×
04.05.2020
220.018.1b4f

Результат интеллектуальной деятельности: Способ сорбционного извлечения лития из литийсодержащих рассолов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гидрометаллургии лития и может быть использовано для извлечения лития из природных рассолов, технологических растворов и сточных вод нефтегазодобывающих, химических, химико-металлургических и биохимических производств. Получают литиевый концентрат путем сорбционного обогащения рассола по литию в сорбционно-десорбционном обогатительном модуле с применением гранулированного сорбента на основе хлорсодержащей разновидности двойного гидроксида алюминия и лития. Отмывают насыщенный хлоридом лития гранулированный сорбент от рассола. Осуществляют десорбцию хлорида лития с сорбента с получением первичного литиевого концентрата - раствора хлорида лития с примесями магния и кальция. Первичный литиевый концентрат направляют на селективную по отношению к магнию и кальцию нанофильтрационную установку. Концентрат после нанофильтрационной установки направляют повторно в поток исходного литийсодержащего рассола. Фильтрат после нанофильтрационной установки направляют на последующее концентрирование по хлориду лития. Обеспечивается повышение эффективности сорбционного извлечения лития из литийсодержащих рассолов за счет исключения потери лития, упрощение технологии путем уменьшения количества технологических операций и количества применяемых химических реагентов.

Изобретение относится к области гидрометаллургии лития и может быть использовано для извлечения лития из природных рассолов, технологических растворов и сточных вод нефтегазодобывающих, химических, химико-металлургических и биохимических производств.

Известны способ получения хлорида лития из растворов и установка для его осуществления с использованием гранулированного сорбента (WO №03/037794, МПК C01D 15/04 опубл. 08.05.2003). Использование гранулированного сорбента на основе дефектной разновидности соединения LiСl⋅2Аl(НО)3⋅mН2O вместо кристаллических гранул, содержащих гидратированное соединение LiСl/А1(ОН)3, позволяет проводить все без исключения операции процесса обогащения при комнатной температуре, получая при этом первичный литиевый концентрат с содержанием LiCl 5,2-6,0 г/л и общим содержанием примесей (MgCl2+CaCl2) не более 5 г/л, что позволяет в дальнейшем концентрировать его по хлориду лития до ≥300 г/л и использовать для получения LiCl и Li2СО3. При этом использование установки с движущимся слоем гранулированного сорбента позволяет предельно минимизировать массу единовременной его загрузки.

Также известен способ селективного сорбционного извлечения лития из рассолов (патент RU №2050330, МПК C02F 1/28, опубл. 20.12.1995) путем контактирования рассола с гранулированным сорбентом на основе хлорсодержащего двойного гидроксида алюминия лития с последующей десорбцией лития обессоленной водой с получением в качестве алюата раствора хлорида лития.

Недостатком данных способов является использование в процессе обогащения движущегося гранулированного слоя сорбента, что приводит к его механическому износу за счет истирания гранул, который составляет в год более 37% от массы единовременной загрузки сорбента. Кроме того, для реализации способа обогащения с движущимся слоем сорбента требуется сложное и уникальное оборудование. Также к недостаткам следует отнести то, что отмывку гранул сорбента от примесей щелочных и щелочно-земельных элементов проводят раствором хлорида лития, что тем самым загрязняют производимый литиевый концентрат примесями магния и кальция, что влечет за собой либо потери литиевого концентрата, либо дополнительные технологические операции на его вторичную очистку (например, добавление содового раствора для образования малорастворимых соединений СаСО3 и Mg(OH)2, последующее отделение СаСО3 и Mg(OH)2 от раствора и утилизации отфильтрованного осадка, содержащего соединения магния и кальция).

Наиболее близким к заявленному изобретению является способ получения литиевого концентрата из литиеносных природных рассолов и его переработки (патент RU №2516538, МПК C01D 15/04, опубл. 20.05.2014 в бюл. №14), включающий получение литиевого концентрата путем сорбционного обогащения рассола по литию в сорбционно-десорбционном обогатительном модуле с применением гранулированного сорбента на основе хлорсодержащей разновидности двойного гидроксида алюминия и лития, отмывку насыщенного хлоридом лития гранулированного сорбента от рассола, десорбцию хлорида лития с сорбента с получением первичного литиевого концентрата - раствора хлорида лития с примесями хлоридов магния и кальция, ионообменную очистку литиевого концентрата от примесей, концентрирование раствора хлорида лития, получение одноводного хлорида лития.

Недостатками данного способа являются многостадийность и необходимость в двукратной очистке получаемого литиевого концентрата от примесей магния и кальция, поскольку при очистке от примесей магния и кальция полученного первичного литиевого концентрата ионообменным способом на катионите КУ-2-8 чс в Li-форме и последующей его регенерации очищенным от магния и кальция литийсодержащим раствором, например вторичным литиевым концентратом, происходит загрязнение производимого литиевого концентрата примесями магния и кальция, что влечет за собой в последующем дополнительные технологические операции: добавление содового раствора для образования малорастворимых соединений СаСО3 и Mg(OH)2, последующее отделение СаСО3 и Mg(OH)2 от раствора (например, фильтрованием) и утилизацию отфильтрованного осадка, содержащего соединения магния и кальция.

Вышеуказанные недостатки данного способа в конечном счете повышают себестоимость произведенного товарного литийсодержащего продукта (например, карбоната, хлорида, фторида, бромида, моногидрата гидроксида и др.).

Техническими задачами изобретения являются повышение эффективности сорбционного извлечения лития из литийсодержащих рассолов за счет исключения потери лития, упрощение технологии путем уменьшения количества технологических операций и количества применяемых химических реагентов, минимизации сточных вод и твердых отходов, подлежащих переработке или утилизации, снижение себестоимости товарного литий-содержащего продукта.

Технические задачи решаются способом сорбционного извлечения лития из литий-содержащих рассолов, включающим получение литиевого концентрата путем сорбционного обогащения рассола по литию в сорбционно-десорбционном обогатительном модуле с применением гранулированного сорбента на основе хлорсодержащей разновидности двойного гидроксида алюминия и лития, отмывку насыщенного хлоридом лития гранулированного сорбента от рассола, десорбцию хлорида лития с сорбента с получением первичного литиевого концентрата - раствора хлорида лития с примесями магния и кальция, очистку литиевого концентрата от примесей.

Новым является то, что полученный в результате десорбции первичный литиевый концентрат направляют на селективную по отношению к магнию и кальцию нанофиль-трационную установку, концентрат после нанофильтрационной установки направляют повторно в поток исходного литийсодержащего рассола, подаваемого в сорбционно-десорбционный обогатительный модуль, для обработки следующей порции исходного литийсодержащего рассола, а фильтрат после очистки на нанофильтрационной установки направляют на последующее концентрирование по хлориду лития.

Сущность способа заключается в следующем. В качестве сырья используют исходный литийсодержащий рассол, представляющий собой природный рассол (например, попутно добываемая пластовая вода при добыче нефти, вода геотермальных источников и др.), технологический раствор или сточные воды нефтегазодобывающих, химических, химико-металлургических и биохимических производств. Исходный литийсодержащий рассол подают в сорбционно-десорбционный обогатительный модуль, представляющий собой вертикальную колонну, загруженную гранулированным сорбентом на основе хлорсодержащей разновидности двойного гидроксида алюминия и лития. Сорбцию лития из исходного литийсодержащего рассола осуществляют в сорбционно-десорбционном модуле с неподвижным слоем сорбента путем фильтрования исходного рассола на проток или порциями в направлении фильтрования снизу вверх. При достижении насыщения сорбента по литию подачу исходного литийсодержащего рассола прекращают и отмывают слой гранулированного сорбента от рассола раствором, не содержащим примеси магния и кальция (например, умягченной водой, раствором NaCl и др.). Далее осуществляют десорбцию лития подачей обессоленной воды через сорбционно-десорбционный обогатительный модуль на проток или порциями в направлении движения потока сверху вниз. Полученный в результате десорбции раствор представляет собой первичный литиевый концентрат, содержащий в своем составе примеси магния и кальция.

Полученный первичный литиевый концентрат собирают в накопительную емкость и далее направляют на нанофильтрационную установку для глубокой очистки от примесей магния и кальция. Нанофильтрационная установка включает в своем составе одну или несколько нанофильтрационных мембран, селективных по отношению к магнию и кальцию и насос для подачи первичного литиевого концентрата.

Глубокая очистка первичного литиевого концентрата в нанофильтрационной установке происходит за счет того, что поливалентные и двухвалентные ионы практически полностью задерживаются селективным слоем нанофильтрационной мембраны, а одновалентные ионы (такие как Na+и Li+) проходят вместе с водой через нее. Так, например селективность нанофильтрационных мембран по MgSO4 составляет на уровне 98-99%, а по NaCl для различных нанофильтрационных мембран - 5-85% [Б.Е. Рябчиков Современная подготовка. - М.: ДеЛи плюс, 2013. - 179 с].

В процессе глубокой очистки на нанофильтрационной установке первичный литиевый концентрат разделяется на два потока: очищенный поток - продукт, называемый фильтратом, и высококонцентрированный поток, называемый концентратом, содержащий в своем составе отделенные примеси магния и кальция.

Фильтрат после нанофильтрационной установки представляет собой очищенный от примесей магния и кальция первичный литиевый концентрат, который далее подвергают последующему концентрированию с получением вторичного литиевого концентрата любым из известных способов, например обратноосмотическим или упариванием термическим путем. Вторичные литиевые концентраты используют для получения товарного литийсодержащего продукта, например карбоната, хлорида, фторида, бромида, гидроксида, моногидрата гидроксида лития и др.

Концентрат, содержащий примеси магния и кальция, после нанофильтрационной установки направляют в поток исходного литийсодержащего рассола, подаваемого в сорбционно-десорбционный обогатительный модуль для обработки следующей порции исходного литийсодержащего рассола.

Процесс глубокой очистки первичного литиевого концентрата в нанофильтрационной установке может осуществляться как непрерывно, так и периодически по мере накопления достаточного количества исходного первичного литиевого концентрата. Рабочее давление, при котором осуществляется процесс нанофильтрации лежит в пределах от 0,4 до 1,6 МПа. Для проведения глубокой очистки первичного литиевого концентрата по заявленному способу подходят любые коммерчески доступные нанофильтрационные мембраны в форме листа или в форме скрученной спирали, например, SEASOFT 8040DK, 8040DL, и SEASAL DS-5, которые доступны на фирме GE Osmonics, Inc., США; серии NF200, и NF-55, NF-70, и NF-90, которые доступны на фирме Dow FilmTec Corp., США; DS-5 и DS-51, доступные на фирме Desalination Systems, США; ОПМН-К, ОПМН-П, которые доступны на фирме ЗАО НТЦ "Владипор", Россия и другие.

Пример конкретного исполнения.

На пилотном сорбционно-десорбционном обогатительном модуле, представляющем собой вертикальную колонну, загруженную гранулированным сорбентом на основе хлорсодержащей разновидности двойного гидроксида алюминия и лития, были проведены испытания сорбционно-десорбционного извлечения лития из литийсодержащих рассолов с последующей очисткой первичного литиевого концентрата от примесей магния и кальция по предлагаемому способу. Объем используемого сорбента в сорбционно-десорбционном обогатительном модуле - 0,120 м3.

Исходный литийсодержащий рассол, имеющий следующий ионный состав: литий Li+ - 17,4 г/м3, натрий Na+ - 62430 г/м3; хлор Сl- - 12790 г/м3 магний Mg2+ - 3620 г/м3; кальция Са2+ - 17210 г/м3, подают в направлении снизу вверх через сорбционно-десорбционный обогатительный модуль, представляющий собой вертикальную колонну, загруженную гранулированным сорбентом на основе хлорсодержащей разновидности двойного гидроксида алюминия и лития. Доводят сорбент до состояния насыщения путем фиксирования выравнивания концентрации лития в рассоле до и после сорбционно-десорбционного обогатительного модуля, и процесс фильтрования исходного литийсодержащего рассола прекращают.

После отмывки насыщенного сорбента в сорбционно-десорбционном обогатительном модуле от рассола проводят десорбцию лития пропусканием обессоленной воды через сорбционно-десорбционный обогатительный модуль на проток или порциями в направлении движения потока сверху вниз. Полученный в результате десорбции раствор представляет собой первичный литиевый концентрат со следующим составом катионов: концентрация лития Li+ - 630,5 г/м3, магния Mg2+ - 15,4 г/м3; кальция Са2+ - 34,4 г/м3. Далее первичный литиевый концентрат собирают в накопительную емкость и насосом подают на нанофильтрационную установку для глубокой очистки от примесей магния и кальция. Нанофильтрационная установка включает селективную по отношению к магнию и кальцию нанофильтрационную мембрану марки ОПМН-К, которая доступна на фирме ЗАО НТЦ "Владипор" с рабочими показателями по селективности по 0,2%-ному раствору MgSO4 - не менее 95,0%, по 0,15% раствору NaCl - не менее 25,0% (http://www.vladipor.ru/catalog/&cid=004).

В процессе очистки на нанофильтрационной установке первичный литиевый концентрат разделяется на два потока: фильтрат и концентрат.

Поток фильтрата после нанофильтрационной установки в объемной доле 94% от потока первичного литиевого концентрата представляет собой очищенный первичный литиевый концентрат с концентрацией примеси магния 0,2 г/м3 и кальция 0,1 г/м3, т.е. степень очистки составила 99,6% и 98,7% соответственно для кальция и магния. Далее поток фильтрата после нанофильтрационной установки направляют на дальнейшее концентрирование по хлориду лития с получением вторичного литиевого концентрата (например, обратноосмотическим способом) и получение товарного литийсодержащего продукта.

Поток концентрата после нанофильтрационной установки в объемной доле 6% от потока первичного литиевого концентрата, содержащий в своем составе примеси магния и кальция соответственно на уровне 252,0 г/м3 и 570,2 г/м3, направляют в поток исходного литийсодержащего рассола, подаваемого в сорбционно-десорбционный обогатительный модуль для обработки следующей порции исходного литийсодержащего рассола, тем самым в заявленном способе исключается образование загрязненных примесями магния и кальция сточных вод, и соответственно, дополнительные технологические операции на их очистку (например, путем добавления содового раствора для образования малорастворимых соединений СаСО3 и Mg(OH)2 и последующего их отделения от раствора) и утилизация отфильтрованного осадка, содержащего соединения магния и кальция.

Поскольку концентрация магния и кальция в потоке концентрата после нанофильтрационной установки не превышает концентрации магния и кальция в исходном литий-содержащем рассоле, то их смешение не приведет к негативным последствиям, например, осадкообразованию солей магния и кальция. Также возврат концентрата после нанофильтрационной установки в поток следующей порции обрабатываемого исходного литийсодержащего рассола в сорбционно-десорбционном обогатительном модуле способствует тому, что литий, содержащийся в незначительном количестве в потоке концентрата после нанофильтрационной установки, улавливается сорбентом на сорбционно-десорбционном обогатительном модуле, что полностью исключает потери лития в процессе его извлечения из литийсодержащего рассола.

Столь высокий эффект очистки первичного литиевого концентрата от примесей магния и кальция в заявленном способе в отличие от прототипа достигнут в одну стадию без применения дополнительных химических реагентов для образования малорастворимых соединений СаСО3 и Mg(OH)2 и последующего их отделения от раствора.

Таким образом, предлагаемый способ имеет перед прототипом следующие преимущества:

- технологические: повышение эффективности сорбционного извлечения лития из литийсодержащих рассолов за счет исключения потерей лития, упрощение аппаратурного оформления технологии обогащения рассола по литию путем уменьшения количества технологических узлов и стадий (например, отсутствие необходимости в реагентном хозяйстве, в фильтрах для отделения от раствора выпавших в осадок малорастворимых соединений магния и кальция, в ионообменных фильтрах, загруженных катионитами);

- экологические: отсутствие сброса сточных вод и твердого осадка, содержащих соединения магния и кальция, и необходимости их переработки или утилизации;

- экономические: сокращение количества применяемых химических реагентов и затрат на содержание и обслуживание реагентного хозяйства; сокращение затрат на очистку литиевого концентрата от примесей магния и кальция, что в конечном счете приведет к снижению себестоимости товарного литийсодержащего продукта.

Способ сорбционного извлечения лития из литийсодержащих рассолов, включающий получение литиевого концентрата путем сорбционного обогащения рассола по литию в сорбционно-десорбционном обогатительном модуле с применением гранулированного сорбента на основе хлорсодержащей разновидности двойного гидроксида алюминия и лития, отмывку насыщенного хлоридом лития гранулированного сорбента от рассола, десорбцию хлорида лития с сорбента с получением первичного литиевого концентрата - раствора хлорида лития с примесями магния и кальция, очистку литиевого концентрата от примесей, отличающийся тем, что полученный в результате десорбции первичный литиевый концентрат направляют на селективную по отношению к магнию и кальцию нанофильтрационную установку, концентрат после нанофильтрационной установки направляют повторно в поток исходного литийсодержащего рассола, подаваемого в сорбционно-десорбционный обогатительный модуль, для обработки следующей порции исходного литийсодержащего рассола, а фильтрат после очистки на нанофильтрационной установке направляют на последующее концентрирование по хлориду лития.
Источник поступления информации: Роспатент

Showing 191-200 of 433 items.
22.09.2018
№218.016.8969

Состав для изоляции водопритока в скважину с низкой пластовой температурой (варианты)

Группа изобретений относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих скважинах и обработки нагнетательных скважин с целью выравнивания профиля приемистости и увеличения охвата пластов заводнением. По первому варианту состав содержит...
Тип: Изобретение
Номер охранного документа: 0002667254
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.8983

Способ перфорации скважины и обработки призабойной зоны карбонатного пласта

Изобретение относится к нефтегазодобывающей промышленности, к области эксплуатации скважин, а именно к способам для вторичного вскрытия и обработки призабойной зоны карбонатного пласта. Способ включает спуск в эксплуатационную колонну (ЭК) закрепленных на колонне насосно-компрессорных труб...
Тип: Изобретение
Номер охранного документа: 0002667239
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.8990

Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины

Изобретение относится к проведению гидравлического разрыва пласта (ГРП) и может быть применено для определения ориентации трещины в горизонтальном стволе скважины, полученной в результате ГРП. Способ включает проведение ГРП с образованием трещины разрыва и определение пространственной...
Тип: Изобретение
Номер охранного документа: 0002667248
Дата охранного документа: 18.09.2018
23.09.2018
№218.016.8a86

Способ многократного гидравлического разрыва пласта в открытом стволе наклонной скважины

Изобретение относится к способам гидравлического разрыва в открытых стволах горизонтальных скважин, вскрывших многопластовую продуктивную залежь нефти с низкими фильтрационно-емкостными свойствами с подошвенной водой в карбонатных породах. Способ включает бурение скважины в продуктивном пласте,...
Тип: Изобретение
Номер охранного документа: 0002667561
Дата охранного документа: 21.09.2018
15.10.2018
№218.016.9207

Состав для изоляции водопритока в скважину

Изобретение оотносится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих и нагнетательных скважинах, и предназначено для проведения водоизоляционных работ в скважинах. Состав для изоляции водопритока в скважину содержит 2,8-13,5 мас. % силиката...
Тип: Изобретение
Номер охранного документа: 0002669648
Дата охранного документа: 12.10.2018
15.10.2018
№218.016.9214

Способ герметизации эксплуатационной колонны

Изобретение относится к cпособу герметизации эксплуатационной колонны. Техническим результатом является обеспечение герметичной посадки пакера за одну спускоподъемную операцию. Способ герметизации эксплуатационной колонны включает спуск в эксплуатационную колонну скважины пакера на посадочном...
Тип: Изобретение
Номер охранного документа: 0002669646
Дата охранного документа: 12.10.2018
15.10.2018
№218.016.9240

Способ герметизации эксплуатационной колонны скважины

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам герметизации эксплуатационной колонны скважины. Способ включает определение интервала нарушения эксплуатационной колонны, спуск насосно-компрессорных труб (НКТ) в интервал нарушения или ниже. При этом перед...
Тип: Изобретение
Номер охранного документа: 0002669650
Дата охранного документа: 12.10.2018
15.10.2018
№218.016.9266

Способ разработки залежи высоковязкой и сверхвязкой нефти тепловыми методами на поздней стадии разработки

Изобретение относится к нефтедобывающей промышленности. Технический результат - заканчивание скважин при тепловом воздействии без разрушения структуры пласта с одновременным снижением затрат. Способ разработки залежи высоковязкой и сверхвязкой нефти тепловыми методами на поздней стадии...
Тип: Изобретение
Номер охранного документа: 0002669647
Дата охранного документа: 12.10.2018
19.10.2018
№218.016.939d

Оборудование для свабирования скважин по эксплуатационной колонне

Изобретение относится к нефтедобывающей промышленности и может быть использовано для свабирования по эксплуатационной колонне скважин с вязкой продукцией, на которых исключена возможность газонефтепроявлений. Оборудование для свабирования скважин по эксплуатационной колонне включает тройник с...
Тип: Изобретение
Номер охранного документа: 0002669966
Дата охранного документа: 17.10.2018
19.10.2018
№218.016.93be

Гелеобразующий состав

Изобретение относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих скважинах и регулирования охвата пласта и профиля приемистости нагнетательных скважин. Гелеобразующий состав содержит 13-19,5 мас.% силиката натрия, 1,6-2,2 мас.% сульфата...
Тип: Изобретение
Номер охранного документа: 0002669970
Дата охранного документа: 17.10.2018
Showing 71-71 of 71 items.
16.05.2023
№223.018.60c1

Способ определения содержания органического хлора в химических реагентах, применяемых в нефтедобыче

Изобретение относится к способам определения органического хлора. Описан способ определения содержания органического хлора в химических реагентах на органической основе, на водной основе, на основе соляной кислоты и в твердом агрегатном состоянии, применяемых в нефтедобыче, включающий введение...
Тип: Изобретение
Номер охранного документа: 0002740991
Дата охранного документа: 22.01.2021
+ добавить свой РИД