×
30.05.2020
220.018.2283

Результат интеллектуальной деятельности: Способ стабилизации резисторов

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии изготовления резисторов, в частности к стабилизации резисторов, и может быть использовано при производстве металлопленочных тензорезисторных датчиков давления, силы, деформации и гибридных интегральных схем в радиотехнической и приборостроительной промышленности. Стабилизацию резисторов проводят «пакетами» импульсов напряжения определенной амплитуды, длительности, скважности и энергии в три этапа, при этом энергию импульса напряжения на первом этапе стабилизации задают из условия предупреждения выгорания резисторов, на втором этапе - из условия достаточности температуры для структурирования тонкой резистивной пленки, на третьем этапе - из условия обеспечения ускоренной взаимодиффузии резистивной пленки и пленки диэлектрика, при этом длительность импульса и его амплитуда на первом и втором этапах стабилизации задают из условия обеспечения достаточной температуры для структурирования тонкой резистивной пленки, а на третьем этапе стабилизации - из условия обеспечения достаточной температуры для окисления верхнего слоя резистивной пленки и ускоренной взаимодиффузии резистивной пленки и пленки диэлектрика. Техническим результатом является повышение стабильности параметров резисторов при хранении и эксплуатации. 3 з.п. ф-лы.

Изобретение относится к технологии изготовления резисторов, в частности к стабилизации тонкопленочных резисторов и может быть использовано при производстве металлопленочных тензорезисторных датчиков давления, силы, деформации и гибридных интегральных схем в радиотехнической и приборостроительной промышленности.

Известен способ изготовления тонкопленочных резисторов (патент РФ №2327241, Н01С 17/00, опубликовано 20.06.2008), включающий стабилизацию параметров резисторов термообработкой резисторов в термопечи, доводя температуру термопечи с установленными в ней резисторами до (345-365)°С, выдерживают 3 ч, охлаждают вместе с термопечью до температуры (18-25)°С, снова доводят температуру термопечи до (375-385)°С, выдерживают 2 ч и снова охлаждают вместе с печью до температуры (18-25)°С.

Недостатками известного способа являются:

- длительность процесса стабилизации (около 6,0÷7,0 часов);

- нестабильность параметров резисторов, обусловленных незаконченностью структурообразования резистивной пленки из-за наличия в ней скрытых дефектов, связанных с исходным состоянием поверхности подложки и непосредственно самим процессом напыления.

Известен способ изготовления пленочных резисторов (авторское свидетельство СССР №1358653, Н01С 17/00, Н01С 3/00, опубликовано 27.05.2012), включающий термическую обработку диэлектрического основания с нанесенной резистивной пленкой и импульсную токовую тренировку импульсами длительностью 10-5-5⋅10-4 с, причем амплитуду каждого последующего импульса увеличивают на 3-5 В и тренировку прекращают по достижении приращения сопротивления резистора на 0,1-0,5% от минимальной величины сопротивления, полученного при импульсной токовой тренировке.

Недостатком данного способа является низкая стабильность параметров резисторов, обусловленных незаконченностью структурообразования резистивной пленки.

Наиболее близким (патент РФ №2306625, Н01С 17/22, Н01С 17/30, опубликовано 20.09.2007 - прототип) по технической сущности является способ стабилизации и подгонки тонкопленочных резисторов импульсами напряжения определенной амплитуды, длительности и скважности, стабилизацию и подгонку проводят в едином технологическом цикле при неизменной амплитуде, длительности и скважности импульсов напряжения, причем, стабилизацию проводят «пакетами» импульсов напряжения до нижнего не изменяющегося значения сопротивления, которое фиксируют контрольным «пакетом» импульсов напряжения, после чего осуществляют подгонку сопротивлений резисторов подачей на них «пакетов» импульсов напряжения, в которых количество импульсов увеличивают в несколько раз, при этом сопротивление каждого резистора увеличивают до требуемого номинального значения, а в промежутках между «пакетами» импульсов непрерывно контролируют изменение сопротивлений резисторов, как при стабилизации их сопротивлений, так и при их подгонке.

Недостатком данного способа является низкая стабильность параметров резисторов, обусловленных незаконченностью структурообразования резистивной пленки.

Целью изобретения является повышение стабильности параметров резисторов.

Поставленная цель достигается тем, что в способе стабилизации резисторов, включающем стабилизацию резисторов «пакетами» импульсов напряжения определенной амплитуды, длительности, скважности и энергии с непрерывным контролем изменения сопротивлений резисторов до неизменяющегося значения сопротивления при скважности импульсов напряжения, обеспечивающей предупреждение перегрева резисторов, и длительности импульса, его амплитуде и энергии в определенные периоды стабилизации, обеспечивающих достаточную температуру для структурирования тонкой резистивной пленки, согласно изобретению стабилизацию резисторов проводят в три этапа, при этом энергию импульса напряжения на первом этапе стабилизации задают из условия предупреждения выгорания резисторов, на втором этапе - из условия достаточности температуры для структурирования тонкой резистивной пленки, на третьем этапе - из условия обеспечения ускоренной взаимодиффузии резистивной пленки и пленки диэлектрика, при этом длительность импульса и его амплитуда на первом и втором этапах стабилизации задают из условия обеспечения достаточной температуры для структурирования тонкой резистивной пленки, а на третьем этапе стабилизации - из условия обеспечения достаточной температуры для окисления верхнего слоя резистивной пленки и ускоренной взаимодиффузии резистивной пленки и пленки диэлектрика.

Кроме того, в способе стабилизации резисторов скважность импульсов напряжения задают из условия:

где m - скважность импульсов,

tимп. - длительность импульса,

tост. - временной промежуток между импульсами, время остывания,

где Qpeз. - количество теплоты, полученное резистором за время прохождения импульса длительностью tимп.,

Рпер. - мощность, передаваемая от резистора подложке (основанию, на котором он расположен),

Ризл. - мощность, рассеиваемая поверхностью резистора в окружающую среду,

длительность импульса напряжения и его амплитуда на первом и втором этапах связаны соотношением:

где Uимп - амплитуда импульсов напряжения,

Rн - начальное сопротивление резистора, на третьем этапе связаны соотношением:

где tимп.1 - длительность импульса при проведении третьего этапа обработки,

Qдиэл. - количество теплоты, полученное диэлектриком от резистора за время прохождения импульса длительностью tимп.1,

Uимп1 - амплитуда импульсов при проведении третьего этапа обработки,

Rн - значение сопротивления резистора, полученное после проведения второго этапа обработки,

- мощность, рассеиваемая поверхностью диэлектрика в окружающую среду,

- мощность, передаваемая от диэлектрика нижерасположенному основанию,

энергия импульса напряжения на первом этапе стабилизации ограничивается выражением:

на втором этапе -

на третьем этапе -

В способе стабилизации резисторов на первом этапе стабилизации под воздействием импульсов напряжения, организованных в «пакеты» и имеющих определенную амплитуду, длительность и скважность, на участках резистивного слоя, имеющих скрытые дефекты и мелкие кристаллиты и характеризующихся повышенным сопротивлением, выделяется мгновенная импульсная мощность, разогревающая резистивную пленку в местах с наибольшей плотностью дефектов. В результате происходит укрупнение кристаллитов, без их выгорания, и устраняются скрытые дефекты, значение сопротивления незначительно уменьшается. На втором этапе стабилизации в результате кратковременного разогрева изменяется структура резистивной пленки, при этом сопротивление резистора уменьшается (т.е. начальная величина сопротивления Rн уменьшается на Δr), что подтверждает происходящие структурные изменения в резистивной пленке. На третьем этапе стабилизации под воздействием импульсов напряжения, организованных в «пакеты», имеющих уменьшенную амплитуду и увеличенную длительность, по сравнению с первыми двумя этапами, происходит разогрев не только резистивного слоя, но и слоя диэлектрика. В результате происходит окисление верхнего слоя резистивной пленки и образуется промежуточный электропроводный слой силицидов между резистивной пленкой и пленкой диэлектрика. Обработку в каждом этапе проводят до неизменения значения сопротивления резистора в каждом этапе, при подаче на него последовательно трех «пакетов» импульсов. Поэтому, во втором этапе происходит полное структурирование (укрупнение кристаллитов) резистивной пленки, а в третьем этапе сверху резистивной пленки образуется плотная окисная пленка, препятствующая дальнейшему проникновению кислорода к резистивной пленке, а снизу резистивной пленки образуется насыщенный промежуточный слой силицидов, препятствующий дальнейшей взаимодиффузии резистивной пленкой и пленки диэлектрика.

Таким образом, изобретение позволяет проводить полное структурирование (укрупнение кристаллитов), выявлять и устранять скрытые дефекты резистивного слоя и образовывать своеобразный защитный «саркофаг» для резистивной пленки, что существенным образом влияет на надежность и стабильность параметров резисторов в процессе эксплуатации и хранения.

На основании выше сказанного можно сделать вывод о соответствии заявляемого технического решения критерию «изобретательский уровень». Пример практического исполнения:

Проводилась стабилизация тонкопленочных резисторов, сформированных на металлической подложке с тонким изолирующим слоем методом термического напыления в вакууме из резистивного сплава на основе нихрома. Значения сопротивлений были измерены:

На первом этапе стабилизации амплитуду импульсов устанавливали 139 В, при этом значения сопротивлений установились:

На втором этапе стабилизации амплитуду импульсов устанавливали 180 В, при этом значения сопротивлений установились:

На третьем этапе стабилизации амплитуду импульсов устанавливали 99 В, при этом значения сопротивлений установились:

После изготовления резисторов, провели испытания: поместили резисторы в термокамеру с температурой +250°С и выдержали в течение 5 часов, при этом значения сопротивлений установились:

Изменение значений резисторов после испытаний составили:

Изобретение позволяет проводить стабилизацию резисторов за счет полного структурирования (укрупнения кристаллитов), выявления и устранения скрытых дефектов резистивного слоя и образовывания своеобразного защитного «саркофага» для резистивной пленки «пакетами» импульсов напряжения определенной амплитуды, длительности, скважности и энергии с непрерывным контролем изменения сопротивлений резисторов до неизменяющегося значения сопротивления при скважности импульсов напряжения, обеспечивающей предупреждение перегрева резисторов, и длительности импульса, его амплитуде и энергии в определенные периоды стабилизации, обеспечивающих достаточную температуру для структурирования тонкой резистивной пленки, стабилизацию резисторов проводят в три этапа, при этом энергию импульса напряжения на первом этапе стабилизации задают из условия предупреждения выгорания резисторов, на втором этапе - из условия достаточности температуры для структурирования тонкой резистивной пленки, на третьем этапе - из условия обеспечения ускоренной взаимодиффузии резистивной пленки и пленки диэлектрика, при этом длительность импульса и его амплитуда на первом и втором этапах стабилизации задают из условия обеспечения достаточной температуры для структурирования тонкой резистивной пленки, а на третьем этапе стабилизации - из условия обеспечения достаточной температуры для окисления верхнего слоя резистивной пленки и ускоренной взаимодиффузии резистивной пленки и пленки диэлектрика.

Таким образом предложенное техническое решение позволяет повысить стабильность параметров резисторов при хранении и эксплуатации.


Способ стабилизации резисторов
Способ стабилизации резисторов
Способ стабилизации резисторов
Способ стабилизации резисторов
Способ стабилизации резисторов
Способ стабилизации резисторов
Способ стабилизации резисторов
Способ стабилизации резисторов
Способ стабилизации резисторов
Источник поступления информации: Роспатент

Showing 1-10 of 25 items.
13.01.2017
№217.015.6e53

Способ уменьшения температурной погрешности датчика холла

Изобретение относится к измерительной технике, в частности к средствам измерения электрического тока, и может быть использовано в датчиках Холла. Способ заключается в том, что на первый и второй токовые контакты датчика Холла, который используется для измерения тока, подается постоянный ток, а...
Тип: Изобретение
Номер охранного документа: 0002596905
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7e36

Резонансный преобразователь давления

Изобретение относится к области измерительной техники, в частности к преобразователям давлений, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых датчиков давлений. Сущность: преобразователь давления содержит кремниевую мембрану (1), предназначенную для...
Тип: Изобретение
Номер охранного документа: 0002601221
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f24

Способ изготовления микромеханических упругих элементов

Изобретение относится к приборостроению и может быть использовано при изготовлении кремниевых микромеханических датчиков. Сущность изобретения: в способе изготовления упругих элементов из монокристаллического кремния окисляют плоскую круглую пластину с ориентацией базовой поверхности в...
Тип: Изобретение
Номер охранного документа: 0002601219
Дата охранного документа: 27.10.2016
26.08.2017
№217.015.dcee

Пьезокерамический материал

Изобретение относится к области сегнетомягких пьезокерамических материалов, предназначенных для ультразвуковых устройств, работающих в режиме приема, различных пьезодатчиков, а также для устройств монолитного типа, таких как многослойные пьезоэлектрические актюаторы. Материал, включающий оксиды...
Тип: Изобретение
Номер охранного документа: 0002624473
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.e05a

Способ изготовления кристаллов микроэлектромеханических систем

Изобретение относится к области приборостроения и может применяться при изготовлении кремниевых кристаллов микроэлектромеханических систем, используемых в конструкциях микромеханических приборов, таких как акселерометры, гироскопы, датчики угловой скорости. В способе изготовления кристаллов...
Тип: Изобретение
Номер охранного документа: 0002625248
Дата охранного документа: 12.07.2017
26.08.2017
№217.015.eda9

Волоконно-оптический датчик давления

Изобретение относится к измерительной технике и может быть использовано в различных системах контроля и измерения давления. Волоконно-оптический датчик давления, выполненный на основе оптического волокна, содержит корпус, имеющий канал для подвода рабочей среды, оканчивающийся заглушкой, и...
Тип: Изобретение
Номер охранного документа: 0002628734
Дата охранного документа: 21.08.2017
26.08.2017
№217.015.edb3

Тонкопленочный датчик давления

Изобретение относится к измерительной технике и может быть использовано в тонкопленочных датчиках давления, предназначенных для измерения давления в агрегатах ракетной и космической техники при воздействии широкого диапазона нестационарных температур и повышенных виброускорений. Заявленный...
Тип: Изобретение
Номер охранного документа: 0002628733
Дата охранного документа: 21.08.2017
26.08.2017
№217.015.ee33

Способ формирования монокристаллического элемента микромеханического устройства

Изобретение относится к области приборостроения и могжет быть использованы для изготовления монокристаллических элементов, таких как струны, упругие элементы, технологические перемычки, используемые в конструкциях микромеханических приборов, например, микромеханических акселерометров,...
Тип: Изобретение
Номер охранного документа: 0002628732
Дата охранного документа: 21.08.2017
10.05.2018
№218.016.3a16

Формирователь импульсов из сигналов индукционных датчиков частоты вращения

Изобретение относится к измерительной технике. Техническим результатом является обеспечение высокой точности измерения частоты входного сигнала в условиях наличия различного рода помех и упрощения схемы. Формирователь импульсов из сигналов индукционных датчиков частоты вращения, содержащий...
Тип: Изобретение
Номер охранного документа: 0002647676
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3df4

Способ изготовления упругих элементов микромеханических датчиков

Изобретение относится к области приборостроения и может применяться при изготовлении упругих элементов, используемых в конструкциях кремниевых чувствительных элементов микромеханических датчиков - акселерометров, гироскопов, датчиков угловой скорости. В способе изготовления упругих элементов из...
Тип: Изобретение
Номер охранного документа: 0002648287
Дата охранного документа: 23.03.2018
Showing 1-10 of 12 items.
12.01.2017
№217.015.5c07

Способ обнаружения и управления нестандартной ситуацией, интеллектуальная станция для осуществления способа

Изобретение относится к способу и к средству обнаружения опасностей жизнедеятельности человека, включая пожарную опасность, и борьбы с этими опасностями. Обнаружение опасностей осуществляется измерением информативных параметров путем зондирования среды защищаемого объекта при помощи...
Тип: Изобретение
Номер охранного документа: 0002589617
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.8b8e

Способ адаптивного контроля пожарной опасности и адаптивного тушения, система для его осуществления

Способ адаптивного контроля пожарной опасности и адаптивного тушения, система для его осуществления предназначены для многофакторного контроля среды защищаемого объекта на предмет раннего обнаружения пожара и локализации его при оптимальных режимах расхода огнетушащего вещества. Адаптивный...
Тип: Изобретение
Номер охранного документа: 0002604300
Дата охранного документа: 10.12.2016
26.08.2017
№217.015.e78d

Способ прокатки рельсов

Изобретение относится к области прокатки рельсов. Способ включает прокатку в черновом и чистовом четырехвалковых универсальных калибрах с горизонтальными и вертикальными валками, последние из которых выполнены с профильными ручьями и буртами со стороны головки профиля, и в предчистовом...
Тип: Изобретение
Номер охранного документа: 0002627140
Дата охранного документа: 03.08.2017
20.01.2018
№218.016.10b1

Способ и устройство активного контроля подвижности поворотного механизма крана

Способ и устройство активного контроля и поддержания подвижности поворотного механизма крана трубопроводного предназначены для автоматического контроля технического состояния крана и для поддержания его работоспособности в процессе эксплуатации, не допуская увеличения коэффициента трения между...
Тип: Изобретение
Номер охранного документа: 0002633738
Дата охранного документа: 17.10.2017
01.11.2018
№218.016.97c0

Способ противопожарной защиты складов со стеллажным хранением и устройство сигнально-пусковое автономное автоматическое для осуществления способа

Способ противопожарной защиты складов со стеллажным хранением и устройство сигнально-пусковое автономное автоматическое для осуществления способа относятся к области автоматических противопожарных систем с водозаполненными спринклерными сетями, в том числе с применением тонкораспыленной воды....
Тип: Изобретение
Номер охранного документа: 0002671122
Дата охранного документа: 29.10.2018
07.12.2018
№218.016.a4e4

Система объемного пожаротушения

Система объемного пожаротушения обеспечивает автономное обнаружение и тушение пожара в замкнутых объемах, характеризуемые протяженными размерами, наличием отсеков, лабиринтов, перегородок. Система обеспечивает посредством устройства сигнально-пускового автономного и шлейфа сигнализации с...
Тип: Изобретение
Номер охранного документа: 0002674239
Дата охранного документа: 05.12.2018
27.04.2019
№219.017.3bb3

Способ противопожарной защиты и система для его осуществления

Способ противопожарной защиты и система для его осуществления относится к автоматическому обнаружению пожара и автоматическому тушению посредством спринклерных воздухозаполненных под давлением или водозаполненных систем тушения. Способ характеризуется тем, что монтируют две схожие по схеме...
Тип: Изобретение
Номер охранного документа: 0002685866
Дата охранного документа: 23.04.2019
27.06.2019
№219.017.9900

Способ обнаружения пожарной опасности и система для его осуществления

Способ обнаружения пожарной опасности и система для его осуществления относятся к обеспечению пожарной безопасности и предназначены для обнаружения пожарной опасности на защищаемых объектах, характеризуемых затрудненным доступом к информативным данным о пожаре. Обнаружение пожарной опасности...
Тип: Изобретение
Номер охранного документа: 0002692499
Дата охранного документа: 25.06.2019
02.07.2019
№219.017.a330

Способ многофакторного контроля пожарной опасности и устройство для его осуществления

Способ многофакторного контроля пожарной опасности и устройство для его осуществления служат для автоматического обнаружения пожарной опасности на ее ранней стадии возникновения. В основе работы способа и устройства заложена работа извещателя пожарного аспирационного, имеющего входной и...
Тип: Изобретение
Номер охранного документа: 0002692926
Дата охранного документа: 28.06.2019
12.10.2019
№219.017.d52d

Устройство для лечебной тепловой обработки пчел

Изобретение относится к сельскому хозяйству, в частности к устройствам для лечебной тепловой обработки пчел. Устройство состоит из корпуса магазинной надставки, в котором посредством перегородки выполнены две зоны: всасывания, в которой размещен электродвигатель с вентилятором, и нагнетания, в...
Тип: Изобретение
Номер охранного документа: 0002702678
Дата охранного документа: 09.10.2019
+ добавить свой РИД