×
04.06.2020
220.018.23e9

Результат интеллектуальной деятельности: Способ измерения профиля поверхности оптических деталей с помощью лазерной фазосдвигающей интерферометрии

Вид РИД

Изобретение

№ охранного документа
0002722631
Дата охранного документа
02.06.2020
Аннотация: Изобретение относится к области бесконтактных оптических измерений и может быть использовано для измерения профиля поверхности оптических деталей. Способ заключается в том, что формируют пучок непрерывного одномодового излучения лазера с длиной волны λ, делят его в интерферометре по схеме Физо на два пучка, один из которых направляют на фотоприемную матрицу видеокамеры после отражения от эталонной поверхности, размещенной на пьезоэлектрическом актуаторе, а другой пучок направляют на поверхность тестируемой оптической детали, и отраженное от нее излучение направляют на фотоприемную матрицу видеокамеры для формирования последовательности интерференционных картин, которую используют для измерения параметров профиля поверхности оптической детали вдоль оси сдвига, который производят с помощью пьезоэлектрического актуатора, при этом длину волны λ одномодового излучения лазера выбирают из условия где λ - коротковолновая граница спектральной области оптического пропускания эталонной пластины интерферометра Физо, α - функция, обратная к α(λ), зависимости показателя поглощения излучения α в материале исследуемого образца от длины волны λ, n - показатель преломления в материале исследуемого образца для излучения с длиной волны λ, d - толщина исследуемого образца, k - максимальное число ступеней амплитудной дискретизации преобразователя сигналов цифровой видеокамеры, применяемой для фиксации интерферограмм. Технический результат заключается в повышении достоверности и точности измерений и повышении производительности. 4 ил.

Изобретение относится к области бесконтактных оптических измерений интерференционным способом и может быть использовано, в частности, для измерения параметров профиля поверхности оптических деталей с помощью лазерной фазосдвигающей интерферометрии при производственном контроле в оптическом приборостроении.

Известны способы исследования топографии полированных поверхностей оптических деталей с помощью интерферометра Физо [1].

Один из таких способов [2] основан на том, что строят профиль оптической поверхности с помощью лазерной фазосдвигающей интерферометрии и проводят анализ последовательности интерферограмм, регистрируемых при взаимодействии световых пучков, отраженных от исследуемого образца и базовой поверхности в условиях управляемого изменения их взаимного расположения.

Недостатком способа является относительно узкая область применения, ограниченная возможностью его использования для оптических деталей с большой клиновидностью или с неполированными задними поверхностями, поскольку в случаях полированных поверхностей плоскопараллельных пластин межплоскостная интерференция вносит существенные помехи и искажает результаты измерений.

Частично задача может быть решена посредством известного способа интерферометрии [3], согласно которому строят профиль оптической поверхности с помощью лазерной фазосдвигающей интерферометрии и проводят анализ последовательности интерферограмм, регистрируемых при взаимодействии световых пучков, отраженных от исследуемого образца и базовой поверхности, когда используют лазерное излучение с перестраиваемой длиной волны.

Недостатком этого способа является сложность его реализации в условиях производственного контроля деталей различной геометрии, поскольку необходима настройка алгоритма расчетов с введением данных толщины исследуемых образцов и их положения относительно базовой плоскости интерферометра.

Кроме того, известный способ основан на предположении оптической однородности объема исследуемых деталей и не может быть применим, например, для образцов из стеклокерамики с высокой свильностью материала, поскольку в этом случае возникают существенные ошибки измерений.

Известны также способы [4], основанные на применении интерферометрии с источниками света низкой когерентности, в частности, газоразрядными лампами.

Недостаток этих способов обусловлен тем, что необходимая близость тестируемого образца к базовой поверхности интерферометра Физо создает неудобство проведения юстировки, особенно заметное в условиях производственного контроля.

Кроме того, это требование может быть непреодолимым препятствием в решении специальных задач, например, исследования интерферометрическими методами отдельных элементов в составе сборной конструкции.

Способ анализа профиля поверхности оптических деталей с применением белых интерферометров [5] снижает недостатки, связанные с межплоскостной интерференцией, в силу малой длины когерентности используемого излучения.

Однако, этот способ имеет недостаток, обусловленный небольшим полем зрения белых интерферометров, которое может быть расширено лишь с применением дополнительных оптических узлов и приемов автоматизации, что создает сложности при анализе крупногабаритных деталей в условиях производственного контроля.

Наиболее близким по технической сущности к предлагаемому является способ измерения профиля поверхности оптических деталей с помощью лазерной фазосдвигающей интерферометрии [6], заключающийся в том, что, формируют пучок непрерывного одномодового излучение лазера видимого диапазона, делят его в интерферометре по схеме Физо на два пучка, один из которых после отражения от эталонной поверхности, размещенной на пьезоэлектрическом актуаторе, направляют на фотоприемную матрицу видеокамеры, а другой пучок направляют на поверхность оптической детали, и отраженное от нее излучение также направляют на фотоприемную матрицу видеокамеры для формирования последовательности интерференционных картин, которую используют для построения профиля поверхности оптической детали вдоль оси ее сдвига, производимого пьезоэлектрическим актуатором, при этом, помехи, обусловленные межплоскостной интерференцией в исследуемой детали, устраняют посредством использования иммерсионной жидкости.

Недостатком наиболее близкого технического решения является низкая производительность контроля оптических деталей, обусловленная подготовкой образцов к измерениям и необходимостью их последующей отмывки от иммерсионной жидкости.

Дополнительным недостатком является относительно низкая точность, вызванная помехами, обусловленными межплоскостной интерференцией в исследуемой оптической детали, например, при наличии у оптической детали зеркального покрытия на тыльной стороне.

Задача, которая решается в изобретении, направлена на расширение арсенала технических средств, используемых при измерении профилей поверхности оптических деталей с помощью лазерной фазосдвигающей интерферометрии с целью повышения достоверности и точности измерений, а также повышение производительности.

Требуемый технический результат заключается в повышении достоверности и точности измерений, а также повышении производительности при контроле в промышленных условиях.

Поставленная задача решается, а требуемый технический результат достигается тем, что в способе измерения профиля поверхности оптических деталей с помощью лазерной фазосдвигающей интерферометрии, заключающемся в том, что, формируют пучок непрерывного одномодового излучение лазера с длиной волны λ, делят его в интерферометре по схеме Физо на два пучка, один из которых направляют на фотоприемную матрицу видеокамеры после отражения от эталонной поверхности, размещенной на пьезоэлектрическом актуаторе, а другой пучок направляют на поверхность тестируемой оптической детали, и отраженное от нее излучение направляют на фотоприемную матрицу видеокамеры для формирования последовательности интерференционных картин, которую используют для измерения параметров профиля поверхности оптической детали вдоль оси сдвига, который производят с помощью пьезоэлектрического актуатора, согласно изобретению, длину волны λ одномодового излучения лазера выбирают из условия

где λ0 - коротковолновая граница спектральной области оптического пропускания эталонной пластины интерферометра Физо;

α-1 - функция, обратная к α(λ), зависимости показателя поглощения излучения α в материале исследуемого образца от длины волны λ;

n - показатель преломления в материале исследуемого образца для излучения с длиной волны λ;

d - толщина исследуемого образца,

k - максимальное число ступеней амплитудной дискретизации преобразователя сигналов цифровой видеокамеры, применяемой для фиксации интерферограмм.

Предложенный способ описывается с использованием графических изображений, представленных на чертеже.

На чертеже представлены:

на фиг. 1а, 1б - пример графиков зависимости показателя поглощения от длины волны α(λ) и обратной ее функции для ситалла СО-115;

на фиг. 2 - пример устройства, позволяющий реализовать предложенный способ;

на фиг. 3 - интерференционная картина тестируемого образца, наблюдаемая в интерферометре Физо на базе He-Cd лазера с длиной волны 325 нм (образец - ситалловый диск толщиной d=0,7 см с полированными поверхностями и электродами, впаянными с обратной стороны по периметру сквозных отверстий);

на фиг. 4 - пример построения 3D профиля поверхности по стандартной процедуре фазовой развертки с компьютерным анализом последовательности цифровых изображений.

Устройство, реализующее способ (фиг. 2) содержит источник 1 ультрафиолетового излучения (УФ), первое 2 и второе 3 поворотные зеркала, короткофокусную линзу 4, диафрагму 5, светоделитель 6, третье поворотное зеркало 7, коллиматор 8, эталонную пластину 9, пьезоэлектрический актуатор 10, оптическую деталь (тестируемый образец) 11.

Предложенный способ заключается в следующем.

Условие определено из следующих предположений.

Для исключения влияния интерференционных помех, обусловленных отражением света от тыльной поверхности оптической детали, необходимо производить выбор длины волны λ непрерывного одномодового излучения лазера из условия полного затухания направленного на поверхность оптической детали пучка излучения в толще тестируемой оптической детали.

Известно [7], что интенсивность световой волны I1, отраженной от исследуемой передней поверхности образца, равна

где I0 - интенсивность падающего излучения,

n - показатель преломления материала образца.

Проходящая в образец часть излучения равна

После отражения от задней поверхности образца назад может вернуться его часть I3 (максимальная в случае наличия отражающего покрытия), равная

где е - основание натурального логарифма,

λ - длина волны используемого излучения,

α(λ) - показатель поглощения материала исследуемого образца, зависящий от длины волны λ, см-1,

d - толщина образца, см.

Эта величина фактически определяет максимальный масштаб помехи, имеющей место в интерферометре Физо для света с большой длиной когерентности.

Условие пренебрежимо малого влияния помехи, обусловленной отражением от тыльной поверхности, может быть сформулировано как

где k - максимальное число ступеней амплитудной дискретизации преобразователя сигналов цифровой видеокамеры, применяемой для фиксации интерферограмм.

Таким образом, требование исключения помех, обусловленных отражением от тыльной стороны исследуемой детали, может быть представлено в виде

В частности, реализация способа возможна с использованием ультрафиолетового излучения.

При регистрации интерферограмм цифровой видеокамерой с числом ступеней амплитудной дискретизации преобразователя сигналов k=16384 (14 бит на пиксель) для пластины, например, толщиной d=0,7 см из стеклокерамики (ситалла СО-115) с n=1,54 должно выполняться:

α(λ)>10 см-1

В случае ситалла СО-115 такое условие справедливо, например, для λ=325 нм (длины волны генерации He-Cd лазера), что видно из графиков зависимости α(λ) и обратной ее функции, представленных соответственно на фиг. 1а и фиг. 1б.

Устройство (фиг. 2) работает следующим образом.

В качестве источника 1 ультрафиолетового излучения (УФ) используется непрерывный одномодовый He-Cd лазер с рабочей длиной волны λ=325 нм и средней мощностью излучения 10 мВт. Длина когерентности излучения составляет 300 мм. Первое 2 и второе 3 поворотные зеркала служат для направления лазерного пучка, сформированного короткофокусной линзой 4 и диафрагмой 5, на светоделитель 6. Он может быть выполнен в виде плоскопараллельной пластины, одна поверхность которой имеет просветляющее покрытие, а вторая - светоделительное покрытие с коэффициентом отражения около 50%. Поворот расходящегося излучения производит третье поворотное зеркало 7. Оно обеспечивает вертикальное падение параллельного пучка, сформированного коллиматором 8, на эталонную пластину 9, расположенную на пьезоэлектрическом актуаторе 10, и оптическую деталь (тестируемый образец) 11. Эталонная пластина 9 выполнена из плавленого кварца, имеет нижнюю рабочую поверхность с аттестованной плоскостностью около λ/20 и верхнюю грань с просветляющим покрытием на рабочей длине волны интерферометра. Коротковолновая граница спектральной области оптического пропускания этой пластины - λ0=250 нм.

Лучи, отраженные от эталонной пластины 9 и контролируемой поверхности оптической детали, при обратном ходе возвращаются к светоделителю бис помощью объектива 12 формируют интерференционную картину полос равной толщины на фотоприемной матрице видеокамеры 13.

Сама эталонная пластина 9 расположена на пьезоэлектрическом актуаторе 10, который позволяет плавно перемещать ее вдоль оптической оси и производить процедуру фазовых сдвигов для построения рельефа исследуемой поверхности. При этом компьютер 14 по специальной программе управляет микроконтроллером актуатора 10 с синхронной регистрацией цифровых изображений последовательности интерферограмм.

На фиг. 3 представлена интерференционная картина тестируемого образца, наблюдаемая в интерферометре Физо на базе He-Cd лазера с длиной волны 325 нм. Образец - ситалловый диск толщиной d=0,7 см с полированными поверхностями и электродами, впаянными с обратной стороны по периметру сквозных отверстий. Для регистрируемых интерферограмм характерно полное отсутствие обсуждаемых выше помех, в том числе и в областях с припоем на обратной стороне детали (зонах с повышенным отражением). Это позволяет строить 3D профиль поверхности по стандартной процедуре фазовой развертки с компьютерным анализом последовательности цифровых изображений. Результат измерений представлен на фиг. 4.

Таким образом, благодаря усовершенствованию известного способа достигается расширение арсенала технических средств, используемых при измерении профилей поверхности оптических деталей с помощью лазерной фазосдвигающей интерферометрии, и требуемый технический результат, заключающийся в повышении достоверности и точности измерений и повышении производительности.

Источники информации, принятые во внимание.

1. Г.Э. Романова, М.А. Парпин, Д.А. Серегин. Конспект лекций по курсу «Компьютерные методы контроля оптики». - СПб: СПбГУ ИТМО, 2011. - 185 с.

2. US 5473434, 05.12.1995. P.de Groot. Phase shifting interferometer and method for surface topography measurement.

3. US 6359692, B1, 19.03.2002. P.de Groot. Method and system for profiling objects having multiple reflective surfaces using wavelength-tuning phase-shifting interferometry.

4. Н.В. Тихменев, С.А. Закурнаев, А.В. Озаренко, В.С. Быстрицкий, С.А. Мягков, Р.А. Столяров, К.Е. Чечетов, С.Е. Коршунов. Влияние методов обработки и очистки ситалла СО-115М на прочность оптического контакта. Научно-технический вестник информационных технологий, механики и оптики, 2016, том 16, №4, стр. 613-619

5. P. de Groot. Principles of interference microscopy for the measurement of surface topography. Advances in Optics and Photonics. V. 7, No1, 1-65 (2015)

6. J. Heil, T. Bauer, S. Schmax, Th. Sure, J. Wesner. Phase shifting Fizeau interferometry of front and back surfaces of optical flats. Applied Optics. Vol.46, No. 22, 2007, p. 5282-5292 - прототип.

7. Г.С. Ландсберг.Оптика. 6-е изд., - М.: ФИЗМАТ ЛИТ, 2003. - 848 с


Способ измерения профиля поверхности оптических деталей с помощью лазерной фазосдвигающей интерферометрии
Способ измерения профиля поверхности оптических деталей с помощью лазерной фазосдвигающей интерферометрии
Способ измерения профиля поверхности оптических деталей с помощью лазерной фазосдвигающей интерферометрии
Способ измерения профиля поверхности оптических деталей с помощью лазерной фазосдвигающей интерферометрии
Способ измерения профиля поверхности оптических деталей с помощью лазерной фазосдвигающей интерферометрии
Источник поступления информации: Роспатент

Showing 61-70 of 71 items.
17.06.2023
№223.018.7dc2

Система формирования и наведения лазерного излучения излучателей с оптоволоконными выводами на цель

Изобретение относится к оптико-электронному приборостроению в части формирования и наведения лазерного излучения на удаленные цели. Система формирования и наведения лазерного излучения излучателей с оптоволоконными выводами на цель содержит устройство грубого наведения суммарного излучения...
Тип: Изобретение
Номер охранного документа: 0002785768
Дата охранного документа: 13.12.2022
17.06.2023
№223.018.7de1

Устройство для наведения лазерного пучка

Изобретение относится к оптико-механическому приборостроению, к устройствам для перемещения лазерного луча в пространстве, устройствам оптического сканирования и слежения. Устройство для наведения лазерного пучка включает неподвижный корпус, на котором закреплены электропривод, подшипник,...
Тип: Изобретение
Номер охранного документа: 0002787968
Дата охранного документа: 13.01.2023
17.06.2023
№223.018.7f57

Способ локационного измерения дальности

Изобретение относится к лазерной локации, а именно к импульсным лазерным дальномерам и локаторам. Способ локационного измерения дальности путем зондирования цели пробным импульсом малой энергии Е и приема отраженного целью сигнала, а в случае отсутствия отраженного сигнала - повторным...
Тип: Изобретение
Номер охранного документа: 0002766065
Дата охранного документа: 07.02.2022
17.06.2023
№223.018.8015

Способ рассечения биологической ткани лазерным излучением

Изобретение относится к медицине, а именно к лазерной хирургии, и может быть использовано для рассечения биологической ткани лазерным излучением. Воздействуют лазерным излучением на поверхность участка биологической ткани и перемещают лазерный луч по заданной траектории рассечения биологической...
Тип: Изобретение
Номер охранного документа: 0002760617
Дата охранного документа: 29.11.2021
17.06.2023
№223.018.8049

Приемник импульсных лазерных сигналов

Изобретение относится к лазерной технике, а именно к аппаратуре приема лазерного излучения. Предложен приемник импульсных лазерных сигналов, содержащий герметичный корпус с защитным окном, за которым размещены фоточувствительный элемент и схема обработки сигнала, включающая усилитель и...
Тип: Изобретение
Номер охранного документа: 0002762977
Дата охранного документа: 24.12.2021
17.06.2023
№223.018.813f

Приемное устройство лазерного дальномера

Изобретение относится к лазерной технике, к аппаратуре приема лазерного излучения, преимущественно в лазерных дальномерах. Технический результат изобретения состоит в обеспечении высокой точности временной фиксации принимаемого сигнала в предельно широком динамическом диапазоне. В приемное...
Тип: Изобретение
Номер охранного документа: 0002759262
Дата охранного документа: 11.11.2021
17.06.2023
№223.018.8147

Способ измерения дальности

Использование: изобретение относится к лазерной технике, а именно к лазерной дальнометрии. Сущность: способ измерения дальности путем излучения на цель зондирующего лазерного импульса, приема отраженного целью сигнала U(t), дифференцирования его с постоянной времени дифференцирования τ≤t, где t...
Тип: Изобретение
Номер охранного документа: 0002759300
Дата охранного документа: 11.11.2021
17.06.2023
№223.018.818d

Импульсный лазерный дальномер

Изобретение относится к лазерной локации, а именно к импульсным лазерным дальномерам. Импульсный лазерный дальномер, содержащий основной и пробный излучатели, фотоприемный канал с фотоприемником с объективом, пороговое устройство, включенное на выходе фотоприемника и связанное со схемой...
Тип: Изобретение
Номер охранного документа: 0002756783
Дата охранного документа: 05.10.2021
17.06.2023
№223.018.819d

Лазерный дальномер с пробным излучателем

Изобретение относится к лазерной локации, к импульсным лазерным дальномерам и локаторам. Технический результат изобретения состоит в обеспечении безопасного режима работы фотоприемника при сохранении требуемой вероятности достоверного измерения в широком диапазоне дальностей. Лазерный дальномер...
Тип: Изобретение
Номер охранного документа: 0002756782
Дата охранного документа: 05.10.2021
17.06.2023
№223.018.819e

Лазерный дальномер

Лазерный дальномер, содержащий основной и пробный излучатели разной мощности со схемами питания, фотоприемник с объективом, пороговое устройство с задатчиком переменного порога, включенное на выходе фотоприемника и по выходу связанное со схемой управления и измерителем временных интервалов,...
Тип: Изобретение
Номер охранного документа: 0002756381
Дата охранного документа: 29.09.2021
Showing 1-3 of 3 items.
25.08.2017
№217.015.c1e5

Способ упрочнения оптического контакта диэлектрических поверхностей лазерного гироскопа и генератор струи плазмы для его реализации

Изобретение относится к способу и устройству для низкотемпературного упрочнения оптического контакта диэлектрических поверхностей газоразрядных приборов, в частности резонаторов моноблочных газовых лазеров, в процессе их технологической сборки. Заявленное устройство содержит диэлектрический...
Тип: Изобретение
Номер охранного документа: 0002617697
Дата охранного документа: 26.04.2017
10.05.2018
№218.016.4358

Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления

Изобретение относится к способу очистки подложек из ситалла. Способ включает химическую очистку и промывку в деионизованной воде. После промывки в деионизованной воде подложки из ситалла предварительно нагревают в струе высокочастотной плазмы на расстоянии от 60 до 120 мм от среза...
Тип: Изобретение
Номер охранного документа: 0002649695
Дата охранного документа: 04.04.2018
16.06.2023
№223.018.7b90

Устройство для выявления скрытых дефектов реставрированных деталей кузова автомобиля

Изобретение относится к области обслуживания, содержания, ремонта легковых автомобилей и может быть использовано для обнаружения скрытых дефектов реставрированных деталей кузова. Устройство содержит осветительное устройство, воздействующее излучением на исследуемую деталь, и сопряженный с ним...
Тип: Изобретение
Номер охранного документа: 0002755564
Дата охранного документа: 17.09.2021
+ добавить свой РИД