×
23.04.2020
220.018.182a

Результат интеллектуальной деятельности: Трехкомпонентный скважинный сейсмометр

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, в частности к сейсмометрии, и может быть использовано для сейсмического мониторинга. Заявлен трехкомпонентный скважинный сейсмометр, содержащий в герметичном корпусе с подпружиненными стабилизаторами, блок арретирования, генератор, первый и второй каналы приема горизонтальных составляющих сигналов и третий канал приема вертикальной составляющей сигналов. Причем каждый канал включает маятник, первый усилитель, калибратор, последовательно соединенные емкостный датчик перемещения, усилитель-демодулятор, блок обратной связи и магнитоэлектрический преобразователь. В каждом канале маятник механически связан с емкостным датчиком перемещения, с магнитоэлектрическим преобразователем и блоком арретирования. Сейсмометр дополнительно содержит микропроцессор, первый цифроаналоговый преобразователь (ЦАП), первый, второй и третий аналого-цифровые преобразователи (АЦП), датчик азимутального перемещения, последовательно соединенные второй ЦАП и первый фильтр, последовательно соединенные третий ЦАП и второй фильтр, последовательно соединенные первый сумматор и четвертый АЦП, последовательно соединенные второй сумматор и пятый АЦП, первый, второй, третий и четвертый идентичные каналы преобразования сигналов. Причем каждый канал преобразования сигналов включает второй усилитель, умножитель и первый фазовращатель, функциональный преобразователь, второй фазовращатель и третий усилитель, определенным образом соединенные и подключенные к сумматорам, АЦП и ЦАП. Причем функциональные преобразователи первого и третьего каналов преобразования сигналов реализуют функцию cos x, а функциональные преобразователи второго и четвертого каналов преобразования сигналов реализуют функцию sin x. Технический результат - возможность изменения азимутальной ориентации диаграмм направленности трехкомпонентного скважинного сейсмометра после установки в скважину. 3 ил.

Изобретение относится к измерительной технике, в частности к сейсмометрии, и может быть использовано для сейсмического мониторинга.

Известен трехкомпонентный скважинный цифровой сейсмометр [1], содержащий блок сбора данных с основным источником питания, блок электроники, состоящий из аналого-цифрового преобразователя, соединенного с микропроцессором, трехкомпонентный акселерометрический датчик, соединенный с аналого-цифровым преобразователем, наклономер, трехкоординатный магнитометр и установленный в блоке электроники вторичный источник питания, при этом наклономер и трехкоординатный магнитометр соединены с микропроцессором, причем трехкомпонентный акселерометрический датчик, наклономер, трехкоординатный магнитометр и блок электроники соединены с вторичным источником питания и установлены в водонепроницаемом корпусе, выполненном из нержавеющей стали.

Этот сейсмометр не обеспечивает изменения ориентации в скважине и защиты от сейсмических помех.

Наиболее близким техническим решением к предлагаемому является трехкомпонентный скважинный сейсмометр KS-2000BH [2], [3], фирмы Geotech Instruments LLC. Сейсмометр содержит в герметичном корпусе блок арретирования, генератор, первый, второй и третий каналы приема сигналов, причем каждый канал включает маятник, интегратор, усилитель, калибратор, последовательно соединенные емкостный датчик перемещения, усилитель-демодулятор, блок обратной связи и магнитоэлектрический преобразователь, и в каждом канале маятник механически связан с емкостным датчиком перемещения, с магнитоэлектрическим преобразователем и блоком арретирования, калибратор подключен выходом ко входу магнитоэлектрического преобразователя, усилитель и интегратор подключены к выходу усилителя-демодулятора а емкостный датчик перемещения и усилитель-демодулятор подключены к генератору.

Недостатком прототипа является отсутствие возможности изменения азимутальной ориентации диаграмм направленности трехкомпонентного скважинного сейсмометра после установки в скважину.

Техническим результатом, обеспечиваемым заявляемым изобретением, является возможность изменения азимутальной ориентации диаграмм направленности трехкомпонентного скважинного сейсмометра после установки в скважину.

Технический результат достигается тем, что трехкомпонентный скважинный сейсмометр, содержащий в герметичном корпусе с подпружиненными стабилизаторами, блок арретирования, генератор, первый и второй каналы приема горизонтальных составляющих сигналов и третий канал приема вертикальной составляющей сигналов, причем каждый канал включает маятник, первый усилитель, калибратор, последовательно соединенные емкостный датчик перемещения, усилитель-демодулятор, блок обратной связи и магнитоэлектрический преобразователь, и в каждом канале маятник механически связан с емкостным датчиком перемещения, с магнитоэлектрическим преобразователем и блоком арретирования, калибратор подключен выходом ко входу магнитоэлектрического преобразователя, первый усилитель подключен к выходу усилителя-демодулятора, а емкостный датчик перемещения и усилитель-демодулятор подключены к генератору, дополнительно содержит микропроцессор, первый цифроаналоговый преобразователь (ЦАП), первый, второй и третий аналого-цифровые преобразователи (АЦП), датчик азимутального перемещения, последовательно соединенные второй ЦАП и первый фильтр, последовательно соединенные третий ЦАП и второй фильтр, последовательно соединенные первый сумматор и четвертый АЦП, последовательно соединенные второй сумматор и пятый АЦП, первый, второй, третий и четвертый идентичные каналы преобразования сигналов, причем каждый канал преобразования сигналов включает последовательно соединенные второй усилитель, умножитель и первый фазовращатель, последовательно соединенные функциональный преобразователь, второй фазовращатель и третий усилитель, причем второй вход умножителя подключен к выходу третьего усилителя в каждом канале преобразования сигналов, выходы первых фазовращателей первого и второго каналов преобразования сигналов подключены ко входам первого сумматора, выходы первых фазовращателей третьего и четвертого каналов преобразования сигналов подключены ко входам второго сумматора, входы функциональных преобразователей первого и второго каналов преобразования сигналов подключены к выходу первого фильтра, входы функциональных преобразователей третьего и четвертого каналов преобразования сигналов подключены к выходу второго фильтра, входы вторых усилителей первого и третьего каналов преобразования сигналов подключены к выходу первого усилителя первого канала приема сигналов, входы вторых усилителей второго и четвертого каналов преобразования сигналов подключены к выходу первого усилителя второго канала приема сигналов, выходы первых усилителей первого, второго и третьего каналов приема сигналов подключены, соответственно, к первому, второму и третьему АЦП, калибраторы первого, второго и третьего каналов приема сигналов подключены к выходу первого ЦАП, входы управления первого, второго и третьего усилителей и первого и второго фазовращателей подключены к микропроцессору, датчик азимутального перемещения, входы всех ЦАП и выходы всех АЦП подключены к микропроцессору, первый ЦАП выполнен трехканальным и подключен выходами ко входам калибраторов, блок арретирования выполнен трехканальным и подключен к микропроцессору, первый и второй фазовращатели выполнены с управлением по фазе, первый, второй и третий усилители выполнены с управлением по полосе пропускания и чувствительности, функциональные преобразователи первого и третьего каналов преобразования сигналов реализуют функцию cos x, а функциональные преобразователи второго и четвертого каналов преобразования сигналов реализуют функцию sin x.

Такое выполнение трехкомпонентного скважинного сейсмометра обеспечивает возможность изменения азимутальной ориентации диаграмм направленности трехкомпонентного скважинного сейсмометра после установки в скважину.

На фиг. 1 представлена структурная схема трехкомпонентного скважинного сейсмометра.

На фиг. 2 представлена схема одного из возможных вариантов установки трехкомпонентного скважинного сейсмометра в скважине.

На фиг. 3 представлена схема одного из возможных вариантов установки датчика азимутального перемещения на стандартном подпружиненном стабилизаторе путем замены ролика одного из стабилизаторов на шар.

Принятые обозначения:

1 – герметичный корпус, 2 – блок арретирования, 3 – генератор, 4 – первый канал приема сигналов, 5 – второй канал приема сигналов, 6 – третий канал приема сигналов, 7 – маятник, 8 – первый усилитель, 9 – калибратор, 10 – емкостный датчик перемещения, 11 – усилитель-демодулятор, 12 – блок обратной связи, 13 – магнитоэлектрический преобразователь, 14 – микропроцессор, 15 – первый цифроаналоговый преобразователь (ЦАП), 16 – первый аналого-цифровой преобразователь (АЦП), 17 – второй АЦП, 18 – третий АЦП, 19 – датчик азимутального перемещения, 20 – второй ЦАП, 21 – первый фильтр, 22 – третий ЦАП, 23 – второй фильтр, 24 – первый сумматор, 25 – четвертый АЦП, 26 – второй сумматор, 27 – пятый АЦП, 28 – первый канал преобразования сигналов, 29 – второй канал преобразования сигналов, 30 – третий канал преобразования сигналов, 31 – четвертый канал преобразования сигналов, 32 – второй усилитель, 33 – умножитель, 34 – первый фазовращатель, 35 – функциональный преобразователь, 36 – второй фазовращатель, 37 – третий усилитель.

Трехкомпонентный скважинный сейсмометр содержит в герметичном корпусе 1 с подпружиненными стабилизаторами, блок 2 арретирования, генератор 3, первый и второй каналы 4, 5 приема горизонтальных составляющих сигналов и третий канал 6 приема вертикальной составляющей сигналов, причем каждый канал включает маятник 7, первый усилитель 8, калибратор 9, последовательно соединенные емкостный датчик 10 перемещения, усилитель-демодулятор 11, блок 12 обратной связи и магнитоэлектрический преобразователь 13, и в каждом канале маятник 7 механически связан с емкостным датчиком 10 перемещения, с магнитоэлектрическим преобразователем 13 и блоком 2 арретирования, калибратор 9 подключен выходом ко входу магнитоэлектрического преобразователя 13, первый усилитель 8 подключен к выходу усилителя-демодулятора 11, а емкостный датчик 10 перемещения и усилитель-демодулятор 11 подключены к генератору 3, дополнительно содержит микропроцессор 14, первый цифроаналоговый преобразователь (ЦАП) 15, первый аналого-цифровой преобразователь (АЦП) 16, второй АЦП 17, и третий АЦП 18, датчик 19 азимутального перемещения, последовательно соединенные второй ЦАП 20 и первый фильтр 21, последовательно соединенные третий ЦАП 22 и второй фильтр 23, последовательно соединенные первый сумматор 24 и четвертый АЦП 25, последовательно соединенные второй сумматор 26 и пятый АЦП 27, первый канал 28 преобразования сигналов, второй канал 29 преобразования сигналов, третий канал 30 преобразования сигналов и четвертый канал 31 преобразования сигналов, каждый канал преобразования сигналов включает последовательно соединенные второй усилитель 32, умножитель 33 и первый фазовращатель 34, последовательно соединенные функциональный преобразователь 35, второй фазовращатель 36 и третий усилитель 37, причем второй вход умножителя 33 подключен к выходу третьего усилителя 37 в каждом канале, выходы первых фазовращателей 34 первого и второго каналов 28, 29 преобразования сигналов подключены ко входам первого сумматора 24, выходы первых фазовращателей 34 третьего и четвертого каналов 30, 31 преобразования сигналов подключены ко входам второго сумматора 26, входы функциональных преобразователей 35 первого и второго каналов 28, 29 преобразования сигналов подключены к выходу первого фильтра 21, входы функциональных преобразователей 35 третьего и четвертого каналов 30, 31 преобразования сигналов подключены к выходу второго фильтра 23, входы вторых усилителей 32 первого и третьего каналов 28, 30 преобразования сигналов подключены к выходу первого усилителя 8 первого канала 4 приема сигналов, входы вторых усилителей 32 второго и четвертого каналов 29, 31 преобразования сигналов подключены к выходу первого усилителя 8 второго канала 5 приема сигналов, выходы первых усилителей 8 первого, второго и третьего каналов 4, 5, 6 приема сигналов подключены, соответственно, к первому, второму и третьему АЦП 16, 17, 18, калибраторы 9 первого, второго и третьего каналов 4, 5, 6 приема сигналов подключены к выходу первого ЦАП 15, входы управления первого, второго и третьего усилителей 8, 32, 37 и первого и второго фазовращателей 34, 36 подключены к микропроцессору 14, датчик 19 азимутального перемещения, входы всех ЦАП и выходы всех АЦП подключены к микропроцессору 14, первый ЦАП 15 выполнен трехканальным, блок 2 арретирования выполнен трехканальным и подключен к микропроцессору 14, первый и второй фазовращатели 34, 36 выполнены с управлением по фазе, первый, второй и третий усилители 8, 32, 37 выполнены с управлением по полосе пропускания и чувствительности, функциональные преобразователи 35 первого и третьего каналов 28, 30 преобразования сигналов реализуют функцию cos x, а функциональные преобразователи 35 второго и четвертого каналов 29, 31 преобразования сигналов реализуют функцию sin x.

Трехкомпонентный скважинный сейсмометр работает следующим образом.

При появлении сейсмических воздействий происходит перемещение относительно герметичного корпуса 1 маятника 7 в первом канале 4 приема горизонтальной составляющей сигналов, что вызывает на выходе емкостного датчика 10 перемещения появление сигнала, который поступает на вход усилителя – демодулятора 11, усиливается и выпрямляется с помощью опорных сигналов генератора 3, поступающих на емкостный датчик 10 перемещения и дополнительный вход усилителя – демодулятора 11. Выходной сигнал усилителя – демодулятора 11 усиливается первым усилителем 8 и поступает через первый АЦП 16 в микропроцессор 14 для передачи с помощью модемов через линию связи и дальнейшей обработки в ПЭВМ. Кроме того, выходной сигнал усилителя – демодулятора 11 поступает через блок 12 обратной связи на магнитоэлектрический преобразователь 13, механически связанный с маятником 7 и реализующий отрицательную обратную связь в трехкомпонентном скважинном сейсмометре.

Аналогично при появлении сейсмических воздействий второй и третий каналы 5, 6 приема горизонтальной и вертикальной составляющих сигналов преобразуют и посылают сейсмические сигналы через второй и третий АЦП 17, 18 в микропроцессор 14 для передачи с помощью модема через линию связи и дальнейшей обработки в ПЭВМ. Контроль работоспособности трехкомпонентного скважинного сейсмометра осуществляется подачей из микропроцессора 14 калибровочных сигналов через первый ЦАП 15 и калибраторы 9 на входы магнитоэлектрических преобразователей 13. Для предотвращения механических повреждений опор маятников 7 при транспортировке и установке трехкомпонентного скважинного сейсмометра в скважину маятники 7 фиксируются подачей соответствующих сигналов из микропроцессора 14 на блок 2 арретирования (включающий, например, для каждого канала механизм арретирования, общие электродвигатель и ключ, связанный с микропроцессором). Перед установкой сейсмометр опускают в скважину в районе оголовка и поворачивают на заданный угол, считывая начальное и конечное показания датчика 19 азимутального перемещения для масштабирования смещений, выдаваемых датчиком на конкретной скважине. При установке в скважину трехкомпонентный скважинный сейсмометр ориентируют по азимуту на оголовке скважины, опускают на заданную глубину и фиксируют. При этом датчик 19 азимутального перемещения (например, аналог лазерной компьютерной мыши [4]), установленный на подпружиненном стабилизаторе, формирует и передает в ПЭВМ информацию о величине и направлении смещения трехкомпонентного скважинного сейсмометра относительно первоначальной азимутальной ориентации. По полученным сигналам в ПЭВМ вычисляется угол, на который необходимо повернуть трехкомпонентный скважинный сейсмометр, чтобы восстановить ориентацию. В предложенном техническом решении трехкомпонентный скважинный сейсмометр остается неподвижным, реализуется поворот диаграмм направленности трехкомпонентного скважинного сейсмометра на любой заданный угол, что дает возможность получения требуемой ориентации или поиска положения с минимумом помех. Для этого сигналы с выходов первых усилителей 8 первого канала 4 приема сигналов поступают на входы вторых усилителей 32 первого и третьего каналов 28, 30 преобразования сигналов, а сигналы с выходов первых усилителей 8 второго канала 5 приема сигналов поступают на входы вторых усилителей 32 второго и четвертого каналов 29, 31 преобразования сигналов.

С выходов вторых усилителей 32 сигналы, пропорциональные синусу и косинусу первого угла между направлением на источник сигнала и продольной осью диаграммы направленности в горизонтальной плоскости трехкомпонентного скважинного сейсмометра, ориентированной на оголовке скважины, например, на Север, поступают на первые входы умножителей 33, соответственно, первого и второго каналов 28, 29 преобразования сигналов, а также на первые входы умножителей 33, соответственно, третьего и четвертого каналов 30, 31 преобразования сигналов. На вторые входы умножителей 33 первого и второго каналов 28, 29 преобразования сигналов через второй фазовращатель 36 и третий усилитель 37 поступают сигналы из функциональных преобразователей 35 первого и второго каналов 28, 29 преобразования сигналов, пропорциональные, соответственно, косинусу и синусу второго угла поворота диаграммы направленности, величина и знак которого задаются сигналом из ПЭВМ, поступающим через микропроцессор 14, второй ЦАП 20 и первый фильтр 21 на функциональные преобразователи 35 первого и второго каналов приема сигналов. Выходные сигналы умножителей 33 первого и второго каналов 28, 29 преобразования сигналов через первый фазовращатель 34 поступают на входы первого сумматора 24. Выходной сигнал первого сумматора 24 пропорционален сумме произведений синуса первого угла на косинус второго угла и косинуса первого угла на синус второго угла, пропорционален синусу суммы первого и второго углов, что соответствует повороту диаграммы направленности на второй угол. На вторые входы умножителей 33 третьего и четвертого каналов 30, 31 преобразования сигналов через второй фазовращатель 36 и третий усилитель 37 поступают сигналы из функциональных преобразователей 35 третьего и четвертого каналов 30, 31 преобразования сигналов, пропорциональные, соответственно, косинусу и синусу третьего угла поворота диаграммы направленности равного второму углу, например, сдвинутому на 90º, величина и знак которого задаются сигналом из ПЭВМ, поступающим через микропроцессор 14, третий ЦАП 22 и второй фильтр 23 на функциональные преобразователи 35 третьего и четвертого каналов 30, 31 преобразования сигналов. Выходные сигналы умножителей 33 третьего и четвертого каналов 30, 31 преобразования сигналов через первый фазовращатель 34 поступают на входы второго сумматора 26. Выходной сигнал второго сумматора 26 пропорционален сумме произведений синуса первого угла на косинус третьего угла и косинуса первого угла на синус третьего угла, пропорционален синусу суммы первого и третьего углов, что соответствует повороту диаграммы направленности на третий угол или на второй угол и 90.º Таким образом, на выходах первого и второго сумматоров формируются сигналы, соответствующие двум взаимно перпендикулярным дипольным диаграммам направленности, которые могут одновременно поворачиваться на требуемый угол. Полученные сигналы поступают в микропроцессор 14 через четвертый и пятый АЦП 25, 27 и передаются далее с помощью модемов в ПЭВМ для дальнейшей обработки.

При необходимости динамический диапазон сейсмометра может быть увеличен заменой блоков умножения управляемыми аналоговыми или цифровыми аттенюаторами [5] или установкой гониометра [6].

Таким образом, достигается заявленный результат и предлагаемый трехкомпонентный скважинный сейсмометр обеспечивает возможность изменения азимутальной ориентации диаграмм направленности трехкомпонентного скважинного сейсмометра после установки в скважину.

Источники информации.

1. Скважинный трехкомпонентный цифровой акселерометр (патент РФ № 2488849 С1, МПК G01V1/16, 27.07.2013).

2. Broadband Seismometer – Models KS-2000 and KS-2000M, Operation Manual, руководство по эксплуатации, GEOTECH INSTRUMENTS, LLC, Copyright © 2000–2002, http://www.geoinstr.com/pub/manuals/ks-2000m.pdf.

3. Broadband Seismometer, Model KS-2000M, Rev. 2, Model KS-2000BH, Datasheets, Справочные данные, GEOTECH INSTRUMENTS, LLC, OCTOBER 2012, http://www.geoinstr.com/ds-ks2000m.pdf.

4. Anatoly Besplemennov, Измерение угловых или линейных перемещений с помощью оптического датчика мыши, журнал РАДИОЛОЦМАН, май 2015, https://www.rlocman.ru/book/book.html?di=160368.

5. Электронный гониометр с высоким динамическим диапазоном (патент РФ № 117017 U1, МПК G01S3/30, 10.06.2012).

6. Устройство для определения направления на источник сигнала (патент РФ № 2544879 C1, МПК G01V1/16, 20.03.2015).

Трехкомпонентный скважинный сейсмометр, содержащий в герметичном корпусе с подпружиненными стабилизаторами, блок арретирования, генератор, первый и второй каналы приема горизонтальных составляющих сигналов и третий канал приема вертикальной составляющей сигналов, причем каждый канал включает маятник, первый усилитель, калибратор, последовательно соединенные емкостный датчик перемещения, усилитель-демодулятор, блок обратной связи и магнитоэлектрический преобразователь, и в каждом канале маятник механически связан с емкостным датчиком перемещения, с магнитоэлектрическим преобразователем и блоком арретирования, калибратор подключен выходом ко входу магнитоэлектрического преобразователя, первый усилитель подключен к выходу усилителя-демодулятора, а емкостный датчик перемещения и усилитель-демодулятор подключены к генератору, отличающийся тем, что дополнительно содержит микропроцессор, первый цифроаналоговый преобразователь, первый, второй и третий аналого-цифровые преобразователи, датчик азимутального перемещения, последовательно соединенные второй цифроаналоговый преобразователь и первый фильтр, последовательно соединенные третий цифроаналоговый преобразователь и второй фильтр, последовательно соединенные первый сумматор и четвертый аналого-цифровой преобразователь, последовательно соединенные второй сумматор и пятый аналого-цифровой преобразователь, первый, второй, третий и четвертый идентичные каналы преобразования сигналов, причем каждый канал преобразования сигналов включает последовательно соединенные второй усилитель, умножитель и первый фазовращатель, последовательно соединенные функциональный преобразователь, второй фазовращатель и третий усилитель, причем второй вход умножителя подключен к выходу третьего усилителя в каждом канале преобразования сигналов, выходы первых фазовращателей первого и второго каналов преобразования сигналов подключены ко входам первого сумматора, выходы первых фазовращателей третьего и четвертого каналов преобразования сигналов подключены ко входам второго сумматора, входы функциональных преобразователей первого и второго каналов преобразования сигналов подключены к выходу первого фильтра, входы функциональных преобразователей третьего и четвертого каналов преобразования сигналов подключены к выходу второго фильтра, входы вторых усилителей первого и третьего каналов преобразования сигналов подключены к выходу первого усилителя первого канала приема сигналов, входы вторых усилителей второго и четвертого каналов преобразования сигналов подключены к выходу первого усилителя второго канала приема сигналов, выходы первых усилителей первого, второго и третьего каналов приема сигналов подключены, соответственно, к первому, второму и третьему аналого-цифровому преобразователю, калибраторы первого, второго и третьего каналов приема сигналов подключены к выходу первого цифроаналогового преобразователя, входы управления первого, второго и третьего усилителей и первого и второго фазовращателей подключены к микропроцессору, датчик азимутального перемещения, входы всех цифроаналоговых преобразователей и выходы всех аналого-цифровых преобразователей подключены к микропроцессору, первый цифроаналоговый преобразователь выполнен трехканальным и подключен выходами ко входам калибраторов, блок арретирования выполнен трехканальным и подключен к микропроцессору, первый и второй фазовращатели выполнены с управлением по фазе, первый, второй и третий усилители выполнены с управлением по полосе пропускания и чувствительности, функциональные преобразователи первого и третьего каналов преобразования сигналов реализуют функцию cos x, а функциональные преобразователи второго и четвертого каналов преобразования сигналов реализуют функцию sin x.
Трехкомпонентный скважинный сейсмометр
Трехкомпонентный скважинный сейсмометр
Трехкомпонентный скважинный сейсмометр
Трехкомпонентный скважинный сейсмометр
Источник поступления информации: Роспатент

Showing 21-30 of 31 items.
21.03.2020
№220.018.0eb9

Трехкомпонентный скважинный сейсмометр

Изобретение относится к измерительной технике, в частности к сейсмометрии, и может быть использовано для сейсмического мониторинга. Заявлен трехкомпонентный скважинный сейсмометр, содержащий в герметичном корпусе с подпружиненными стабилизаторами блок арретирования, генератор, первый и второй...
Тип: Изобретение
Номер охранного документа: 0002717166
Дата охранного документа: 18.03.2020
21.03.2020
№220.018.0ee2

Сейсмометр

Изобретение относится к измерительной технике, в частности к области гравиинерциальных измерений, а именно к сейсмометрии. Заявлен сейсмометр, содержащий основание, два упругих элемента, кронштейны, диэлектрические прокладки, постоянные магниты и полюсные наконечники, многосекционную катушку,...
Тип: Изобретение
Номер охранного документа: 0002717165
Дата охранного документа: 18.03.2020
21.07.2020
№220.018.350e

Способ ввода в скоростной фотохронографический регистратор оптического излучения для нанесения меток времени

Изобретение относится к области высокоскоростной фотосъемки и касается способа ввода в скоростной фотохронографический регистратор (СФР) оптического излучения для нанесения меток времени. Способ включает в себя ввод в оптическую систему СФР оптического модулированного излучения. Ввод излучения...
Тип: Изобретение
Номер охранного документа: 0002727088
Дата охранного документа: 17.07.2020
22.07.2020
№220.018.3565

Способ одновременного определения плотности и пористости горной породы

Изобретение относится к способам определения геофизических параметров пластов горных пород с использованием аппаратуры импульсного нейтрон-гамма-каротажа. Технический результат – одновременное определение плотности и пористости горной породы. Сущность изобретения заключается в том, что способ...
Тип: Изобретение
Номер охранного документа: 0002727091
Дата охранного документа: 17.07.2020
14.05.2023
№223.018.5574

Радиационный монитор и способ обнаружения импульсного нейтронного излучения

Изобретение относится к области измерительной техники, а именно к регистрации нейтронного излучения, и может быть использовано при обнаружении импульсного и непрерывного нейтронного излучения при обеспечении радиационной безопасности человека, обследовании различных объектов и территорий....
Тип: Изобретение
Номер охранного документа: 0002736011
Дата охранного документа: 11.11.2020
14.05.2023
№223.018.55ef

Устройство и способ снижения ударной нагрузки на объект испытаний

Изобретение относится к испытательной технике и может быть использовано для динамических испытаний объектов на воздействие ударных перегрузок. При реализации способа выбирают жесткостные характеристики полого цилиндра, объект испытаний размещают в контейнере, на носовой части которого...
Тип: Изобретение
Номер охранного документа: 0002731031
Дата охранного документа: 28.08.2020
14.05.2023
№223.018.5629

Датчик давления с интегральным преобразователем температуры пониженного энергопотребления

Изобретение относится к области измерительной техники и автоматики, представляет собой датчик давления с интегральным преобразователем температуры и может быть использовано в малогабаритных преобразователях давления и температуры в электрический сигнал. Датчик давления с интегральным...
Тип: Изобретение
Номер охранного документа: 0002730890
Дата охранного документа: 26.08.2020
14.05.2023
№223.018.56b4

Способ измерения сверхмалых значений активности выбросов трития в окружающую среду через вентиляционную систему

Изобретение относится к измерительной технике. Искомое значение выброса трития вычисляется по истечении периода измерений по измеренным значениям активности трития в счетных пробах, отобранных в барботерах расходомера-пробоотборника; измеренным значениям массы воды, отобранных в барботерах...
Тип: Изобретение
Номер охранного документа: 0002734630
Дата охранного документа: 21.10.2020
15.05.2023
№223.018.591a

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Техническим результатом изобретения является исключение разрушения пластин термоупругими напряжениями в процессе...
Тип: Изобретение
Номер охранного документа: 0002760764
Дата охранного документа: 30.11.2021
16.05.2023
№223.018.6436

Импульсный нейтронный генератор

Изобретение относится к импульсному нейтронному генератору. Генератор содержит размещенные в металлическом корпусе, залитом диэлектриком, вакуумную нейтронную трубку с ее схемой питания и со схемой формирования импульса ускоряющего напряжения, включающей накопительный конденсатор, зарядный...
Тип: Изобретение
Номер охранного документа: 0002773038
Дата охранного документа: 30.05.2022
Showing 21-30 of 47 items.
10.08.2015
№216.013.6c5c

Устройство для определения направления и дальности до источника сигнала

Изобретение относится к измерительной технике, в частности к пеленгаторам. Сущность: устройство для определения направления и дальности до источника сигнала, содержащее первую антенну и микробарометр, а также первый, второй, третий и четвертый аналого-цифровые преобразователи, подключенные к...
Тип: Изобретение
Номер охранного документа: 0002559298
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c65

Устройство для определения направления и дальности до источника сигнала

Использование: измерительная техника, в частности пеленгаторы. Сущность: устройство для определения направления и дальности до источника сигнала содержит магнитные первую и вторую антенны, размещенные взаимно перпендикулярно, последовательно соединенные первый усилитель, первый фильтр, первый...
Тип: Изобретение
Номер охранного документа: 0002559307
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6e1c

Устройство для определения направления на источник сигнала

Изобретение относится к измерительной технике, в частности к пеленгаторам. Техническим результатом является возможность частотной и пространственной селекции источников сигналов. Для этого в устройство для определения направления на источник сигнала, содержащее магнитную антенну,...
Тип: Изобретение
Номер охранного документа: 0002559746
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.7425

Устройство для определения направления и дальности до источника сигнала

Изобретение относится к измерительной технике, в частности к пеленгаторам. Сущность: устройство для определения направления и дальности до источника сигнала содержит магнитные первую и вторую антенны, размещенные взаимно перпендикулярно, последовательно соединенные первый усилитель, первый...
Тип: Изобретение
Номер охранного документа: 0002561308
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.7a07

Устройство для определения направления и дальности до источника сигнала

Изобретение относится к измерительной технике, в частности к пеленгаторам. Достигаемый технический результат - увеличение помехоустойчивости устройства. Указанный результат достигается тем, что устройство содержит магнитную первую и вторую антенны, размещенные взаимно перпендикулярно, восемь...
Тип: Изобретение
Номер охранного документа: 0002562828
Дата охранного документа: 10.09.2015
25.08.2017
№217.015.cfa7

Устройство для определения местоположения источника сигналов

Изобретение относится к измерительной технике, в частности к пеленгаторам. Предложено устройство для определения местоположения источника сигналов, содержащее персональную электронно-вычислительную машину (ПЭВМ), а также первый и второй идентичные каналы, каждый из которых включает первый блок...
Тип: Изобретение
Номер охранного документа: 0002620976
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.cfcd

Устройство для определения пеленга и дальности до источника сигналов

Изобретение относится к измерительной технике, в частности к пеленгаторам. Предложено устройство для определения пеленга и дальности до источника сигнала, содержащее первую антенну, первый и второй микробарометры, а также пять аналого-цифровых преобразователей (АЦП), подключенных к персональной...
Тип: Изобретение
Номер охранного документа: 0002620917
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.d01b

Устройство для определения направления и дальности до источника сигналов

Изобретение относится к измерительной технике, в частности к пеленгаторам. Заявлено устройство для определения направления и дальности до источника сигналов, содержащее первую антенну, первый и второй микробарометры, а также пять аналого-цифровых преобразователей (АЦП), подключенных к...
Тип: Изобретение
Номер охранного документа: 0002620919
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.d020

Устройство для определения пеленга и дальности до источника сигналов

Изобретение относится к измерительной технике, в частности к пеленгаторам. Предложено устройство для определения пеленга и дальности до источника сигнала, содержащее первую антенну, первый и второй микробарометры, а также пять аналого-цифровых преобразователей (АЦП), подключенных к персональной...
Тип: Изобретение
Номер охранного документа: 0002620910
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.d026

Способ определения направления и дальности до источника сигналов

Способ относится к измерениям, в частности к пеленгу. Техническим результатом является уменьшение погрешности использования его на однопозиционном пункте наблюдения и увеличение помехоустойчивости при наличии мешающих сигналов, приходящих во время прохождения инфразвуком расстояния от источника...
Тип: Изобретение
Номер охранного документа: 0002620925
Дата охранного документа: 30.05.2017
+ добавить свой РИД