×
07.06.2020
220.018.24ca

Результат интеллектуальной деятельности: СПОСОБ СТАБИЛИЗАЦИИ ЭНЕРГЕТИЧЕСКОЙ ШКАЛЫ ПРИ ОПРЕДЕЛЕНИИ ОБЪЕМНОЙ ПЛОТНОСТИ И ЭФФЕКТИВНОГО АТОМНОГО НОМЕРА ГОРНЫХ ПОРОД МЕТОДОМ ГГК-ЛП

Вид РИД

Изобретение

№ охранного документа
0002722863
Дата охранного документа
04.06.2020
Аннотация: Использование: для стабилизации тракта регистрации гамма-излучения. Сущность изобретения заключается в том, что при стабилизации энергетической шкалы в процессе определения объемной плотности и эффективного атомного номера горных пород методом ГГК-ЛП сцинтилляционный детектор гамма-квантов окружают спрессованным порошком BaSO плотностью 0.1÷0.5 г/см, напротив коллиматора плотность порошка BaSO меньше и составляет, например, 0.05÷0.10 г/см. Часть гамма-излучения, проходящего через коллимационное окно, будет взаимодействовать с барием, находящимся в порошке BaSO, окружающий детектор. Энергия характеристического излучения бария составляет 32 кэВ. Вследствие этого дополнительно к пику в области 32 кэВ, постоянно присутствующему в регистрируемом спектре, добавляется пик с такой же энергией, интенсивность которого пропорциональна интенсивности гамма квантов в низкоэнергетической области. Это позволяет получать при проведении измерений отчетливый пик в области 32 кэВ для стабилизации энергетической шкалы независимо от интенсивности гамма-излучения, проходящего через коллимационное окно. Технический результат: повышение качества стабилизации энергетической шкалы спектрометра независимо от мощности источников гамма-излучения для облучения горных пород и при исследовании пород с низким эффективным атомным номером, что, в свою очередь, повышает точность определения эффективного атомного номера горных пород. 6 ил.

Изобретение относится к радиоизотопным устройствам, предназначенным для контроля технологических параметров производственных процессов, а конкретно, к способам стабилизации тракта регистрации гамма-излучения.

Известен способ стабилизации чувствительности сцинтилляционного блока детектирования гамма-излучения [1], при котором определяют амплитудный спектр поступающего от спектрометрического блока сигнала, вычисляют интегральные значения скоростей счета в окнах спектра, находят на спектре действительное местоположение реперной точки, измеряют его отклонение от требуемого положения и вырабатывают сигнал коррекции чувствительности в зависимости от полученной величины и знака отклонения, при этом требуемое положение репера выбирают на спектре в точке, соответствующей максимальной энергии гамма-квантов, испускаемых в цепочках распада природных радионуклидов. Технический результат - повышение устойчивости стабилизации, использование способа для сцинтилляционных блоков детектирования, упрощение конструкции устройства. Недостаток - отсутствие реперного сигнала в низкоэнергетической области спектра гамма-излучения и, соответственно, высокая погрешность определения границ интегрирования в них.

Известен способ определения объемной плотности и индекса фотоэлектрического поглощения горных пород [2], заключающийся в регистрации спектров рассеянного гамма-излучения на двух расстояниях от источника гамма-квантов, с последующей привязкой энергетических шкал зарегистрированных спектров, определении значений средних скоростей следования импульсов в выбранных энергетических окнах, расчете значений плотности и индекса фотоэлектрического поглощения горных пород с последующей коррекцией полученных значений путем ввода поправок. Стабилизация энергетических шкал спектров в этом способе осуществляется по двум присутствующим в спектрах пикам: пику с энергией 662 кэВ от изотопа Cs-137, размещенному вблизи детектора, и пику характеристического гамма-излучения материала коллиматоров, изготовленных, например, из вольфрама с энергией 59 кэв. Недостатком данного способа является следующее. Энергетические окна для определения индекса фотоэлектрического поглощения горных пород расположены в областях 42÷92 кэВ и 150÷450 кэВ. При фотоэлектрическом поглощении гамма-кванта электроном К-уровня вольфрама с энергией связи Есвязи=69,5 кэВ [3], вакансия заполняется электроном из L-уровня с Есвязи=10,2 кэВ. Характеристический рентгеновский фотон обладает энергией, равной разности между этими двумя уровнями, или 59,3 кэВ. Максимальные сечения фотоэлектрического поглощения гамма-кванта электроном К-уровня на вольфраме расположены в областях энергий 69÷120 кэВ. Таким образом, при описываемом способе формирования реперного пика по характеристическому излучению вольфрама происходит конвертирование гамма-квантов с энергией более 92 кэВ в область 42÷92 кэВ, что снижает точность проводимых измерений. Так же геометрический фактор расположения материала коллиматоров не позволяет получить данный реперный пик достаточно отчетливо.

На Фиг. 1 показан типичный спектр рассеянного гамма-излучения от горных пород с пиком характеристического излучения от вольфрама, из которого выполнен коллиматор. Очевидно, что интенсивность данного пика невысокая.

Наиболее близким к заявляемому способу является способ [4], при котором стабилизация энергетической шкалы спектрометра ГГК-ЛП осуществляется по двум присутствующим в спектре пикам от изотопа Cs-137.

На Фиг. 2 приведена упрощенная схема распада изотопа Cs-137, имеющего период полураспада 30.17 лет. В результате распада Cs-137 образуется его дочерний радионуклид Ва-137, который также радиоактивен и имеет период полураспада 2.55 мин. Именно изотоп Ва-137 и испускает при распаде гамма-кванты с энергией 661.6 кэВ.

На Фиг. 3 приведен характерный спектр гамма-излучения, зарегистрированный сцинтилляционным детектором NaI(TI) при его прямом облучении продуктами распада изотопа Cs-137.

Хорошо прослеживаются два пика полного поглощения: 662 кэВ и 32 кэВ (пик с энергией 32 кэВ, образующийся в результате рентгеновского излучения изотопов Ва, образующихся при распаде Cs-137). По этим двум пикам проводится стабилизация энергетической шкалы спектрометра. На практике изотоп Cs-137 интенсивностью порядка 2÷6 кБк помещают непосредственно внутри сцинтилляционного детектора. Это позволяет проводить идентификацию энергетической шкалы спектрометра по двум реперным пикам. Недостаток данного способа - «размытие» реперного пика с энергией 32 кэВ при высоких загрузках спектрометрического тракта. Высокие загрузки возникают как при использовании мощных источников гамма-излучения для облучения горных пород, так и при исследовании пород с низким эффективным атомным номером. Увеличение интенсивности изотопа Cs-137, используемого в качестве реперного источника, позволяет решить проблему размывания пика, но, с другой стороны, повышает уровень фона в измерительных окнах, что так же отрицательно сказывается на точности проводимых измерений.

На Фиг. 4 приведен такой пример «размывания» реперного пика с энергией 32 кэВ.

Заявляемое техническое решение позволяет повысить качество стабилизации энергетической шкалы спектрометра независимо от мощности источников гамма-излучения для облучения горных пород и при исследовании пород с низким эффективным атомным номером. Это, в свою очередь, повысит точность определения эффективного атомного номера горных пород.

Указанный технический результат достигается за счет того, что в способе стабилизации энергетической шкалы при определении объемной плотности и эффективного атомного номера горных пород методом ГГК-ЛП сцинтилляционный детектор гамма-квантов окружают спрессованным порошком BaSO4 плотностью 0.1÷0.5 г/см2, напротив коллиматора плотность порошка ВаSO4 меньше и составляет, например, 0.05÷0.10 г/см2. На Фиг. 5 показан вариант расположения порошка ВаSO4 в измерительной установке зонда ГГК-ЛП прибора 2HHK- ГГКЛП-LWD. Здесь цифрами обозначены: 1 - корпус прибора, 2 - вольфрамовый экран, 3 - источник Cs-137, 4 - коллимационные окна в вольфрамовом экране, 5 - ФЭУ, 6 - сцинтилляционные детекторы, 7 - пробка, 8 - порошок ВаSO4. Спектр рассеянного гамма-излучения регистрируется на среднем зонде.

Таким образом, часть гамма-излучения, проходящего через коллимационное окно, будет взаимодействовать с барием, находящимся в порошке ВаSO4, окружающий детектор. Энергия характеристического излучения бария составляет 32 кэВ. Вследствие этого дополнительно к пику в области 32 кэВ, постоянно присутствующему в регистрируемом спектре, добавляется пик с такой же энергией, интенсивность которого пропорциональна интенсивности гамма квантов в низкоэнергетической области. Это позволяет получать при проведении измерений отчетливый пик в области 32 кэВ для стабилизации энергетической шкалы независимо от интенсивности гамма-излучения, проходящего через коллимационное окно. На Фиг. 6 приведен спектр рассеянного гамма-излучения, проходящего через коллимационное окно, смешанный с реперным спектром от изотопа Cs-137.

Литература

1. Патент РФ №2364892 С1, Способ стабилизации чувствительности сцинтилляционного блока детектирования гамма-излучения, 2008.

2. Development of a spectral limo-density810 logging tool by use of empirical methods, A. Gearhart, Gary L. Mathis. Gearhart Industries, Inc. Fort Worth, Texas, SPWLA 27 Annual Logging Symposium, June 9-13, 1996.

3. Филиппов E.M. Ядерная разведка полезных ископаемых. Справочник. Киев. Наукова думка. 1978. С. 588.

4. ИНСТРУКЦИЯ по проведению литолого-плотностного гамма-гамма-каротажа аппаратурой серии СГПЛ и обработке результатов измерений МИ 41-17-1402-04. Тверь. ООО «Издательство ГЕРС». 2004. С. 44.

Способ стабилизации энергетической шкалы при определении объемной плотности и эффективного атомного номера горных пород методом ГГК-ЛП, заключающийся в регистрации спектров рассеянного гамма-излучения на одном или нескольких расстояниях от источника гамма-квантов, с последующей привязкой энергетических шкал зарегистрированных спектров, причем стабилизация энергетических шкал спектров осуществляется по двум присутствующим в спектрах пикам: пику с энергией 662 кэВ от изотопа Cs-137 и пику с энергией 32 кэВ, образующегося в результате рентгеновского излучения изотопов Ва, образующихся при распаде Cs-137, при этом реперный источник Cs-137 размещен в непосредственной близости или внутри сцинтилляционного детектора, отличающийся тем, что с целью исключения эффекта «размытия» пика с энергией 32 кэВ и увеличения его интенсивности детектор окружают порошком BaSO плотностью 0.1÷0.5 г/см, напротив коллиматора плотность порошка BaSO меньше и составляет, например, 0.05÷0.10 г/см, благодаря этому часть гамма-излучения, проходящего через коллимационное окно, взаимодействует с барием, находящимся в порошке BaSO, и возникающее при этом характеристическое излучения бария с энергией 32 кэВ увеличивает интенсивность реперного пика пропорционально интегральной загрузке сцинтилляционного детектора в низкоэнергетической области.
Источник поступления информации: Роспатент

Showing 1-5 of 5 items.
20.07.2014
№216.012.e280

Способ импульсного нейтронного каротажа и устройство для его осуществления

Использование: для определения текущей нефтенасыщенности пластов-коллекторов, пересеченных скважиной. Сущность изобретения заключается в том, что согласно способу выполняют периодическое облучение горных пород импульсами генератора быстрых нейтронов, регистрацию гамма-излучения неупругого...
Тип: Изобретение
Номер охранного документа: 0002523770
Дата охранного документа: 20.07.2014
12.01.2017
№217.015.63cf

Устройство для гамма-гамма каротажа, доставляемое в интервал исследования на буровом инструменте

Изобретение относится к ядерной геофизике, а более конкретно к области ядерно-физических определений плотности горных пород, пересекаемых буровой скважиной, приборами, доставляемыми в интервал проведения исследований на буровом инструменте. Устройство для проведения радиоактивного каротажа с...
Тип: Изобретение
Номер охранного документа: 0002589372
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.a573

Устройство определения плотности горных пород, пересекаемых буровой скважиной

Использование: для определения плотности горных пород. Сущность изобретения заключается в том, что устройство определения плотности горных пород, пересекаемых буровой скважиной, содержит корпус прибора, в котором установлены блок привода и электроники и шарнирно связанный с ним зондовый...
Тип: Изобретение
Номер охранного документа: 0002607740
Дата охранного документа: 10.01.2017
13.02.2019
№219.016.b955

Устройство определения плотности горных пород, пересекаемых буровой скважиной

Изобретение относится к скважинной геофизике, а более конкретно к области измерений, проводимых в скважине выносным из корпуса скважинного геофизического прибора зондом, прижимаемым специальным силовым устройством к стенке скважины. Техническим результатом является повышение надежности и...
Тип: Изобретение
Номер охранного документа: 0002679466
Дата охранного документа: 11.02.2019
20.03.2019
№219.016.e866

Газонаполненная нейтронная трубка

Изобретение относится к отпаянным нейтронным трубкам и может быть использовано в генераторах нейтронов для проведения неразрушающего элементного анализа вещества и проведения исследований нейтронно-радиационными методами, в т.ч. для проведения геофизических исследований нефтегазовых скважин....
Тип: Изобретение
Номер охранного документа: 0002451433
Дата охранного документа: 20.05.2012
Showing 1-10 of 13 items.
20.05.2013
№216.012.413c

Способ определения ориентации скважинного прибора в буровой скважине

Изобретение относится к геофизическим исследованиям скважин, проводимым как при бурении, так и при эксплуатации нефтегазовых скважин. Техническим результатом является расширение диапазона применения скважинного прибора при вычислении его ориентации по сторонам света при использовании внутри...
Тип: Изобретение
Номер охранного документа: 0002482270
Дата охранного документа: 20.05.2013
20.07.2014
№216.012.e280

Способ импульсного нейтронного каротажа и устройство для его осуществления

Использование: для определения текущей нефтенасыщенности пластов-коллекторов, пересеченных скважиной. Сущность изобретения заключается в том, что согласно способу выполняют периодическое облучение горных пород импульсами генератора быстрых нейтронов, регистрацию гамма-излучения неупругого...
Тип: Изобретение
Номер охранного документа: 0002523770
Дата охранного документа: 20.07.2014
10.07.2015
№216.013.5cd0

Способ регулирования параметров катодной защиты сложноразветвленных подземных трубопроводов

Изобретение относится к области защиты подземных трубопроводов от коррозии и может быть использовано для защиты трубопроводов, проложенных на территории компрессорных и насосных станций. Способ включает определение коэффициента влияния каждой станции катодной защиты (СКЗ) на потенциал в...
Тип: Изобретение
Номер охранного документа: 0002555301
Дата охранного документа: 10.07.2015
27.05.2016
№216.015.41e2

Автоматизированная технологическая установка для изготовления суппозиторной массы

Изобретение относится к химическим процессам и оборудованию, такому как смесительные установки, и предназначено для осуществления технологического процесса изготовления суппозиторной массы. Установка для изготовления суппозиторной массы содержит по меньшей мере один реактор с мешалкой и водяным...
Тип: Изобретение
Номер охранного документа: 0002585632
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.4491

Водная композиция для инстилляций в мочевой пузырь

Изобретение относится к фармацевтической промышленности. Описана водная композиция для инстилляции в мочевой пузырь на основе гиалуроновой кислоты и хондроитина сульфата. Композиция также содержит маннит или сорбит в соотношении к сумме гиалуроновой кислоты и хондроитина сульфата, равном...
Тип: Изобретение
Номер охранного документа: 0002586285
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.46f2

Способ изготовления суппозиторной массы в автоматизированной смесительной установке

Изобретение относится к химическим процессам и оборудованию, такому как смесительные установки, и предназначено для осуществления технологического процесса изготовления суппозиторной массы, включая процесс очистки. Способ включает загрузку измельченного твердого жирового сырья в реактор для...
Тип: Изобретение
Номер охранного документа: 0002586555
Дата охранного документа: 10.06.2016
12.01.2017
№217.015.63cf

Устройство для гамма-гамма каротажа, доставляемое в интервал исследования на буровом инструменте

Изобретение относится к ядерной геофизике, а более конкретно к области ядерно-физических определений плотности горных пород, пересекаемых буровой скважиной, приборами, доставляемыми в интервал проведения исследований на буровом инструменте. Устройство для проведения радиоактивного каротажа с...
Тип: Изобретение
Номер охранного документа: 0002589372
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.a573

Устройство определения плотности горных пород, пересекаемых буровой скважиной

Использование: для определения плотности горных пород. Сущность изобретения заключается в том, что устройство определения плотности горных пород, пересекаемых буровой скважиной, содержит корпус прибора, в котором установлены блок привода и электроники и шарнирно связанный с ним зондовый...
Тип: Изобретение
Номер охранного документа: 0002607740
Дата охранного документа: 10.01.2017
20.01.2018
№218.016.1209

Наполнитель для капсульного ингалятора

Изобретение относится к химико-фармацевтической промышленности и касается капсул с порошковой фармацевтической ингаляционной композицией для лечения аутоиммунных заболеваний. Наполнитель для капсульного ингалятора содержит тимодепрессин в виде тонкодисперсных частиц респирабельных размеров в...
Тип: Изобретение
Номер охранного документа: 0002634258
Дата охранного документа: 24.10.2017
13.02.2019
№219.016.b955

Устройство определения плотности горных пород, пересекаемых буровой скважиной

Изобретение относится к скважинной геофизике, а более конкретно к области измерений, проводимых в скважине выносным из корпуса скважинного геофизического прибора зондом, прижимаемым специальным силовым устройством к стенке скважины. Техническим результатом является повышение надежности и...
Тип: Изобретение
Номер охранного документа: 0002679466
Дата охранного документа: 11.02.2019
+ добавить свой РИД