×
31.05.2020
220.018.22ea

Результат интеллектуальной деятельности: Резонансный способ измерения динамических механических параметров низкомодульных вибропоглощающих материалов

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может быть использовано для измерения динамического модуля упругости и коэффициента механических потерь полимера. Технический эффект заключается в расширении частотного диапазона измерений, обеспечении необходимой статической деформации материала и измерении параметров высокодемпфированных материалов, достигается за счёт того, что дополнительно устанавливают высокодобротные упругие элементы (пружины) между инерционным элементом и вибрирующим основанием, измеряют собственную частоту колебаний и ширину резонансной кривой упругоинерционной системы с пружинами без образца материала и с образцом из исследуемого материала и рассчитывают динамический модуль упругости материала. 1 з.п. ф-лы, 3 ил.

Предлагаемое решение относится к методам измерения динамических механических параметров материалов.

Известно множество способов измерения динамического модуля упругости и коэффициента механических потерь материалов [1-8]. Часть этих методов вошло в международные и национальные стандарты РФ [1-7]. В [1] приведен сравнительный анализ методов измерения и указано, что наилучшим образом типичные условия применения материала воспроизводят испытания со сжатием образца, изготовленного из исследуемого материала [1, п. B3f]. Такие испытания отражают многие типичные условия нагружения при реальном использовании материала [1, п. В2b]. Но нужно учитывать, что испытания на сжатие требуют более высоких уровней вынуждающей силы. Для создания значительных амплитуд деформации сдвига и сжатия, а также для создания условий предварительного нагружения требуется испытательное оборудование, способное развивать значительную силу [1, п. B2d]. В связи с этим многие из рассматриваемых в стандарте методов находят очень ограниченное применение, и, чтобы снизить энергопотребление, габаритные размеры и массу испытательного оборудования «Измерение модуля Юнга рекомендуется проводить с возбуждением резонансных колебаний» [1, п. В3а]. Таким образом, резонансные способы измерения динамических механических параметров материалов являются предпочтительными.

Известен резонансный способ определения динамических характеристик низкомодульных материалов [8]. В этом способе образец материала располагают между подложкой из высокодобротного материала и неподвижной поверхностью. В подложке возбуждают изгибные колебания и по массогабаритным параметрам образца материала и амплитудно-частотным характеристикам подложки вычисляют динамический модуль упругости и коэффициент механических потерь. Недостатком способа является неравномерность нагружения (деформации) исследуемого материала, приводящая к погрешностям измерения динамических параметров. Известно, что динамические параметры материала зависят от частоты колебаний, температуры, статической нагрузки, величины деформации (возникающих напряжений). Учитывая, что деформация материала неравномерная, то не известно, какой именно деформации соответствуют параметры материалов, полученные с использованием рассматриваемого метода.

Наиболее близким к предлагаемому является резонансный способ измерения динамического модуля упругости и коэффициента механических потерь [2]. Суть метода состоит в установке образца, изготовленного из исследуемого материала, между вибрирующим основанием, у которого имеется возможность плавного изменения частоты колебаний, и инерционным элементом (фиг. 1). При этом получается колебательная система, состоящая из образца материала и инерционного элемента. Образец материала создает упругие свойства колебательной системы за счет модуля продольной упругости материала, формы и размеров образца материала. Инерционный элемент задает инерционные свойства колебательной системы (массу). Изменяя частоту основания, измеряют амплитудно-частотную характеристику полученной системы и по массогабаритным размерам образца материала, массе инерционного элемента, собственной частоте колебаний инерционного элемента рассчитывают динамический модуль упругости материала. Коэффициент механических потерь находят по ширине резонансной кривой на уровне 0,707 и собственной частоте колебаний колебательной системы.

Одним из недостатков этого способа является наличие статической деформации образца материала за счет силы тяжести инерционного элемента. При исследовании низкомодульных материалов такая деформация является значительной, часто недопустимой.

Другим недостатком известного способа является сложность измерения параметров высокодемпфированных материалов. При использовании образца из высокодемпфированного материала резонанс становится невыраженным, и измерить собственную частоту и ширину резонансной кривой не удается.

Третьим недостатком способа является возможность измерения динамических параметров низкомодульных материалов только в низкочастотной области. Как известно собственная частота ω0 упруго-инерционной системы с одной степенью свободы рассчитывается по формуле

где k - жесткость упругого элемента; m - масса инерционного элемента.

При малой жесткости k получается малая частота резонансных колебаний системы.

Для устранения указанных недостатков предлагается дополнительно устанавливать высокодобротные упругие элементы (пружины) между инерционным элементом и вибрирующим основанием, измерять собственную частоту колебаний и ширину резонансной кривой упругоинерционной системы с пружинами без образца материала и с образцом из исследуемого материала. Динамический модуль упругости в паскалях рассчитывают по формуле

где m - масса инерционного элемента, кг;

m0 - масса образца материала, которая добавляется к массе инерционного элемента с коэффициентом 1/3 в соответствии с [9, с. 191], кг;

m1 - масса пружин, кг;

h, А - высота и площадь поперечного сечения образца материала, соответственно, м;

f1 - собственная частота колебаний инерционного элемента на пружинах без образца из исследуемого материала, Гц;

f - собственная частота колебаний инерционного элемента на пружинах с установленным образцом из исследуемого материала, Гц.

Коэффициент механических потерь материала находят по формуле

где η=Δf/f - коэффициент механических потерь оснастки с исследуемым материалом;

η1=Δf1/f1 - коэффициент механических потерь оснастки без исследуемого материала;

k1=4π2*f12*m - жесткость пружин, Н/м;

жесткость образца материала, Н/м.

В случае необходимости испытаний материалов со статической деформацией при установке пружин обеспечивают необходимую статическую деформацию образца из исследуемого материала путем закрепления инерционного элемента на пружинах таким образом, чтобы при установке образца материала между инерционным элементом и вибрирующим основанием обеспечивалась требуемая статическая деформация образца.

На фиг. 1 показана колебательная система, с помощью которой измеряют динамические параметры в известном способе. На основание 1 приклеивается образец материала 2, выполненный в форме прямоугольного параллелепипеда, либо цилиндра, а на образец материала приклеивается инерционный элемент 3.

На фиг. 2 показана колебательная система, с помощью которой измеряют динамические параметры в предлагаемом способе. В предлагаемой системе дополнительно устанавливаются упругие элементы 4 (пружины), повышающие жесткость и резонансную частоту колебательной системы. Кроме этого, пружины создают дополнительные силы, удерживающие инерционный элемент 2 на необходимом удалении от основания 1. Выбирая пружины определенной длины или изменяя уровень крепления инерционного элемента на пружинах можно получать различные статические деформации исследуемого материала.

На фиг. 3 показана расчетная схема колебательной системы, реализующей предлагаемый способ. Грузом массой m2 обозначена суммарная масса 1/3 части образца материала и 1/3 части пружин. Известно [9], что масса упругих элементов увеличивает инерционные свойства колебательной системы с весовым коэффициентом 1/3. Если масса образца материала и пружин много меньше массы инерционного элемента 2, то составляющей m2 можно пренебречь.

Предложение может быть реализовано следующим образом:

1) Для испытаний низкомодульных материалов изготавливается технологическая оснастка, включающая плоское основание высокой жесткости, прямоугольный параллелепипед либо цилиндр из материала большой объемной плотности и жесткости (металл, камень), выполняющий роль инерционного элемента, и пружины.

2) Измеряется масса инерционного элемента m и пружин m1. Инерционный элемент боковой поверхностью закрепляется на пружинах.

3) У полученной колебательной системы измеряется резонансная частота f1 и ширина резонансной кривой на уровне 0.707 Δf1. Находится коэффициент механических потерь оснастки без исследуемого материала по формуле η1=Δf1/f1 и жесткость пружин по формуле k1=4π2*f12*(m+m1/3).

4) Измеряется расстояние между инерционным элементом и основанием.

5) Изготавливаются образец материала в форме инерционного элемента (прямоугольного параллелепипеда либо цилиндра), с размерами основания равными размерам основания инерционного элемента, но своей высотой h. При этом, если нам не нужна статическая деформация материала, то высота h берется равной расстоянию, полученному в п. 4. При требуемой статической деформации растяжения материала высоту образца уменьшают, а при требуемой статической деформации сжатия - увеличивают.

6) Измеряют массу образца материала то-

7) Вклеивают образец материала между инерционным элементом и основанием.

8) У полученной колебательной системы измеряется резонансная частота f и ширина резонансной кривой на уровне 0,707 Δf оснастки с образцом исследуемого материала.

9) Находится коэффициент механических потерь оснастки с исследуемым материалом по формуле η=Δf/f. По формуле (1) вычисляется модуль упругости материала. Жесткость образца материала находится по формуле

и по формуле (2) рассчитывается коэффициент механических потерь материала.

Выбирая пружины различной жесткости, инерционные элементы различной массы и размеров, образцы материалов различных высот получаем различные значения резонансных частот. Если в оснастке предусмотреть возможность крепления инерционных элементов на различном расстоянии от основания, то дополнительно получаем различные статические деформации исследуемого материала.

Список использованных источников

1) ГОСТ Р ИСО 18437-1-2014 НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ Вибрация и удар ОПРЕДЕЛЕНИЕ ДИНАМИЧЕСКИХ МЕХАНИЧЕСКИХ СВОЙСТВ ВЯЗКОУПРУГИХ МАТЕРИАЛОВ Часть 1. Общие принципы.

2) ГОСТ Р ИСО 18437-2-2014 НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ Вибрация и удар ОПРЕДЕЛЕНИЕ ДИНАМИЧЕСКИХ МЕХАНИЧЕСКИХ СВОЙСТВ ВЯЗКОУПРУГИХ МАТЕРИАЛОВ Часть 2. Резонансный метод

3) ГОСТ Р 56801-2015 (ИСО 6721-1:2011) Пластмассы. Определение механических свойств при динамическом нагружении. Часть 1. Общие принципы

4) ГОСТ Р 56802-2015 Пластмассы. Определение механических свойств при динамическом нагружении. Часть 7. Крутильные колебания. Нерезонансный метод

5) ГОСТ Р 56803-2015 (ИСО 6721-3:1994) Пластмассы. Определение механических свойств при динамическом нагружении. Часть 3. Колебания изгиба. Метод резонансной кривой

6) ГОСТ Р 56804-2015 (ИСО 6721-4:2008) Пластмассы. Определение механических свойств при динамическом нагружении. Часть 4. Колебания при растяжении. Нерезонансный метод

7) ГОСТ Р 56805-2015 (ИСО 14125:1998) Композиты полимерные. Методы определения механических характеристик при изгибе

8) А.с. №1539578. Долгов Г.Ф., Евграфов В.В., Талицкий Е.Н. Резонансный способ определения динамических характеристик низкомодульных материалов.

9) Работнов Ю.Н. Механика деформируемого твердого тела. - Учеб. пособие для вузов. - 2-е изд., испр. - М.: Наука. Гл. ред. физ.-мат.лит., 1988. - 712 с.


Резонансный способ измерения динамических механических параметров низкомодульных вибропоглощающих материалов
Резонансный способ измерения динамических механических параметров низкомодульных вибропоглощающих материалов
Резонансный способ измерения динамических механических параметров низкомодульных вибропоглощающих материалов
Резонансный способ измерения динамических механических параметров низкомодульных вибропоглощающих материалов
Резонансный способ измерения динамических механических параметров низкомодульных вибропоглощающих материалов
Источник поступления информации: Роспатент

Showing 51-60 of 108 items.
20.05.2019
№219.017.5d39

Способ получения титановых микросфер узкого гранулометрического состава с содержанием карбида титана

Изобретение относится к получению содержащих карбид титана титановых микросфер. Проводят обработку поверхности титановой заготовки лазерным излучением. В качестве титановой заготовки используют титановую пластину. Обработку поверхности ведут под слоем жидкого углеводорода в изолированном от...
Тип: Изобретение
Номер охранного документа: 0002688001
Дата охранного документа: 17.05.2019
24.05.2019
№219.017.5eea

Композиция для защитного покрытия

Изобретение относится к композициям на основе полиорганосилоксанов, затвердевающих при температуре окружающего воздуха и может найти применение в строительной отрасли в качестве защитного барьера, предохраняющего элементы металлических конструкций зданий и сооружений от воздействия...
Тип: Изобретение
Номер охранного документа: 0002688750
Дата охранного документа: 22.05.2019
07.06.2019
№219.017.74e6

Сырьевая смесь для изготовления теплоизоляционных древесно-полимерных композиционных материалов

Изобретение относится к сырьевой смеси для получения теплоизоляционных композиционных строительных материалов и может быть использовано для получения изделий в виде плит и блоков для внутренней отделки помещений. Сырьевая смесь состоит из измельченных древесных отходов и связующего, в качестве...
Тип: Изобретение
Номер охранного документа: 0002690826
Дата охранного документа: 05.06.2019
09.06.2019
№219.017.7652

Состав композиционного строительного материала универсального назначения

Изобретение относится к области создания составов строительных материалов и может быть использовано для получения композиционных материалов универсального назначения. Смесь для получения композиционного материала универсального назначения включает наполнитель, минеральное вяжущее и затворитель....
Тип: Изобретение
Номер охранного документа: 0002690983
Дата охранного документа: 07.06.2019
13.06.2019
№219.017.80ec

Вакуумный захватный агрегатный модуль

Изобретение относится к области машиностроения, роботостроения и может применяться при взятии и установке изделий на рабочую поверхность с требуемым ходом перемещения захватной головки. Вакуумный захватный агрегатный модуль выполнен с возможностью захвата за поверхность изделия и установки на...
Тип: Изобретение
Номер охранного документа: 0002691155
Дата охранного документа: 11.06.2019
22.06.2019
№219.017.8e3e

Способ изготовления поршневой заготовки из заэвтектического силумина

Изобретение относится к области металлургии и может быть использовано для изготовления поршней двигателей внутреннего сгорания из заэвтектического силумина. Расплав рафинируют до уровня содержания водорода не более 0,35 см /100 г. Внепечное модифицирование осуществляют с подачей лигатурного...
Тип: Изобретение
Номер охранного документа: 0002692150
Дата охранного документа: 21.06.2019
22.06.2019
№219.017.8e79

Способ получения слитков из деформируемых алюминиевых сплавов

Изобретение относится к металлургии, а именно к обработке кристаллизующегося металла давлением, в частности к получению слитков из деформируемых алюминиевых сплавов. Способ получения слитков из деформируемых алюминиевых сплавов включает приготовление расплава, перегретого выше температуры...
Тип: Изобретение
Номер охранного документа: 0002692149
Дата охранного документа: 21.06.2019
26.06.2019
№219.017.928a

Способ борьбы с межсимвольными искажениями цифровых сигналов

Изобретение относится к способу борьбы с межсимвольными искажениями цифровых сигналов. Технический результат заключается в увеличении общей помехоустойчивости передачи сигналов по многолучевым каналам. Способ включает в себя ввод основного сигнала, формирование тестовых сигналов, поочередное...
Тип: Изобретение
Номер охранного документа: 0002692429
Дата охранного документа: 24.06.2019
28.06.2019
№219.017.9949

Устройство кумуляции плазменных сгустков

Изобретение относится к устройству торцевого типа предназначено для кумуляции плазменных сгустков, обладающих большим временем свечения в свободной атмосфере. В заявленном устройстве мощный импульс тока (длительностью ≈ 100 мс и силой тока до 15 кА), генерируемый индукционным накопителем...
Тип: Изобретение
Номер охранного документа: 0002692689
Дата охранного документа: 26.06.2019
03.07.2019
№219.017.a443

Способ диагностики недвоичных блоковых кодов

Изобретение относится к технике связи и может быть использовано для определения неизвестной структуры кодера недвоичных блоковых систематических кодов и несистематических кодов на основе анализа принимаемой кодовой последовательности. Техническим результатом является повышение...
Тип: Изобретение
Номер охранного документа: 0002693190
Дата охранного документа: 01.07.2019
Showing 1-1 of 1 item.
17.01.2020
№220.017.f63a

Способ измерения вертикальной координаты центра тяжести объекта

Изобретение относится к измерительной технике и может быть использовано для измерения координат центра тяжести реальных объектов (например, транспортных средств), которые допускается наклонять на углы величиной от десятых долей до одного радиана. Техническим результатом является снижение...
Тип: Изобретение
Номер охранного документа: 0002711210
Дата охранного документа: 15.01.2020
+ добавить свой РИД