×
22.05.2020
220.018.1fbc

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ХЛОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В НЕФТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу определения хлорорганических соединений в нефти, включающему промывание нефти, использование раствора бифенила натрия в толуоле, в котором в промытую фракцию нефти добавляют раствор бифенила натрия в толуоле, перемешивают, вносят полиметакрилатную матрицу с иммобилизованным комплексом дифенилкарбазона с ртутью (II), определяют количественное содержание хлорорганических соединенийв исходной пробе по результатам измерений светопоглощенияокрашенного комплекса при длине волны 550 нм, используя градуировочный график, или по визуальной оценке интенсивности окраски полимерной матрицы. Технический результат: разработан простой, экспрессный, экологически безопасный способ определения хлорорганических соединений в нефти. 1 табл., 3 пр., 3 ил.

Изобретение относится к аналитической химии, а именно к исследованию материалов путем наблюдения за изменением цвета химического индикатора и может быть использовано для контроля качества нефти.

Известен способ определения хлорорганических соединений в нефти [ГОСТ Р 52247-2004. Нефть. Методы определения хлорорганических соединений. Метод Б], включающий отгонку и промывку из сырой нефти фракции нафты с ее последующим сжиганием в среде кислорода и микрокулонометрическим титрованием продуктов сжигания. Фракцию нафты промывают щелочью и при необходимости промывку повторяют до полного удаления сероводорода. Фракцию нафты, не содержащую сероводорода, промывают водой до полного удаления неорганических соединений хлора. Промытую фракцию нафты, выделенную из нефти, вводят в поток газа, содержащего 80 % кислорода и 20 % инертного газа (аргона, гелия или азота). Газ и образец пропускают через трубку для сжигания с температурой 800°С. Органически связанный хлор превращается в хлориды или оксихлориды, которые затем попадают в ячейку для титрования, где они взаимодействуют с ионами серебра. Израсходованные таким образом ионы серебра восстанавливаются микрокулонометрическим титрованием. Суммарный ток, требуемый для восстановления ионов серебра, пропорционален количеству хлора, присутствующего в испытуемых образцах.

Известен способ определения хлорорганических соединений в нефти [ГОСТ Р 52247-2004. Нефть. Методы определения хлорорганических соединений. Метод В], заключающийся во введении в промытую фракцию нафты, выделенную из нефти внутреннего стандарта - раствора висмута в неполярном растворителе с массовой долей висмута 5000 ppm. Соединение висмута вступает в реакцию с хлорорганическими соединениями нефти, что влияет на рентгенофлуоресцентный сигнал.

Недостатком этого способа является токсичность используемого соединения висмута и необходимость специальной процедуры утилизации продуктов реакции.

Известен способ определения массовой концентрации хлорорганических соединений в нефти [Левченко Д.Н. и др. Технология обессоливания нефтей на нефтеперерабатывающих предприятиях. М.: Химия, 1985. - С. 168], включающий перегонку фракций нефти и каталитическое осаждение хлора щелочью. Количество хлора определяют потенциометрическим титрованием солями серебра.

Недостатком способа являются сложность выделения хлора из ароматического кольца молекулы нефти, что приводит к накоплению хлорорганических соединений на поверхности катализатора и препятствует его нормальной работе.

Известен способ определения массовой концентрации хлорорганических соединений в нефти [ASTM 4929-99. Методы определения содержания хлорорганических соединений в сырой нефти.], включающий отгонку и промывку из сырой нефти фракции нафты с ее последующим сжиганием в среде кислорода и кулонометрическим титрованием продуктов сжигания.

Недостатком способа является необходимость применения дорогостоящего оборудования и реагентов, вследствие чего снижается производительность аналитических исследований.

Известен способ определения хлорорганических соединений в нефти [RU 2243552 C2, МПК G01N 31/16 (2000.01), G01N 27/48 (2000.01), G01N 33/26 (2000.01), опубл. 27.12.2004], в котором определение массовой концентрации хлорорганических соединений в нефти включает отгонку и промывку из сырой нефти фракции нафты с ее последующим сжиганием в среде кислорода и кулонометрическое титрование продуктов сжигания. Фракцию нафты сжигают в токе очищенного воздуха при t=800-900°C, при этом продукты сжигания улавливаются раствором перекиси водорода и углекислого натрия. Затем полученную смесь разлагают кипячением и после добавления ацетона и азотной кислоты образовавшийся хлорид титруют раствором нитрата серебра. Количество хлора определяют пропорционально количеству потраченного на титрование нитрата серебра.

Недостатком способа является сложность анализа с использованием токсичных веществ, а также необходимость использовать дорогостоящие соли серебра.

Известен способ определения хлорорганических соединений в нефти [ГОСТ Р 52247-2004. Нефть. Методы определения хлорорганических соединений. Метод А], выбранный в качестве прототипа, в котором промытую фракцию нафты, выделенную из нефти, взвешивают и переносят в делительную воронку, содержащую реактив бифенил натрия в толуоле. Реактив представляет собой химическое соединение натрия и бифенила в диметиловом эфире этиленгликоля, которое превращает органически связанные галогены в неорганические галоиды, при этом металлический натрий превращается в металлоорганическое соединение. Избыток реактива разлагают подкислением смеси и фазы разделяют. Водную фазу упаривают до 25-30 см3, добавляют ацетон и проводят потенциометрическое титрование нитратом серебра. Количество хлора определяют пропорционально количеству потраченного на титрование нитрата серебра.

К недостаткам способа можно отнести использование вредного для здоровья ацетона и дорогостоящих солей серебра, необходимость оборудования для потенциометрического титрования.

Техническим результатом настоящего изобретения является разработка простого экспрессного экологически безопасного способа определения хлорорганических соединений в нефти.

Способ определения хлорорганических соединений в нефти, также как в прототипе, включает промывание нефти и использование раствора бифенила натрия в толуоле.

Согласно изобретению в промытую фракцию нефти добавляют раствор бифенила натрия в толуоле, перемешивают, вносят полиметакрилатную матрицу с иммобилизованным комплексом дифенилкарбазона с ртутью (II), перемешивают и определяют количественное содержание хлорорганических соединений в исходной пробе по результатам измерений светопоглощения окрашенного комплекса при длине волны 550 нм, используя градуировочный график, или по визуальной оценке интенсивности окраски полимерной матрицы.

Образованные после разрушения бифинилом натрия хлорорганических соединений в нефти неорганические галоиды, содержание которых соответствует хлорорганическим соединениям в исходном образце нефти, извлекают полиметакрилатной матрицей с иммобилизованным комплексом дифенилкарбазона с ртутью (II) со сменой цвета полимерной матрицы от фиолетового до розового, имеющего в спектре поглощения максимум при длине волны 550 нм (фиг. 1).

Для определения хлорид-ионов использовали способность дифенилкарбазона образовывать устойчивые комплексы с ртутью (II), результатом чего является ослабление окраски комплекса ртути (II) с дифенилкарбазоном. Реакция протекает по следующей схеме:

Hg [дифенилкарбазон]2 + 2Cl- + 2H+ → Hg(Cl)2 + 2дифенилкарбазон

темно-фиолетовая розовая

Изменение окраски полиметакрилатной матрицы связано с разрушением окрашенного комплекса дифенилкарбазона c ртутью (II) с прямо пропорциональной зависимостью. Максимум поглощения образованного соединения в полимерной фазе совпадает с максимумом поглощения дифенилкарбазона с ртутью в растворе и соответствует 550 нм. В присутствии хлорид-ионов в зависимости от их концентрации цвет матрицы изменяется на розовый в результате разрушения комплекса дифенилкарбазона с ртутью.

На фиг. 1 показаны спектры поглощения полиметакрилатной матрицы с иммобилизованным комплексом дифенилкарбазона с ртутью (II) после контакта с раствором хлорида, где спектр 1 - в растворе с концентрацией хлорида 0 мг/кг, спектр 2 - в растворе с концентрацией хлорида 35 мг/кг; 3 - в растворе с концентрацией хлорида 100 мг/кг; 4 - в растворе с концентрацией хлорида 350 мг/кг; 5 - в растворе с концентрацией хлорида 1000 мг/кг.

На фиг. 2 кривой 1 представлена зависимость оптической плотности А550 от концентрации хлорида СCL; кривой 2 - изменение оптической плотности ΔА550 по отношению к фоновому сигналу от концентрации хлорида; кривой 3 - отношение оптической плотности фонового сигнала А0 к измеренной оптической плотности А от концентрации хлорида в объеме пробы V=50 мл при времени контакта t=10 мин.

На фиг. 3 приведено сканированное изображение цветовой шкалы для определения хлоридов.

В таблице 1 представлены результаты сравнительного анализа определения хлорорганических соединений (см. графическую часть).

Иммобилизацию комплекса дифенилкарбазона с ртутью (II) в прозрачную неокрашенную полиметакрилатную матрицу размером 6,0×8,0×0,6 мм проводили его сорбцией из раствора в статическом режиме. Для этого полиметакрилатную матрицу перемешивали в 0,5 % водно-этанольном растворе реагента, 40% по этанолу, в течение 10 мин. 1М спиртовой раствор дифенилкарбазона готовили растворением точной навески 0,25 г в этиловом спирте в мерной колбе объемом 25 мл. Раствор нитрата ртути (II) (Hg(NO3)2) концентрацией 0,1Н готовили растворением точной навески 1,72 г в 0,2 мл концентрированной азотной кислоты и доводили объем бидистиллированной водой до метки в колбе на 100 мл.

В исследуемый раствор с pH 4-7, содержащий (Hg(NO3)2), вносили полиметакрилатную матрицу с дифенилкарбазоном, тщательно перемешивали в течение 15 мин, вынимали, подсушивали фильтровальной бумагой. Полученная таким образом полиметакрилатная матрица сохраняет прозрачность и приобретает фиолетовый цвет.

Пример 1. Измерение поглощения полиметакрилатной матрицы и определение содержания хлорорганических соединений по градуировочному графику.

В образец нефти объемом 50 мл вносили 150 мл дистиллированной воды в стакане объемом 500 мл. Содержимое перемешивали в течение 20 мин стеклянной палочкой, после расслоения отделяли слой нефти от воды на делительной воронке.

Готовили четыре образца анализируемой промытой фракции нефти объемом 50 мл каждый с содержанием хлорорганических соединений 0, 35, 350 и 1800 мг/кг соответственно с рН 4-7 (контроль рН-метром). В каждый образец помещали 15 мл 1М раствора бифенила натрия в толуоле, перемешивали, в слой нефти вносили свою пластинку полиметакрилатной матрицы с иммобилизованным комплексом дифенилкарбазона с ртутью (II), снова перемешивали в течение 15 минут, затем вынимали, подсушивали фильтровальной бумагой и измеряли поглощение при 550 нм на спектрофотометре (фиг. 1). Содержание хлорорганических соединений находили по градуировочной зависимости (фиг. 2), построенной в аналогичных условиях.

Уравнение градуировочной зависимости имеет вид:

A 550=0,84-0,00057⋅СCl- (r=0,955),

где СCl- - концентрация хлорид-иона, мг/кг.

Диапазон линейности градуировочной зависимости составляет 1,0-1000 мг/кг. Предел обнаружения, рассчитанный по 3s-критерию, равен 0,02 мг/кг.

Пример 2. Визуально-тестовое определение содержания хлорорганических соединений в нефти.

Для визуально-тестового определения хлорорганических соединений в нефти получены цветовые шкалы путем сканирования образцов полученных при построении градуировочных зависимостей. Визуальное тест-определение выполняли аналогично примеру 1, с тем отличием, что после контакта с растворами хлорорганических соединений в промытой фракции нефти поглощение полиметакрилатных матриц не измеряли, а проводили сравнение их окраски с цветовой шкалой (фиг. 3) и полуколичественно определяли концентрацию.

Пример 3. Определение содержания хлорорганических соединений в нефти.

Определение хлорорганических соединений в нефти проводили согласно примеру 1 в сравнении способом-прототипом. Результаты представлены в таблице 1.

Предложенный способ по точности и воспроизводимости результатов соответствует способу-прототипу.

Преимуществом предложенного способа является простота и экспрессность выполнения определения. Заявляемый способ определения хлорорганических соединений, в отличие от прототипа, не требует использования токсичных растворителей, солей серебра, стационарной аналитической аппаратуры и является безопасным для здоровья людей.

Способ определения хлорорганических соединений в нефти, включающий промывание нефти, использование раствора бифенила натрия в толуоле, отличающийся тем, что в промытую фракцию нефти добавляют раствор бифенила натрия в толуоле, перемешивают, вносят полиметакрилатную матрицу с иммобилизованным комплексом дифенилкарбазона с ртутью (II), определяют количественное содержание хлорорганических соединенийв исходной пробе по результатам измерений светопоглощенияокрашенного комплекса при длине волны 550 нм, используя градуировочный график, или по визуальной оценке интенсивности окраски полимерной матрицы.
СПОСОБ ОПРЕДЕЛЕНИЯ ХЛОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В НЕФТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ХЛОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В НЕФТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ХЛОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В НЕФТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ХЛОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В НЕФТИ
Источник поступления информации: Роспатент

Showing 21-30 of 31 items.
31.07.2020
№220.018.3a8e

Технологическая схема регенерации отработанного гранатового песка от гидроабразивной резки

Предложенное изобретение относится к области регенерации отходов, образующихся при гидроабразивной резке материалов, и может быть использовано как в общем технологическом цикле резки, так и отдельно от установки гидроабразивной резки для регенерации используемых абразивов, в частности...
Тип: Изобретение
Номер охранного документа: 0002728001
Дата охранного документа: 28.07.2020
20.04.2023
№223.018.4be6

Способ определения размера фокусного пятна тормозного излучения ускорителя

Изобретение относится к ускорительной технике и предназначено для использования при разработке источников тормозного излучения на основе ускорителей электронов и при контроле их параметров при использовании в дефектоскопии и промышленной томографии толстостенных объектов. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002761014
Дата охранного документа: 02.12.2021
20.04.2023
№223.018.4c5a

Способ получения трилитиевой соли фосфо-аскорбиновой кислоты

Изобретение относится к способу получения трилитиевой соли фосфо-аскорбиновой кислоты с общей формулой LiCHOP, заключающемуся в том, что к аскорбиновой кислоте добавляют диоксан и 2,2-диметоксипропан, промывают петролейным эфиром, проводят фосфорилирование хлорокисью фосфора с добавлением...
Тип: Изобретение
Номер охранного документа: 0002752829
Дата охранного документа: 09.08.2021
21.04.2023
№223.018.4fcb

Способ получения нанокристаллического диоксида титана со структурой анатаз

Изобретение относится к области материаловедения и нанотехнологий, а именно к получению диоксида титана, который может быть использован в водородной энергетике и технологиях очистки воды. Способ включает генерирование титановой электроразрядной плазмы в первую камеру 19, предварительно...
Тип: Изобретение
Номер охранного документа: 0002749736
Дата охранного документа: 16.06.2021
21.04.2023
№223.018.4fe3

Способ получения порошка, содержащего нанокристаллический кубический карбид вольфрама

Изобретение относится к области материаловедения и нанотехнологий, а именно к способу получения порошка, содержащего нанокристаллический кубический карбид вольфрама. Способ включает предварительное вакуумирование камеры, наполнение ее аргоном при нормальном атмосферном давлении и комнатной...
Тип: Изобретение
Номер охранного документа: 0002747329
Дата охранного документа: 04.05.2021
21.04.2023
№223.018.5002

Устройство для исследования процесса горения нанопорошков металлов или их смесей

Изобретение относится к области неразрушающего контроля и диагностики оптическими методами и касается устройства для исследования процесса горения нанопорошков металлов или их смесей. Устройство содержит инициирующий лазер, две цифровые камеры и лазерный усилитель яркости, на оптической оси...
Тип: Изобретение
Номер охранного документа: 0002746308
Дата охранного документа: 12.04.2021
21.04.2023
№223.018.5017

Способ получения нанокристаллического кубического карбида молибдена

Изобретение относится к области получения неорганических функциональных материалов, а именно к способу получения нанокристаллического кубического карбида молибдена, который может найти применение в качестве каталитического материала в реакциях получения водорода. Способ включает использование...
Тип: Изобретение
Номер охранного документа: 0002748929
Дата охранного документа: 01.06.2021
21.04.2023
№223.018.501f

Способ компенсации погрешности измерения ультразвукового локатора

Использование: изобретение относится к ультразвуковым локационным измерителям уровня жидкости и сыпучих продуктов в резервуарах на автозаправочных станциях и нефтебазах, а также в химической, нефтяной, пищевой и других отраслях народного хозяйства. Сущность: способ компенсации погрешности...
Тип: Изобретение
Номер охранного документа: 0002748137
Дата охранного документа: 19.05.2021
23.05.2023
№223.018.6ed4

Устройство для обезвешивания элементов космических аппаратов при наземных испытаниях

Изобретение относится к робототехнике, а именно к автоматическим мобильным роботам, и может быть использовано для имитации невесомости при наземных испытаниях на функционирование подвижных элементов космических аппаратов, в частности крыльев солнечных батарей. Устройство содержит мобильную...
Тип: Изобретение
Номер охранного документа: 0002744925
Дата охранного документа: 17.03.2021
27.05.2023
№223.018.7188

Способ получения нанокристаллической эпсилон-фазы оксида железа

Изобретение относится к области материаловедения и нанотехнологий, а именно к получению нанокристаллической эпсилон-фазы оксида FeO, который может быть использован в водородной энергетике и средствах магнитной записи информации. Способ включает генерирование четырех последовательных импульсов...
Тип: Изобретение
Номер охранного документа: 0002752330
Дата охранного документа: 26.07.2021
+ добавить свой РИД