×
29.05.2020
220.018.2181

Результат интеллектуальной деятельности: Способ переработки вакуумного газойля

Вид РИД

Изобретение

№ охранного документа
0002722103
Дата охранного документа
26.05.2020
Аннотация: Изобретение относится к области нефтепереработки и нефтехимии, в частности к переработке вакуумных газойлей. Может быть использовано в нефтеперерабатывающей промышленности для получения бензиновой и дизельной фракций с низким содержанием серы без существенных потерь вследствие газо- и коксообразования. Способ переработки вакуумного газойля включает предварительное окисление газойля смесью пероксида водорода и муравьиной кислоты при мольном соотношении НО:НСООН = 3:4, S:HO = 1:5 и последующий крекинг в реакторе-автоклаве, отличается тем, что окисленный продукт разделяют на полярные и неполярные компоненты, крекинг которых проводят раздельно с различной продолжительностью процесса при температуре 450-500°С. Техническим результатом предлагаемого способа является получение продукта, характеризующегося высоким содержанием дистиллятных фракций (порядка 70% масс.) при одновременно малом газо- и коксообразовании. При этом полиароматические соединения серы за счет предварительной окислительной модификации разрушаются с образованием менее термостойких производных тиофена. 1 табл., 8 пр.

Изобретение относится к области нефтепереработки и нефтехимии, в частности, к переработке вакуумных газойлей. Может быть использовано в нефтеперерабатывающей промышленности для получения бензиновой и дизельной фракций с низким содержанием серы без существенных потерь вследствие газо- и коксообразования.

В настоящее время в промышленности при переработке вакуумных дистиллятов наибольшее распространение получили гидрокаталитические процессы - гидроочистка и гидрокрекинг. Применение данных методов позволяет значительно сократить содержание гетероорганических соединений в полученных продуктах, увеличить выход бензиновой и дизельной фракций. Главный недостаток гидрокаталитических процессов заключается в необходимости поддержания высоких давления и температуры в реакторах, что обуславливает высокие эксплуатационные расходы и снижение технико-экономических показателей работы заводов, на которых их применяют.

В работе [Н. Behbehani and М.K. Andari, Petrol. Sci. Technol. 18, 51-61 (2000)] методом газожидкостной хроматографии с использованием хемилюминесцентного сероселективного детектора было показано, что серосодержащие соединения вакуумного газойля представлены, преимущественно, дибензотиофеном (ДБТ), бензонафтотиофеном и их алкильными производными. Применение гидрокаталитических процессов позволяет успешно удалить из сырья только тиолы, сульфиды и тиофены, тогда как вышеперечисленные сернистые соединения, а также их производные, из-за стерических затруднений в реакции гидрообессеривания вступают лишь частично.

В окислительных процессах реакционноспособность полиароматических сернистых соединений выше, чем у тиофена (Т) и бензотиофена (БТ), в противоположность их устойчивости в процессе гидрообессеривания. Полученные при окислении производные - сульфоны и сульфоксиды - характеризуются большей полярностью, что позволяет легко выделить их из смеси с углеводородами методами экстракции либо адсорбции. Кроме того, при окислении атома серы связь C-S становится менее прочной и легче разрушается при крекинге. Комбинирование предварительной окислительной модификации с последующей термообработкой представляет особый практический интерес, поскольку позволит одновременно эффективно удалять полиароматические сернистые соединения тяжелого углеводородного сырья и одновременно получать дополнительные количества важных для промышленности дистиллятных фракций.

Известен способ обессеривания сырой нефти пероксидом водорода с выделением продуктов окисления (RU 2677462 С1, МПК: C10G 27/04, C10G 27/12, C10G 17/02, C10G 53/14; Акопян А.В., Поликарпова П.Д., Федоров Р.А., Тараканова А.В. и др.; опубликовано: 17.01.2019). Способ описывает окисление сырой нефти каталитической композицией, включающей пероксид водорода не менее 20% мае. и органическую или минеральную кислоту, имеющую рКа - 3-4,76 и не разлагающую пероксид водорода. Недостатком способа является экстракционное удаление окисленных серосодержащих соединений диметилформамидом, т.к. данный растворитель не является селективным.

Описан вариант переработки тяжелых нефтяных остатков, включающий предобработку сырья воздухом при температуре 50-250°С, давлении 0,5-1 МПа и последующий термокрекинг при температуре 300-450°С, давлении 0,1-5 МПа и объемной скорости 0,5-2 ч-1. При этом выход светлых фракций составляет 70-75% мас. (RU 2184761 С1, МПК: C10G 9/00, C10G 55/04; Демьянов С.В., Гольдберг Ю.М., Ермаков А.Н.и д.р.; опубликовано: 10.10.2004). Недостатком способа является проведение предобработки воздухом при жестких условиях - высоких температуре и давлении.

Наиболее близким к предлагаемому изобретению является вариант крекинга вакуумного газойля, предварительно окисленного пероксидом водорода в присутствии муравьиной кислоты. (Iovik Y.A., Krivtsov Е.В. Chemical transformations of sulfur-containing components of vacuum distillate in the course of combined thermo-oxidative treatment // AIP Conference Proceeding. - V. 2051. - P. 020107). Мольное соотношение серы в вакуумном газойле к использованному количеству пероксида водорода составляло 1:5, мольное отношение Н2О2:НСООН - 3:4. Перемешивание реакционной смеси проводилось в течение 90 минут. Термокрекинг окисленного вакуумного газойля проводился в реакторе - автоклаве при 500°С в течение 60 минут. Окислительная предобработка позволяет существенно снизить термическую стабильность компонентов вакуумного газойля, благодаря чему достигается высокая степень удаления серы. Однако существенным недостатком являются потери дистиллятных фракций вследствие газообразования, составляющие порядка 20% масс.

Задачей настоящего изобретения является удаление полиароматических термостойких сернистых соединений из вакуумного газойля с одновременным получением дистиллятных фракций.

Техническим результатом предлагаемого способа является получение продукта, характеризующегося высоким содержанием дистиллятных фракций (порядка 70% масс.) при одновременно малом газо- и коксообразовании. При этом полиароматические соединения серы за счет предварительной окислительной модификации разрушаются с образованием менее термостойких производных тиофена.

Поставленная задача решается следующим образом: окисление вакуумного газойля проводят смесью пероксида водорода и муравьиной кислоты в установленных экспериментально оптимальных условиях (продолжительность окисления 90 мин, мольное отношение Н2О2:НСООН = 3:4, So:H2O2 = 1:5). Водную фазу удаляют декантацией, далее полученные образцы подвергают хроматографическому разделению на силикагеле марки АСК. Отношение массы окисленного вакуумного газойля к массе сорбента составляет 1:1. Неполярные компоненты смывают с силикагеля гексаном, концентрат окисленных ароматических и серосодержащих соединений - этанол-бензольной смесью (в объемном соотношении 1:1).

Крекинг компонентов окисленного газойля проводят в реакторах-автоклавах объемом 12 см3 в среде воздуха при температурах 450 и 500°С, с различной продолжительностью процесса. Масса навески окисленного вакуумного газойля составляет 7 г. Материальный баланс рассчитывают следующим образом: выход газообразных продуктов соответствует потере массы реактора с образцом после дегазирования. После удаления жидких продуктов реактор промывают хлороформом и взвешивают. Полученную разницу между массой реактора до эксперимента и после определяют как масса кокса. Фракционный состав жидких продуктов крекинга определяют методом газо-жидкостной хроматографии на хроматографе «Кристалл-2000М» с пламенно-ионизационным детектором. Содержание бензиновой и дизельной фракции определяют на основании времен удерживания н-алканов (ундекана и генэйкозана). Содержание серы определяют в соответствии с ГОСТ Р 51947-2002 методом энергодисперсионной рентгенофлуоресцентной спектрометрии на приборе «Спектроскан SL».

Суммарный состав продуктов термообработки компонентов вакуумного газойля рассматривают с учетом нормирования материального баланса процесса на выходы неполярных продуктов (НП, 74,3% масс.) и полярных продуктов (ПП, 25,7% масс.), полученных при адсорбционном разделении.

ПРИМЕРЫ КОНКРЕТНОГО ВЫПОЛНЕНИЯ

Пример 1. Навеску 30 г вакуумного газойля окисляют при комнатной температуре смесью из 9,23 г раствора пероксида водорода (содержание Н2О2 не менее 35% мас.) и 6,86 г муравьиной кислоты (содержание НСООН не менее 95%). Мольные соотношения Н2О2:НСООН = 3:4, So:H2O2 = 1:5. Водную фазу как побочный продукт протекающих реакций удаляют декантацией. Далее полученный образец подвергают хроматографическому разделению на силикагеле. Отношение массы окисленного вакуумного газойля к массе сорбента составляет 1:1. Неполярные компоненты смывают с силикагеля 120 мл гексана, концентрат окисленных ароматических и серосодержащих соединений - 60 мл этанол-бензольной смеси (в объемном соотношении 1:1). Выделенные неполярные и полярные компоненты отделяют от растворителя посредством вакуумной перегонки и высушивают до постоянной массы.

Далее 7 г полярных продуктов крекируют в реакторе-автоклаве объемом 12 см3 при температуре 500°С в течение 10 минут. Аналогичную навеску неполярных продуктов крекируют в реакторе-автоклаве при температуре 450°С и продолжительности процесса 10 минут. Определяют вещественный и фракционный состав полученных жидких продуктов, а также содержание серы в них. В таблице 1 приведен суммарный состав продуктов термообработки компонентов вакуумного газойля с учетом нормирования материального баланса процесса на выходы НП (74,3% масс.) и ПП (25,7% масс).

Пример 2. Отличается от примера 1 условиями термообработки неполярных продуктов. Крекинг НП проводят при 450°С и продолжительности процесса 30 минут. Суммарные показатели приведены в таблице 1.

Пример 3. Полярные продукты крекируют в условиях, аналогичных примерам 1 и 2. Неполярные компоненты при 450°С и продолжительности процесса 60 минут. Суммарный материальный баланс протекающих процессов с учетом выходов НП и ПП представлен в таблице 1.

Пример 4. Отличается от примеров 1-3 условиями крекинга неполярных продуктов. Процесс проводят при 450°С в течение 90 минут. Суммарные показатели представлены в таблице 1.

Пример 5. Крекинг полярных продуктов проводят в реакторе-автоклаве при температуре 500°С и продолжительности 10 минут. Неполярные продукты подвергают термическому крекингу при тех же условиях. Суммарный состав продуктов крекинга НП и ПП представлен в таблице 1.

Пример 6. Полярные продукты крекируют в аналогичных примерам 1-5 условиях, тогда как для неполярных продуктов на 10 минут увеличивают продолжительность термического воздействия, по сравнению с примером 5. Суммарный материальный баланс представлен в таблице 1. Данные условия характеризуются наиболее качественным составом полученных продуктов.

Пример 7. Условия термообработки полярных продуктов аналогичны вышеуказанным примерам. Крекинг неполярных компонентов проводят при 500°С и времени проведения процесса 30 минут. Суммарный состав продуктов крекинг НП и ПП представлен в таблице 1.

Пример 8. Крекинг полярных продуктов проводят в аналогичных примеру 7 условиях. Термообработку неполярных продуктов проводят при 500°С и продолжительности процесса 40 минут. Суммарный материальный баланс протекающих процессов с учетом выходов НП и ПП представлен в таблице 1.

Таким образом, предлагаемое решение позволяет получать дополнительные количества дистиллятных фракций за счет вовлечения в процесс крекинга полиароматических высокомолекулярных соединений, существенно снизить потери обусловленные газо- и коксообразованием, а также уменьшить содержание серы в жидких продуктах практически в два раза.

Способ переработки вакуумного газойля, включающий предварительное окисление газойля смесью пероксида водорода и муравьиной кислоты при мольном соотношении НО:НСООН = 3:4, S:HO = 1:5 и последующий крекинг в реакторе-автоклаве, отличающийся тем, что окисленный продукт разделяют на полярные и неполярные компоненты, крекинг которых проводят раздельно с различной продолжительностью процесса при температуре 450-500°С.
Источник поступления информации: Роспатент

Showing 11-20 of 40 items.
10.04.2015
№216.013.3763

Способ предпосадочной обработки клубней картофеля

Способ обработки клубней картофеля осуществляют суспензией наночастиц оксигидроксида железа (ОГЖ), обработанного ультразвуком. ОГЖ выделяют из отходов водоочистки на станциях обезжелезивания артезианской воды. Используют ОГЖ в гелеобразном состоянии. Гель содержит 10-12% ОГЖ. ОГЖ-гель...
Тип: Изобретение
Номер охранного документа: 0002545667
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b6c

Состав для повышения нефтеотдачи пластов (варианты)

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения нефтеотдачи карбонатных коллекторов с различной проницаемостью, насыщенных высоковязкой нефтью. Состав для повышения нефтеотдачи пластов, содержащий неионогенное и анионактивное поверхностно-активные...
Тип: Изобретение
Номер охранного документа: 0002546700
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.400c

Способ пробоподготовки водных объектов для определения углеводородных примесей

Изобретение относится к способу пробоподготовки водных объектов для определения углеводородных примесей хроматографическим методом с использованием твердофазной микроэкстракции и может быть использовано для измерения концентрации микропримесей веществ в природных и сточных водах при...
Тип: Изобретение
Номер охранного документа: 0002547884
Дата охранного документа: 10.04.2015
10.06.2015
№216.013.51c0

Способ получения гранулированного сорбента

Изобретение относится к решению проблем охраны окружающей среды. Способ получения гранулированного сорбента заключается в том, что отходы ОГЖ в дисперсном состоянии подвергают высушиванию и суспендируют в грануляторе с мешалкой и внутренним оребрением со скоростью 300-2000 оборотов в течение...
Тип: Изобретение
Номер охранного документа: 0002552449
Дата охранного документа: 10.06.2015
20.11.2015
№216.013.8fe4

Способ герметизации противофильтрационного экрана под водоемом после отработки карьера

Способ герметизации противофильтрационного экрана под водоемом после отработки карьера предназначен для ликвидации притока подземных вод в горные выработки при доработке месторождений подземным способом, к примеру, для условий криолитозоны Западной Якутии. Технической задачей является повышение...
Тип: Изобретение
Номер охранного документа: 0002568452
Дата охранного документа: 20.11.2015
10.01.2016
№216.013.9f62

Состав для повышения нефтеотдачи пластов (варианты)

Изобретение относится к нефтедобывающей промышленности и может быть использовано для увеличения нефтеотдачи пластов с карбонатным коллектором. Состав для увеличения нефтеотдачи пластов, содержащий ПАВ, тетраборат натрия (буру) и воду, дополнительно содержит технический или дистиллированный...
Тип: Изобретение
Номер охранного документа: 0002572439
Дата охранного документа: 10.01.2016
27.01.2016
№216.014.c3b5

Состав и способ получения ароматизатора воздуха

Группа изобретений относится к ароматизации воздуха и может быть использована для производства ароматических изделий лечебного, парфюмерного, косметического и бытового назначения. Ароматизатор воздуха содержит отдушку, поливиниловый спирт, карбоксиметилцеллюлозу, оксиэтилированный алкилфенол,...
Тип: Изобретение
Номер охранного документа: 0002574002
Дата охранного документа: 27.01.2016
20.03.2016
№216.014.cac4

Состав для повышения нефтеотдачи пластов и способ его приготовления

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения нефтеотдачи пластов высоковязкой нефти с низкой пластовой температурой путем изоляции или ограничения водопритока к нефтяным скважинам. Состав для повышения нефтеотдачи пластов, содержащий карбамид,...
Тип: Изобретение
Номер охранного документа: 0002577556
Дата охранного документа: 20.03.2016
20.08.2016
№216.015.4a72

Способ получения гуминовых препаратов

Изобретение относится к области сельского хозяйства, в частности к способам получения гуминовых препаратов из угля для применения их в качестве органо-минеральных удобрений. Способ заключается в сверхтонком измельчении смеси окисленного угля и песка в присутствии гидроксида щелочного металла и...
Тип: Изобретение
Номер охранного документа: 0002594535
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.71d4

Способ гидроочистки дизельных фракций

Изобретение относится к способу гидроочистки нефтяных фракций с содержанием серы в сырье 1,18-2,08 мас.%, который может быть использован в нефтеперерабатывающей промышленности. Способ заключается в контактировании сырья с массивным сульфидным катализатором в виде нанопорошка, полученного из...
Тип: Изобретение
Номер охранного документа: 0002596830
Дата охранного документа: 10.09.2016
Showing 1-2 of 2 items.
13.01.2017
№217.015.7bc4

Способ переработки природных битумов

Изобретение относится к способу переработки природного битума в бензиновые и дизельные фракции путем каталитического крекинга в среде ацетилена в присутствии мезопористого алюмосиликата с диаметром пор 50 Ǻ, взятого в количестве 5-10 мас.%, модифицированного наноразмерным порошком никеля со...
Тип: Изобретение
Номер охранного документа: 0002600448
Дата охранного документа: 20.10.2016
22.08.2018
№218.016.7e2e

Способ конверсии гудронов

Изобретение относится к области нефтепереработки, а именно к переработке гудронов, и может быть использовано для получения из них бензиновой и дизельной фракций. Описан способ переработки гудронов в бензиновые и дизельные фракции методом каталитического крекинга, инициированного твердофазной...
Тип: Изобретение
Номер охранного документа: 0002664548
Дата охранного документа: 20.08.2018
+ добавить свой РИД