×
31.05.2020
220.018.22f3

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА НА ВАЛУ ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерений крутящего момента на валу двигателя и может быть использовано для определения мощности и (или) коэффициента полезного действия. Задачей предлагаемого изобретения является упрощение технической реализации способа измерения крутящего момента. Техническим результатом является возможность экспресс-определения момента на валу двигателя, насоса и т.п. Способ измерения крутящего момента на валу двигателя характеризуется тем, что используют измерение угла наклона параллельных оси вала прямых, нанесенных на поверхность упругого элемента - торсиона, передающего крутящий момент от двигателя к исполнительному агрегату, фотографируют параллельные линии, используя стробоскопическое освещение с частотой, равной частоте вращения вала, и определяют угол α наклона линий при нагружении торсиона крутящим моментом М, величину которого определяют по формуле где К - коэффициент пропорциональности, определяемый при тарировке в стационарных условиях. 1 ил.

Изобретение относится к области измерений крутящего момента на валу двигателя и может быть использовано для определения мощности и (или) коэффициента полезного действия.

Момент на валу работающего двигателя определяют либо путем измерения равного ему момента реакции статора тормоза, либо путем измерения угла закручивания соединительного вала под действием передаваемого момента. В любом случае испытатели сталкиваются с определенными трудностями в получении достоверных результатов измерений в связи с тем, что динамометры тормозных установок действуют в условиях повышенной вибрации и резко изменяющихся нагрузок, граничащих иногда с ударными, особенно на неустановившихся режимах работы двигателя внутреннего сгорания.

Электрические динамометры в общем случае представляют собой приборы, в которых деформация упругого элемента вызывает изменение определенного электрического параметра, положенного в основу измерения, крутящего момента или окружного усилия.

Чаще других используют измерительные преобразователи, основанные на изменении омического сопротивления, емкости, индуктивности, индукционное и фотоэффекта под действием входной неэлектрической величины. Входной механической величиной служат при этом скручивание соединительного вала тормозной установки, угловое перемещение деталей измерительных муфт или же деформация упругого элемента, так называемого динамометрического звена, на которое действует рычаг тормоза. Чаще других используют способ, связанный с измерением угла закручивания соединительного вала. Динамометры этого типа называют также торсионными.

Известны различные способы измерения крутящих моментов, передаваемых от двигателя к нагрузке посредством вращающегося упругого вала. Среди них широкое распространение получили способы, основанные на преобразовании измеряемого момента в деформацию упругого элемента, выполняемого в виде валов (торсионов), спиральных пружин, растяжек и др. Преобразование деформации (механического напряжения) упругого элемента в электрический сигнал может осуществляться при помощи тензорезистивных, индуктивных, магнитоупругих и других измерительных преобразователей.

Способы измерения крутящего момента с использованием датчиков вне вращающегося вала, основанные на измерении угла закручивания упругого элемента под действием измеряемого момента, характеризуются более высокой точностью измерения и простотой реализации.

Известен способ измерения крутящего момента [Одинец С.С., Топилин Г.Е. Средства измерения крутящего момента. Библиотека приборостроителя. М.: "Машиностроение". - 1977. - 160 с.], реализованный при помощи торсиометра с магнитной записью, который состоит из упругого элемента, двух магнитных головок, платы с электронными схемами, активного фильтра и фазометра. Упругий элемент закреплен по торцам при помощи двух латунных фланцев, играющих роль магнитных барабанов. Внешние поверхности фланцев покрыты магнитной эмульсией окиси железа (Fe2O3). На ферромагнитную поверхность каждого фланца при отсутствии измеряемого момента периодически синхронно записываются импульсы. Под действием измеряемого момента упругий элемент скручивается. Фланцы поворачиваются, возникает фазовое смещение импульсов, считываемых магнитными головками, пропорциональное измеряемому моменту. Величина возникающего фазового смещения преобразуется в напряжение постоянного тока. Значение измеряемого момента считывается по шкале прибора постоянного тока.

Основным недостатком такого способа является сложность его реализации, связанная с необходимостью создания системы строго соосных магнитных барабанов с ферромагнитным покрытием и считывающими сигнал магнитными головками.

Наиболее близким к изобретению по технической сущности является способ определения механического момента, передаваемого вращающимся валом [Патент РФ №2183013, кл. G01L 3/04, 1999], в котором на вал устанавливают два идентичных диска с метками (зубчатые венцы), разнесенные на базовое расстояние и жестко связанные с валом, скорость вращения каждого диска (венца) преобразуется с помощью двух независимых магнитных датчиков в два синусоидальных сигнала, регистрируется разность фаз этих сигналов, по изменению которой судят о величине передаваемого валом механического момента, и предварительно устанавливают датчики, используемые в системе измерения момента у одного из дисков, приводят вал во вращение, регистрируют разность фаз синусоидальных сигналов датчиков в зависимости от скорости вращения вала при неизменной нагрузке на валу, полученную разность фаз учитывают при последующем определении разности фаз сигналов от двух датчиков, величина которой пропорциональна передаваемому валом механическому моменту. При этом в лабораторных условиях для конкретной пары датчиков определяется частотная составляющая Ud (n) в регрессионной модели, которая в дальнейшем используется для расчета и введения поправки в конечный результат для конкретного значения частоты вращения вала.

Основным недостатком способа является большая трудоемкость настройки, связанная с необходимостью построения регрессионной модели, а необходимость введения поправок в конечный результат для конкретного значения частоты вращения вала может значительно усложнить электрическую часть устройства, реализующего данный способ. Существенным является также то, что при формировании синусоидального сигнала за счет зубчатых колес невозможно получить одну и ту же форму сигнала при изменении частоты вращения. Гармонический спектр значительно изменяется, особенно в области малых частот вращения. В связи с этим будут появляться дополнительные погрешности при измерении фазы основной гармоники.

Задачей предлагаемого изобретения является упрощение технической реализации способа измерения крутящего момента. Техническим результатом является возможность экспресс-определения момента на валу двигателя, насоса и т.п.

Поставленная задача достигается тем, что в способе измерения крутящего момента на валу двигателя используют измерение угла наклона параллельных оси вала прямых, нанесенных на поверхность упругого элемента - торсиона, передающего крутящий момент от двигателя к исполнительному агрегату, фотографируют параллельные линии, используя стробоскопическое освещение с частотой равной частоте вращения вала, и определяют угол α наклона линий при нагружении торсиона крутящим моментом М, величину которого определяют по формуле закона Гука

где К - коэффициент пропорциональности, определяемый при тарировке в стационарных условиях, рад/(Н*м); М - момент, Н*м.

На фигуре представлена схема определения угла скручивания торсиона.

На фигуре обозначено: упругий элемент - торсион 1, параллельные линии - 2, фотоаппарат - 3, стробоскоп - 4, датчик оборотов - 5, синхронизирующий сигнал - 6, насос - 7, вал насоса - 8, вал двигателя - 9, двигатель - 10, ось вала - 11.

Для реализации способа два соосных вала соединяют через цилиндрический упругий элемент (торсион) с известной зависимостью угла скручивания от передаваемого момента, на который наносится хорошо видимые параллельные оси вала линии по всей поверхности цилиндра.

В зависимости от величины передаваемого момента эти линии получают параллельный изгиб к оси торсиона, угол которого α определяется из ф. (1)

Таким образом, задача определения момента сводится к определению угла скручивания торсиона.

Предлагаемый способ осуществляется следующим образом. Два соосных вала соединяют через цилиндрический упругий элемент (торсион) 1 с известной зависимостью угла скручивания от передаваемого момента, на который наносится хорошо видимые параллельные оси вала линии 2 по всей поверхности торсиона.

Если крутящий момент не равен нулю, упругий элемент 1 деформируется (скручивается), а параллельные линии 2 получают наклон с углом α (см. фигуру) относительно оси цилиндрического упругого элемента 1.

Для измерения угла α параллельные линии фотографируют при помощи фотоаппарата 3, используя стробоскопическое освещение (импульсное освещение с частотой равной частоте вращения вала) при помощи стробоскопа 4, который синхронизируется при помощи датчика 5 оборотов (фото или магнитный датчик).

Затем определяют угол α наклона линий при нагружении торсиона крутящим моментом М, величину которого определяют по формуле закона Гука

где К - коэффициент пропорциональности, определяемый при тарировке в стационарных условиях, рад/(Н*м); М - момент, Н*м.

Пример.

Два соосных вала соединили через цилиндрический упругий элемент (торсион) 1 с известной зависимостью угла скручивания от передаваемого момента, на который нанесены хорошо видимые параллельные оси вала линии 2 по всей поверхности торсиона.

Для измерения угла скручивания α параллельные линии сфотографировали при помощи фотоаппарата 3, используя стробоскопическое освещение (импульсное освещение с частотой равной частоте вращения вала 49.2 Гц, что соответствует частоте оборотов вала 2950 об\мин).

Затем определили угол α наклона линий при нагружении торсиона, который равен 0,0071 рад = 0,41 градуса.

Крутящий момент М, определяли по формуле закона Гука

где К=0,0013 град/Н*м - коэффициент пропорциональности, определяемый при тарировке в стационарных условиях, рад/(Н*м).


СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА НА ВАЛУ ДВИГАТЕЛЯ
СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА НА ВАЛУ ДВИГАТЕЛЯ
СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА НА ВАЛУ ДВИГАТЕЛЯ
СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА НА ВАЛУ ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Showing 141-150 of 167 items.
12.04.2023
№223.018.4780

Способ эксплуатации электроцентробежного насоса скважины

Изобретение относится к практике эксплуатации нефтедобывающих скважин с помощью электроцентробежных насосов и может использоваться в нефтяных компаниях России. Способ эксплуатации электроцентробежного насоса скважины заключается в том, что в скважине организуют поступление пластовой продукции...
Тип: Изобретение
Номер охранного документа: 0002744551
Дата охранного документа: 11.03.2021
12.04.2023
№223.018.47c9

Скважинная штанговая насосная установка с вертикальным пружинным компенсатором колебаний давления

Изобретение относится к области добычи нефти, в частности к установкам скважинных штанговых насосов. Технический результат заключается в обеспечении высокой степени выравнивания неравномерности подачи скважинной штанговой насосной установки в широких диапазонах за счет подбора параметров и...
Тип: Изобретение
Номер охранного документа: 0002743115
Дата охранного документа: 15.02.2021
12.04.2023
№223.018.47ec

Колесная система опорная и приводная для преодоления габаритных препятствий

Изобретение относится к сфере транспорта и может быть использовано в качестве колес транспортного средства. Колесная система опорная и приводная для преодоления габаритных препятствий состоит из одного приводного колеса, движущегося внутри круглого трака, представляющего собой колесо большего...
Тип: Изобретение
Номер охранного документа: 0002747312
Дата охранного документа: 04.05.2021
12.04.2023
№223.018.47fd

Стенд для моделирования работы установки скважинного штангового насоса

Изобретение относится к исследованиям в области добычи нефти, в частности к лабораторно-измерительной технике для моделирования процессов работы установок скважинных штанговых насосов, позволяющей фиксировать колебательные процессы в колонне штанг, оценить потребляемую мощность установки и, как...
Тип: Изобретение
Номер охранного документа: 0002741821
Дата охранного документа: 28.01.2021
12.04.2023
№223.018.4a53

Разгрузочное устройство центробежного секционного насоса с геометрически замкнутыми наклонными несущими поверхностями

Изобретение относится к области насосостроения, а именно к устройствам для разгрузки роторов центробежных секционных насосов от осевой силы ротора во время запуска и работы насоса. Данным изобретением решается задача обеспечения температурного режима работы насоса согласно нормативным...
Тип: Изобретение
Номер охранного документа: 0002791079
Дата охранного документа: 02.03.2023
20.04.2023
№223.018.4afa

Установка для исследования процесса дозирования реагентов

Изобретение относится к устройствам, предназначенным для исследования дозирования химических реагентов, и может быть применено в любой отрасли народного хозяйства, преимущественно в нефтяной и газовой промышленности, в составе оборудования для подачи химически активных веществ. Установка...
Тип: Изобретение
Номер охранного документа: 0002776687
Дата охранного документа: 25.07.2022
20.04.2023
№223.018.4b0b

Устройство для стабилизации давления на приеме электроцентробежного насоса

Изобретение относится к нефтедобыче и может быть использовано для стабилизации давления на приеме установки электроцентробежного насоса (УЭЦН) в условиях эксплуатации малодебитных скважин. Устройство для стабилизации давления на приеме электроцентробежного насоса снабжено механизмом перепуска...
Тип: Изобретение
Номер охранного документа: 0002770776
Дата охранного документа: 21.04.2022
20.04.2023
№223.018.4e28

Способ кислотной обработки призабойной зоны пласта

Изобретение относится к способам интенсификации добычи нефти из карбонатных коллекторов. Технический результат - более глубокое проникновение кислоты в пласт, имеющий повышенную температуру среды, без проявления коррозионных явлений скважинного оборудования. В способе кислотной обработки...
Тип: Изобретение
Номер охранного документа: 0002793999
Дата охранного документа: 12.04.2023
21.04.2023
№223.018.4f26

Виброизолятор

Изобретение относится к машиностроению. Виброизолятор содержит подвижную платформу, основание, дискретно установленные и жестко закрепленные одним концом в основании упругодемпфирующие стержни. Внутри упругодемпфирующих стержней размещен ограничительный элемент из эластомера. Ограничительный...
Тип: Изобретение
Номер охранного документа: 0002794002
Дата охранного документа: 11.04.2023
15.05.2023
№223.018.5757

Способ скважинной инклинометрии и скважинная система для его реализации

Изобретение относится к инклинометрии скважин, в частности к способу и системе скважинной инклинометрии для определения пространственного положения ствола скважины феррозондовым инклинометром, в том числе в процессе бурения наклонных и горизонтальных скважин. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002770874
Дата охранного документа: 22.04.2022
Showing 11-13 of 13 items.
19.03.2020
№220.018.0d10

Способ и устройство раннего определения разрушения кривошипно-шатунной группы привода сшну

Группа изобретений относится к области ранней диагностики отказа элементов кривошипно-шатунной группы (КШГ) станка-качалки. Техническим результатом является предупреждение разрушений привода СШНУ. Способ включает возбуждение электрического стабилизированного тока в узлах КШГ при помощи...
Тип: Изобретение
Номер охранного документа: 0002717016
Дата охранного документа: 17.03.2020
09.04.2020
№220.018.138f

Способ периодической эксплуатации нефтяных скважин штанговой насосной установкой в самонастраиваемом режиме

Изобретение относится к области добычи нефти из малодебитных скважин штанговыми насосными установками и, в частности, к способу периодической эксплуатации скважин. Технический результат – обеспечение максимально возможного дебита скважины при одновременном исключении выделения газа и...
Тип: Изобретение
Номер охранного документа: 0002718444
Дата охранного документа: 06.04.2020
25.04.2020
№220.018.1929

Способ повышения эффективности работы системы "насос-трубопровод-скважина"

Предложенное изобретение относится к области перекачки (добычи) высоковязких жидкостей, обладающих свойством зависимости эффективной вязкости от скорости перекачки. Техническим результатом является повышение эффективности (коэффициента полезного действия) работы насосного агрегата в системе...
Тип: Изобретение
Номер охранного документа: 0002719796
Дата охранного документа: 23.04.2020
+ добавить свой РИД