×
21.05.2020
220.018.1f8b

Результат интеллектуальной деятельности: СПОСОБ КОНТРОЛЯ ПРОЦЕССА ЛАЗЕРНОЙ ОБРАБОТКИ МЕТАЛЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу обработки металлов лазерным лучом. Техническим результатом является повышение качества лазерной обработки, в частности качества формируемого изделия при лазерных аддитивных технологиях и качества сварных соединений, полученных при лазерной сварке с глубоким проплавлением. Процесс лазерной обработки осуществляют сканирующим лазерным лучом в вакуумной атмосфере. Регистрируют вторично-эмиссионный электрический сигнал из зоны воздействия лазерного луча. Обрабатывают этот сигнал методом когерентного накопления и устанавливают удельную мощность лазерного луча таким образом, чтобы сдвиг фаз между обработанным вторично-эмиссионным сигналом и сигналом, обеспечивающим сканирование лазерного луча, был минимальным. 3 ил.

Изобретение относится к области обработки металлов лазерным лучом, и может быть использовано при аддитивных лазерных технологиях, лазерной сварке и других процессах лазерной обработки с контролем удельной мощности лазерного луча в области его взаимодействия с металлом.

Стабильность процессов послойного формирования изделия при аддитивного лазерных технологиях, а также качество сварного шва при лазерной сварке с глубоким проплавлением зависят от различных факторов. При этом обеспечение воспроизводимости результатов этих технологических процессов, требует осуществления контроля удельной мощности лазерного луча в области его взаимодействия с металлом, регулирование которой при постоянной полной мощности лазерного луча осуществляют путем изменения фокусировки луча.

Известен способ и устройство для контроля процесса лазерной обработки (RU 2529136), в которых для контроля процесса лазерной обработки производится совместная обработка сигналов датчиков оптического излучения по заданному алгоритму, и в соответствии с результатом обработки производится регулирование параметров режима лазерной обработки.

Недостатком известного способа является низкая точность регулирования процесса обработки, так как он основан только на амплитудных измерениях вторичного излучения из зоны обработки не учитывает другие параметры регистрируемых сигналов.

Наиболее близким к заявляемому способу по технической сущности и достигаемому эффекту является способ контроля и регулирования процесса лазерной обработки (RU 2028897), в котором определяют максимальную частоту сигнала оптического вторичного излучения Fmax и в интервале частот (0,9-1,0)Fmax - величину максимальной амплитуды этого излучения, после чего эту амплитуду сравнивают с заданной величиной и производят регулировку параметров режима лазерной обработки.

Недостатком известного способа является невысокая точность контроля процесса лазерной сварки, так как процесс детектирования электромагнитных оптических излучений достаточно сложен и подвержен влиянию посторонних помех.

Задачей, решаемой изобретением, является повышение точности контроля процесса лазерной обработки металлов.

Техническим результатом, достигаемым изобретением, является повышение качества лазерной обработки, и в частности, качества формируемого изделия при лазерных аддитивных технологиях и качества сварных соединений, полученных при лазерной сварке с глубоким проплавлением.

Технический результат достигается за счет того, что процесс лазерной обработки осуществляют сканирующим лазерным лучом в вакуумной атмосфере, при этом регистрируют вторично-эмиссионный электрический сигнал из зоны воздействия лазерного луча, обрабатывают этот сигнал методом когерентного накопления и устанавливают удельную мощность лазерного луча таким образом, чтобы сдвиг фаз между обработанным вторично-эмиссионным сигналом и сигналом, обеспечивающим сканирование лазерного луча, был минимальным.

Заявляемый способ позволяет с высокой точностью осуществлять оперативный контроль процесса лазерной обработки металла, что обеспечивает высокое качество формирования изделия при аддитивных лазерных технологиях и высокое качество сварного соединения при лазерной сварке.

В дальнейшем изобретение поясняется описанием его осуществления со ссылкой на сопроводительные чертежи.

Фиг. 1 изображает структурную схему устройства, предназначенного для осуществления заявляемого способа.

Фиг. 2 изображает спектр вторично-эмиссионного сигнала, регистрируемого коллектором заряженных частиц при частоте сканирования лазерного луча 318 Гц.

Фиг. 3 изображает экспериментально полученную зависимость сдвига фазы Δτ между обработанным методом когерентного накопления вторично-эмиссионным сигналом и сигналом с генератора напряжения треугольной формы от уровня фокусировки ΔF лазерного луча относительно фокусировки, обеспечивающей максимальную удельную мощность в зоне лазерной обработки.

В процессе лазерной обработки изделия 1 в вакуумной камере 2 (фиг. 1), осуществляется сканирование лазерного луча 3, генерируемого лазером 4, с помощью сканирующей технологической головки 5. Сигнал, обеспечивающий сканирование лазерного луча, подается на сканирующую технологическую головку 5 с генератора 6 напряжения треугольной формы. Диапазон частот сканирования - 200…400 Гц, а амплитуда сканирования в зоне воздействия лазерного луча на металл устанавливается в диапазоне 0,5…3,0 мм в зависимости от вида лазерной обработки металла.

При лазерной обработке взаимодействие мощного лазерного луча 3 с металлом приводит к интенсивному нагреву металла, а также, ионизации его паров лазерным излучением. Нагретая до высоких температур область взаимодействия лазерного луча с металлом является источником интенсивной термоэлектронной эмиссии. В зоне лазерной обработки при этом формируется поток вторично-эмиссионных электронов, который регистрируется электрической цепью, содержащей коллектор 7 заряженных частиц, находящийся под положительным потенциалом относительно обрабатываемого изделия 1, и резистор нагрузки 8. Положительный потенциал на коллекторе 7 заряженных частиц создается с помощью источника 9 напряжения смещения.

Формирование значительного по величине вторично-эмиссионного сигнала обеспечивается наличием вакуумной атмосферы в зоне проведения лазерной обработки и ионизированных паров металла, являющихся проводником электрического тока. Наличие вакуумной атмосферы в зоне проведения лазерной обработки обеспечивает дополнительное преимущество, заключающееся в повышении эффективности процесса обработки в результате снижения интенсивности потерь мощности лазерного излучения в плазменном факеле, возникающем над зоной обработки при атмосферном давлении. Кроме того при лазерной обработке металлов, активно взаимодействующих при высоких температурах с окружающей газовой атмосферой, таких, например, как титановые сплавы, вакуумная защита расплавленного металла от взаимодействия с окружающей средой является наиболее эффективной.

Сканирование лазерного луча 3 при лазерной обработке обуславливает наличие в спектре вторично-эмиссионного сигнала, регистрируемого коллектором 7 заряженных частиц, составляющих с частотами, кратными частоте сканирования лазерного луча (фиг. 2).

При реализации способа вторично-эмиссионный сигнал, регистрируемый коллектором 7 заряженных частиц и снимаемый с резистора 8 нагрузки, поступает в блок 10 обработки сигналов, в который также подается сигнал с генератора 6 напряжения треугольной формы. В блоке 10 обработки сигналов вторично-эмиссионный сигнал подвергается обработке методом когерентного накопления и фазового детектирования, после чего на выходе блока 10 обработки сигналов формируется сигнал, пропорциональный сдвигу фаз между сигналом, полученным в результате обработки вторично-эмиссионного сигнала, и сигналом с генератора 6 напряжения треугольной формы. Обработка вторично-эмиссионного сигнала методом когерентного накопления производится путем умножения этого сигнала на опорный сигнал, имеющий прямоугольную форму и формируемый в блоке 10 обработки сигнала из сигнала с генератора 6 напряжения треугольной формы, и последующего интегрирования по времени. Сигнал с выхода блока 10 обработки сигналов, пропорциональный сдвигу фаз между сигналом, полученным в результате обработки вторично-эмиссионного сигнала, и сигналом с генератора 6 напряжения треугольной формы, принимает минимальное значение при максимальном значении удельной мощности лазерного луча 3 в зоне его воздействия на металл при лазерной обработке, что подтверждено в результате экспериментальных исследований (фиг. 3).

Этот сигнал отображается на устройстве визуализации 11, а также подается в блок 12 управления фокусировкой лазерного луча 3, в котором производится регулирование удельной мощности в зоне лазерной обработки за счет изменения его фокусировки таким образом, чтобы величина сигнала с блока 10 обработки сигналов имела минимальное значение. Это обеспечивает максимальную удельную мощность лазерного луча 3 в зоне его воздействия на металл при лазерной обработке.

Способ контроля процесса лазерной обработки металла, включающий контроль по вторичному излучению из зоны воздействия лазерного луча на металл, отличающийся тем, что процесс лазерной обработки осуществляют сканирующим лазерным лучом в вакуумной среде, при этом регистрируют вторично-эмиссионный электрический сигнал из зоны воздействия лазерного луча, обрабатывают сигнал методом когерентного накопления и регулируют удельную мощность лазерного луча с обеспечением минимального сдвига фаз между обработанным вторично-эмиссионным сигналом и сигналом, обеспечивающим сканирование лазерного луча.
СПОСОБ КОНТРОЛЯ ПРОЦЕССА ЛАЗЕРНОЙ ОБРАБОТКИ МЕТАЛЛА
СПОСОБ КОНТРОЛЯ ПРОЦЕССА ЛАЗЕРНОЙ ОБРАБОТКИ МЕТАЛЛА
СПОСОБ КОНТРОЛЯ ПРОЦЕССА ЛАЗЕРНОЙ ОБРАБОТКИ МЕТАЛЛА
Источник поступления информации: Роспатент

Showing 21-30 of 61 items.
15.08.2019
№219.017.bfa6

Способ нанесения пироуглеродного покрытия на литейные керамические формы

Изобретение относится к литейному производству, а именно к способам нанесения пироуглеродных покрытий на литейные керамические формы для литья преимущественно титановых и других химически активных сплавов. Способ нанесения пироуглеродного покрытия на литейные керамические формы включает...
Тип: Изобретение
Номер охранного документа: 0002697204
Дата охранного документа: 13.08.2019
16.08.2019
№219.017.c05d

Вспомогательный спортивный тренажер для облегчения выполнения упражнения по сгибанию и разгибанию рук из положения лежа на полу

Изобретение относится к области физической культуры, спортивной медицины и может быть использовано при подготовке к сдаче норм комплекса ГТО, в полиатлоне, в спортивных, учебных, оздоровительных учреждениях и проектах. Вспомогательный спортивный тренажер для облегчения выполнения упражнения по...
Тип: Изобретение
Номер охранного документа: 0002697489
Дата охранного документа: 14.08.2019
16.08.2019
№219.017.c0cc

Асфальтобетон

Изобретение относится к дорожно-строительным материалам и может быть использовано в дорожном и аэродромном строительстве в I-III климатических зонах, характеризующихся холодным и влажным климатом. Асфальтобетон содержит компоненты при следующем соотношении, мас. %: щебень фракции от 5 до 20 мм...
Тип: Изобретение
Номер охранного документа: 0002697468
Дата охранного документа: 14.08.2019
01.09.2019
№219.017.c520

Способ гибридной ультраструйно-эмиссионной диагностики качества конструкционных материалов

Использование: для гибридной ультраструйно-эмиссионной диагностики качества конструкционных материалов. Сущность изобретения заключается в том, что осуществляют воздействие на испытуемый образец струей жидкости под давлением 350…380 МПа при скорости 800…850 м/с, при этом на испытуемый образец...
Тип: Изобретение
Номер охранного документа: 0002698485
Дата охранного документа: 28.08.2019
03.09.2019
№219.017.c6a1

Сенсорная система

Изобретение относится к области измерительной техники, в частности к сенсорным тактильным системам для измерения геометрических, трибологических и физико-механических характеристик поверхности тела по результатам измерения результирующих сил и моментов и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002698958
Дата охранного документа: 02.09.2019
07.09.2019
№219.017.c866

Способ эксплуатации нефтяных наклонно-направленных скважин и скважин с боковыми стволами

Изобретение относится к нефтедобывающей отрасли и может быть использовано при добыче нефти из нефтяных наклонно-направленных скважин и скважин с боковыми стволами штанговыми насосными установками (ШСНУ), оборудованными канатными штангами. Для осуществления способа используют поверхностный...
Тип: Изобретение
Номер охранного документа: 0002699504
Дата охранного документа: 05.09.2019
02.10.2019
№219.017.cbd7

Лопасть воздушного винта с управляемой геометрией профиля

Изобретение относится к области авиации. Лопасть воздушного винта с управляемой геометрией профиля содержит аэродинамический профиль, имеющий переднюю часть и подвижный закрылок, соединенные между собой крепежным устройством. Подвижный закрылок состоит из несущего элемента, верхней и нижней...
Тип: Изобретение
Номер охранного документа: 0002701416
Дата охранного документа: 26.09.2019
17.10.2019
№219.017.d721

Способ повышения нефтеотдачи пластов и интенсификации добычи нефти и система для его осуществления

Изобретения относятся к нефтедобывающей промышленности, а именно к способам повышения нефтеотдачи пластов, интенсификации добычи нефти и стимуляции скважин посредством создания каналов в нефтяных пластах и устройствам для их осуществления. Техническим результатом является повышение...
Тип: Изобретение
Номер охранного документа: 0002703064
Дата охранного документа: 15.10.2019
24.10.2019
№219.017.da9c

Способ оценки модуля деформации грунта

Изобретение относится к области строительства и предназначено для оценки физико-механических характеристик грунтов оснований, обеспечивающих методы расчета оснований, фундаментов и подземных сооружений исходной информацией. Предлагается способ оценки модуля деформации грунта, при котором...
Тип: Изобретение
Номер охранного документа: 0002704074
Дата охранного документа: 23.10.2019
30.10.2019
№219.017.dbcf

Способ формирования сжимающих остаточных напряжений при дробеструйной обработке деталей

Изобретение относится к формированию сжимающих остаточных напряжений при дробеструйной обработке. Осуществляют дробеструйную обработку поверхности контрольной пластины, изготовленной из материала обрабатываемой детали, и измеряют стрелу прогиба деформированной контрольной пластины. Давление...
Тип: Изобретение
Номер охранного документа: 0002704341
Дата охранного документа: 28.10.2019
Showing 11-12 of 12 items.
23.05.2023
№223.018.6c29

Способ формирования среды заданной температуры в рабочей камере 3d-принтера

Использование: для формирования среды с заданной температурой в рабочей зоне 3D-принтера. Сущность изобретения заключается в том, что равномерный тепловой поток формируется за счёт теплообмена между воздушной средой внутри рабочей зоны 3D-принтера и поверхностью источника тепла, а также за счёт...
Тип: Изобретение
Номер охранного документа: 0002736449
Дата охранного документа: 17.11.2020
23.05.2023
№223.018.6c3f

Способ формования изделий, усиленных каркасом из непрерывного волокна

Изобретение относится к области литейного производства. Способ формования термопластичных изделий включает заданное расположение, плотность и ориентацию непрерывного волокна внутри отливки, при этом каркас из непрерывного волокна и преформа из термопластичного материала предварительно...
Тип: Изобретение
Номер охранного документа: 0002738650
Дата охранного документа: 15.12.2020
+ добавить свой РИД