×
07.06.2020
220.018.24fe

Результат интеллектуальной деятельности: Стенд для измерения аэродинамических характеристик модели отсека крыла

Вид РИД

Изобретение

Аннотация: Изобретение относится к области экспериментальной аэродинамики и может быть использовано для измерений аэродинамических характеристик моделей отсеков крыльев, преимущественно, при дозвуковых скоростях. Стенд включает аэродинамическую трубу с открытой рабочей частью, подвеску для крепления модели к аэродинамическим весам и плоские концевые шайбы, расположенные у торцов модели параллельно оси рабочей части аэродинамической трубы и перпендикулярно размаху модели отсека крыла, при этом плоские концевые шайбы выполнены с вертикальными, параллельными боковыми кромками, имеющими размеры, выходящие за границы потока в рабочей части аэродинамической трубы, концевые шайбы установлены в креплениях, находящихся вне потока, и с зазорами с торцами модели отсека крыла, причем величина зазора не превышает 0,5% хорды модели отсека крыла. Плоские концевые шайбы выполнены с шириной не менее 3-х хорд исследуемой модели отсека крыла. Технический результат заключается в повышении равномерности потока при обтекании моделей отсеков крыла и повышении точности и достоверности результатов. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для измерений аэродинамических характеристик моделей отсеков крыла, преимущественно, при дозвуковых скоростях.

Несущие свойства и сопротивление крыльев летательных аппаратов в значительной степени зависят от аэродинамических характеристик профилей с убранной и отклоненной механизацией, установленных в сечениях крыла.

Несмотря на значительный прогресс в развитии численных методов вычислительной аэродинамики существуют такие режимы обтекания профилей, как отрыв потока на больших углах атаки, образование ламинарных «баблов» (пузырей) с разной протяженностью зоны отрыва потока, характеристики которых трудно точно предсказать. Особый интерес, где могут быть востребованы экспериментальные результаты, представляют разработки современных профилей для беспилотных летательных аппаратов и ветровых турбин, конструктивно отличающихся от обычных авиационных профилей и работающих в широком диапазоне значений подъемной силы. В то же время, разработка профилей для крыльев беспилотных летательных аппаратов ставит задачу обеспечения высоких значений подъемной силы при малых числах Рейнольдса.

Для измерения аэродинамических характеристик профилей и профилей с механизацией, а также выбора их наилучших геометрических параметров используются специальные стенды и модели аэродинамических профилей, выполненные в виде отсеков крыла. Данные стенды и модели отсеков крыла позволяют проводить более тщательный выбор наилучших вариантов аэродинамических профилей и взлетно-посадочной механизации крыльев летательных аппаратов, преимущественно, при дозвуковых скоростях. Модели отсеков крыла выполняют в виде прямоугольных крыльев с относительным удлинением λ≈3-5 и одинаковой по размаху модели формой поперечного сечения, соответствующего исследуемому сечению крыла летательного аппарата. Для обеспечения обтекания модели отсека крыла плоским потоком с постоянной величиной и направлением потока вдоль размаха модели отсека крыла, на боковых торцах модели отсека крыла закрепляют плоские концевые панели (так же, называемыми в литературе, концевыми шайбами). Концевые панели препятствуют образованию вихрей у торцов модели, которые создают неравномерность величины скорости и направления потока вдоль размаха модели отсека крыла и несоответствие плоскому обтеканию аэродинамического профиля крыла. Установка на торцах отсека крыла концевых панелей позволяет в некоторой степени обеспечить равномерность величины и направления потока вдоль размаха модели отсека крыла.

В отличие от исследований на обычных моделях крыльев, исследования на моделях отсеков крыльев дают возможность получения более точных значений аэродинамических характеристик профилей и выбирать их наилучшие параметры для улучшения обтекания отдельных сечений крыла, а также получать результаты при больших значениях чисел Рейнольдса (Re) за счет большей хорды моделей отсеков крыльев.

Известен стенд для измерения аэродинамических характеристик моделей отсеков крыла, включающий аэродинамическую трубу с закрытой рабочей частью, подвеску для крепления моделей отсеков крыла к аэродинамическим весам и плоские концевые шайбы дискообразной формы, прикрепляемые вертикально к боковым торцам моделей отсеков крыльев и параллельно оси рабочей части аэродинамической трубы, (см. например, Liu, X., Kamliya Jawahar, Н., Azarpeyvand, М., & Theunissen, R. (2015), Aerodynamic and Aeroacoustic Performance of Serrated Airfoils. In 21st. AIAA/CEAS Aeroacoustics Conference [AIAA 2015-2201]).

Недостаток описанного выше стенда, состоит в том, что закрытая рабочая часть аэродинамической трубы (с жесткими стенками) не обеспечивает достаточное соответствие обтекания моделей отсеков крыла с механизацией в трубе обтеканию в условиях безграничного потока.

Известен также стенд для измерения аэродинамических характеристик моделей отсеков крыла (см. Peter Fuglsang, Ioannis Antoniou, Niels N. Serensen, Helge Aa. Madsen, Validation of a Wind Tunnel Testing Facility for Blade Surface Pressure Measurements, Rise National Laboratory, Roskilde April 1998), включающий аэродинамическую трубу с открытой рабочей частью, подвеску для крепления моделей отсеков крыла и плоские концевые шайбы прямоугольной формы с высотой (Н) по отношению к размаху крыла (L), равной H/L≈0.33, закрепляемые вертикально к боковым торцам моделей отсеков крыла, параллельно оси рабочей части аэродинамической трубы. В данном стенде аэродинамические характеристики модели профиля определяются путем проведения измерений распределения давления в центральном сечении отсека крыла и измерений потери импульса в следе за моделью с помощью специальной гребенки с приемниками статического и полного давлений.

Недостаток описанного выше стенда, состоит в том, что измерения характеристик сечений крыла, путем проведения измерений распределения давления в центральном сечении отсека крыла и потери импульса в следе модели с помощью специальной гребенки с приемниками статического и полного давлений дают, достоверные результаты только на режимах обтекания модели без отрыва потока и не дают правильных результатов на режимах обтекания с отрывом потока. Наиболее достоверные аэродинамические характеристики на всех режимах обтекания получаются при измерениях аэродинамических характеристик с помощью аэродинамических весов.

Прототипом заявляемого изобретения является стенд, включающий аэродинамическую трубу с открытой рабочей частью, подвеску для крепления модели к аэродинамическим весам и плоские концевые шайбы, расположенные у торцов модели вертикально и параллельно оси рабочей части аэродинамической трубы (см. Михайлов Ю.С., Степанов Ю.Г. Экспериментальное исследование выдвижного закрылка на крыловом профиле умеренной толщины Труды ЦАГИ, выпуск 1897, 1978, Издательский отдел ЦАГИ, г. Москва, титульный лист источника и фиг. прототипа приведены в Приложении к заявке).

В стенде-прототипе для крепления моделей отсеков крыльев 1 в открытой рабочей части 2 аэродинамической трубы и измерения аэродинамических характеристик моделей отсеков крыльев используют подвеску 3, выполненную в виде металлических лент, прикрепляемых к модели и аэродинамическим весам 4 (Фиг. 1 Приложения к заявке). Для обеспечения обтекания модели отсека крыла потоком с постоянной величиной и направлением потока вдоль размаха модели на боковых торцах модели отсека крыла закрепляют плоские вертикальные концевые шайбы 5. Для уменьшения аэродинамических нагрузок, действующих на концевые шайбы и передающихся на модель отсека крыла, концевые шайбы треугольной формы выполняют с ограниченными размерами, не превышающими по высоте 1-2 хорды модели отсека крыла и не превышающими по ширине 2-3 хорды модели отсека крыла, и не выступающими за границы потока в рабочей части аэродинамической трубы.

Основной недостаток приведенных аналогов и прототипа изобретения состоит в том, что плоские концевые шайбы, закрепляемые на боковых торцах модели отсека крыла и не выступающие за границы потока в рабочей части аэродинамической трубы, не обеспечивают достаточную степень равномерности потока вдоль размаха модели отсека крыла, что приводит к погрешности, получаемых значений аэродинамических характеристик, до 20-30%. Увеличение размеров плоских концевых шайб улучшает равномерность обтекания моделей отсеков, но приводит к увеличению аэродинамических сил, действующих на концевые шайбы, которые передаются на модель отсека крыла, что приводит к необходимости проведения дополнительных измерений нагрузок на концевые шайбы и дополнительным погрешностям результатов измерений аэродинамических характеристик модели.

Задачей и техническим результатом заявляемого изобретения является создание стенда, позволяющего повысить точность измерения аэродинамических характеристик модели отсека крыла.

Решение задачи и технический результат достигаются тем, что в стенде для измерения аэродинамических характеристик модели отсека крыла, включающем аэродинамическую трубу с открытой рабочей частью, подвеску для крепления модели к аэродинамическим весам и плоские концевые шайбы, расположенные у торцов модели вертикально и параллельно оси рабочей части аэродинамической трубы, плоские концевые шайбы выполнены с вертикальными, параллельными боковыми кромками, имеющими размеры выходящие за границы потока в рабочей части аэродинамической трубы, при этом, концевые шайбы установлены в креплениях, находящихся вне потока, и с зазорами с торцами модели отсека крыла, величина зазора между плоскими концевыми шайбами и торцами модели не превышает 0,5% хорды модели отсека крыла, а плоские концевые шайбы выполнены с шириной не менее 3-х хорд исследуемой модели отсека крыла.

Сущность заявляемого изобретения состоит в том, что для повышения точности измерения аэродинамических характеристик модели отсека крыла в заявляемом стенде обеспечивают максимально высокую равномерность потока вдоль размаха модели отсека крыла, главным образом, за счет плоских концевых шайб выполненных с вертикальными, параллельными боковыми кромками с высотой большей вертикального размера потока в рабочей части аэродинамической трубы. Ширина концевых шайб увеличивается до не менее 3-х хорд модели отсека крыла. Дополнительно, для повышения точности измерения аэродинамических характеристик модели отсека крыла, за счет ликвидации воздействия на модель отсека крыла аэродинамических нагрузок, действующих на концевые шайбы, они установлены с зазорами с торцами модели отсека крыла, в креплениях, находящихся вне потока. При этом, величина зазора между плоскими концевыми шайбами и торцами модели не превышает 0,5% хорды модели отсека крыла.

На фиг. 1а представлена схема заявленного стенда с установленной моделью отсека крыла - вид спереди (в направлении потока).

На фиг. 1б представлена увеличенная схема области между торцом модели отсека крыла и концевой шайбой.

На фиг. 2 представлена схема заявленного стенда с установленной моделью отсека крыла - вид сбоку от плоскости симметрии аэродинамической трубы.

Заявленный стенд для измерения аэродинамических характеристик модели отсека крыла (фиг. 1а), включает аэродинамическую трубу с открытой рабочей частью 1, подвеску 2 для крепления модели отсека крыла 3. Подвеска 2 предназначена для установки модели отсека крыла в рабочей части аэродинамической трубы под необходимыми углами атаки и передачи аэродинамических сил, действующих на модель, к аэродинамическим весам 4. Подвеска может быть выполнена, например, в виде тонких профилированных металлических лент.

Модель отсека крыла 3 для измерения характеристик аэродинамических профилей имеет прямоугольную форму в плане и поперечным сечением по форме исследуемого аэродинамического профиля.

У торцов 3а модели отсека крыла 3 (фиг. 1б) установлены плоские концевые шайбы 5. Плоские концевые шайбы выполнены с вертикальными, параллельными боковыми кромками 6 (фиг. 2), имеющими размеры, выходящие за границы потока 7 в рабочей части аэродинамической трубы. Ширина концевых шайб 8 составляет не менее 3-х хорд исследуемой модели отсека крыла. При этом, концевые шайбы установлены в креплениях 9, находящихся вне потока, и с зазорами 10 (фиг 1б) с торцами модели отсека крыла. Величина зазора между плоскими концевыми шайбами и торцами модели не превышает 0,5% хорды модели отсека крыла. Проведенные исследования показали, что заявляемая ширина зазора достаточна для обеспечения плоского обтекания модели отсека крыла.

Исследования заявляемого стенда для измерений аэродинамических характеристик отсеков крыла показали, что новый стенд обеспечивает существенное повышение равномерности потока при обтекании моделей отсеков крыла и дает возможность повысить точность и достоверность получаемых результатов по сравнению с измерениями на стенде прототипе.

Источник поступления информации: Роспатент

Showing 221-230 of 255 items.
01.12.2019
№219.017.e91e

Модель воздухозаборника двухконтурного двигателя летательного аппарата

Изобретение относится к области авиации, к аэродинамическим испытаниям моделей воздухозаборников двухконтурных турбореактивных двигателей (ТРДД), в частности, для исследований, например, условий вихреобразования и попадания посторонних частиц в воздухозаборник двигателя летательного аппарата на...
Тип: Изобретение
Номер охранного документа: 0002707588
Дата охранного документа: 28.11.2019
01.12.2019
№219.017.e990

Способ генерации звука для испытаний конструкций и устройство для его реализации

Изобретение относится к области испытательной техники, в частности, к технической акустике. Способ генерации звука основан на модулировании потока сжатого воздуха, дросселируемого через клапанный узел с изменяемой собственной частотой колебаний, состоящий из коаксиально расположенных...
Тип: Изобретение
Номер охранного документа: 0002707587
Дата охранного документа: 28.11.2019
20.02.2020
№220.018.0411

Воздухозаборник самолета

Изобретение относится к воздухозаборникам двигателей летательных аппаратов. Воздухозаборник самолета содержит криволинейный воздушный канал (1). По ширине канала (1) вдоль его центральной линии, как минимум в месте изгиба канала (1) установлена пластина (5). Пластина (5) установлена по длине...
Тип: Изобретение
Номер охранного документа: 0002714555
Дата охранного документа: 18.02.2020
20.02.2020
№220.018.0413

Устройство для определения аэродинамических характеристик планирующего парашюта в аэродинамической трубе

Изобретение относится к авиационной технике и предназначено для измерения аэродинамических нагрузок, действующих на планирующий парашют (ПП) в воздушном потоке аэродинамической трубы (АДТ) при различных углах атаки и скольжения. Устройство содержит основание, установленную на нем платформу,...
Тип: Изобретение
Номер охранного документа: 0002714529
Дата охранного документа: 18.02.2020
29.02.2020
№220.018.07a2

Способ определения парциальных частот управляемой поверхности летательного аппарата и устройство для его осуществления

Изобретение относится к области авиационной или ракетной техники, а именно к измерению необходимых при исследовании флаттера частотных характеристик (парциальных частот) управляемой поверхности (УП) летательного аппарата (ЛА). Предлагается способ, в котором закрепляют в пространстве летательный...
Тип: Изобретение
Номер охранного документа: 0002715369
Дата охранного документа: 26.02.2020
06.03.2020
№220.018.09cc

Способ охлаждения воздуха в теплообменном аппарате и теплообменный аппарат

Изобретение относится к холодильной технике, а именно к контактным газожидкостным теплообменным аппаратам. В способе охлаждения воздуха в теплообменном аппарате, в котором осуществляют подачу воздуха тангенциально в нижнюю часть теплообменного аппарата с образованием восходящего вихревого...
Тип: Изобретение
Номер охранного документа: 0002715944
Дата охранного документа: 04.03.2020
15.03.2020
№220.018.0c39

Импульсный резонаторный эжектор

Изобретение относится к струйной технике, а конкретно к газовым эжекторам. Эжектор содержит подводной канал, камеру смешения, полость разрежения со щелью, соединяющей ее с областью отбора газа, выходной диффузор и установленные между подводным каналом и камерой смешения полость и резонаторную...
Тип: Изобретение
Номер охранного документа: 0002716650
Дата охранного документа: 13.03.2020
21.03.2020
№220.018.0e13

Многослойная авиационная панель

Изобретение относится к области авиационной техники и касается силовых авиационных конструкций из полимерных однонаправленных композиционных материалов, в частности силовых конструкций гермопанелей с малой кривизной фюзеляжа гражданского самолета. Предлагаемая многослойная панель содержит...
Тип: Изобретение
Номер охранного документа: 0002717267
Дата охранного документа: 19.03.2020
25.03.2020
№220.018.0f39

Крыло летательного аппарата

Изобретение относится к авиационной технике и может быть использовано при проектировании крыльев дозвуковых самолетов различного назначения. Крыло летательного аппарата состоит из центроплана и консоли, выполнено с удлинением λ=7÷12, стреловидностью χ=10÷35° и содержит сверхкритические профили....
Тип: Изобретение
Номер охранного документа: 0002717416
Дата охранного документа: 23.03.2020
25.03.2020
№220.018.0fc2

Крыло летательного аппарата

Изобретение относится к авиационной технике. Крыло летательного аппарата состоит из центроплана и консоли, выполнено с удлинением λ=9÷12, стреловидностью χ=10÷35°. Крыло летательного аппарата при виде сверху в области от 0 до 33% размаха крыла выполнено с наплывом, в области от 27 до 35%...
Тип: Изобретение
Номер охранного документа: 0002717412
Дата охранного документа: 23.03.2020
Showing 11-11 of 11 items.
22.04.2023
№223.018.5152

Сверхзвуковой самолет

Изобретение относится к авиационной технике, в частности, к конструкциям самолетов со сверхзвуковой скоростью полета. Сверхзвуковой самолет включает крыло, на участках нижней поверхности которого, обтекаемых потоком со сверхзвуковой скоростью, выполнены протяженные углубления или выпуклости,...
Тип: Изобретение
Номер охранного документа: 0002794307
Дата охранного документа: 14.04.2023
+ добавить свой РИД