование: в области электротехники. Технический результат – повышение эффективности работы системы и уменьшение нагрузки на сеть связи. Система текущего контроля для зарядки суперконденсатора содержит линию питания, подсистемы для текущего контроля мономерных суперконденсаторов и ведущую...
Тип: Изобретение
Номер охранного документа: 0002616186
Дата охранного документа: 13.04.2017
25.08.2017
№217.015.c092

Способ улучшенного извлечения горючего газа путем подземного двухфазного газожидкостного переменного, основанного на фазах, разрыва угольного массива в угольной шахте

Изобретение относится к способу улучшения извлечения газа путем подземного двухфазного газожидкостного переменного, основанного на фазах, разрыва угольного массива в угольной шахте. В угольном пласте или проницаемом слое сооружают разрываемый ствол скважины и водонаправляющий ствол и уплотняют...
Тип: Изобретение
Номер охранного документа: 0002616635
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.cb9f

Выполненная на основе решетки волоконно-оптическая система текущего контроля и измерения температуры и соответствующий способ для выработанного пространства действующего забоя при добыче угля в угольной шахте

Изобретение относится к области термометрии и может быть использовано для измерения температуры для выработанного пространства действующего забоя при добыче угля в угольной шахте. Предложена, выполненная на основе решетки, волоконно-оптическая система текущего контроля и измерения...
Тип: Изобретение
Номер охранного документа: 0002620324
Дата охранного документа: 24.05.2017
25.08.2017
№217.015.cc7b

Устройство для создания текучей твердеющей пены для предотвращения и тушения пожара в угольной шахте

Раскрыто устройство для создания текучей твердеющей пены для предотвращения и тушения пожара в угольной шахте, содержащее основную агрегатную машину, автоматически пополняемый резервуар для хранения жидкости, систему перемешивания раствора, инжекционный пистолет и соответствующую систему...
Тип: Изобретение
Номер охранного документа: 0002620335
Дата охранного документа: 24.05.2017
26.08.2017
№217.015.d8df

Комплексная система текущего контроля для обеспечения безопасности в подземных угольных шахтах с использованием выполненных на основе решетки волоконно-оптических датчиков

Комплексная система текущего контроля для обеспечения безопасности в подземных угольных шахтах с использованием выполненных на основе решетки волоконно-оптических датчиков, содержащая надземную часть и подземную часть. Надземная часть содержит выполненный на основе решетки волоконно-оптический...
Тип: Изобретение
Номер охранного документа: 0002623392
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.d958

Интегрированная бурильная установка для бурения с водоотведением для анкера подошвы выработки

Изобретение относится к оборудованию для горных разработок. Устройство содержит цилиндр (7) наддувочного воздуха, двигатель (8), рычаг (9) управления, регулятор (11) крутящего момента и глушитель (12). Передний конец двигателя (8) соединен с механизмом (17) оптимальной циркуляции воды с помощью...
Тип: Изобретение
Номер охранного документа: 0002623399
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e7b3

Устройство и способ водоотлива для трещиноватых подстилающих слоев

Изобретение относится к устройству и способу водоотлива из трещиноватых подстилающих слоев. Техническим результатом является упрощение конструкции и применения. Устройство водоотлива из трещиноватых подстилающих слоев содержит водоотливную трубу, выполненную из бесшовных труб из нержавеющей...
Тип: Изобретение
Номер охранного документа: 0002627054
Дата охранного документа: 03.08.2017
Showing 11-13 of 13 items.
16.05.2023
№223.018.615f

Способ и устройство для выплавки меди с комплексной переработкой шлака

Группа изобретений относится к пирометаллургии, в частности к выплавке меди с комплексной переработкой шлака. В способе использована печь полной переработки (ПП). Печь ПП (30) включает полость, в которой расположены сообщающиеся друг с другом восстановительная испарительная камера (31) и...
Тип: Изобретение
Номер охранного документа: 0002741038
Дата охранного документа: 22.01.2021
06.06.2023
№223.018.7826

Механическая муфта дождевальной машины барабанного типа и способ ее применения

Изобретение относится к муфтам. Механическая муфта дождевальной машины барабанного типа содержит выходной вал (1) понижающей передачи, втулку (3) с наружными шлицами, фланец (4) с внутренними шлицами, подшипник (5), выходной фланец (6), стопорное кольцо (9), устройство (10) в виде рычага...
Тип: Изобретение
Номер охранного документа: 0002731047
Дата охранного документа: 28.08.2020
17.06.2023
№223.018.8042

Система идентификации сеток географической области на карте

Настоящее техническое решение относится к области вычислительной техники для навигации. Технический результат заключается в повышении скорости идентификации сетки географической области на карте текущего пользователя с получением доступа к информации, относящейся к данной сетке. Технический...
Тип: Изобретение
Номер охранного документа: 0002762785
Дата охранного документа: 22.12.2021
+ добавить свой РИД