×
28.03.2020
220.018.1181

СПОСОБ ОПТИМИЗАЦИИ КАПЕЛЬНО-ФАКЕЛЬНОГО СЖИГАНИЯ ВОДОУГОЛЬНОГО ТОПЛИВА В ВИХРЕВОМ ПОТОКЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к энергетике. Способ оптимизации капельно-факельного сжигания водоугольного топлива в вихревом потоке включает определение эталонных характеристик процесса горения для данного вида топлива в данной топке, периодическое измерение показаний датчиков в контрольных фиксированных точках в топочной камере, передачу показаний датчиков в снабженный соответствующим программным обеспечением компьютер, сравнение результатов измерения со значениями эталонных характеристик процесса горения, непрерывное регулирование с помощью АСУ подачи топлива и окислителя в соответствии с полученными показаниями. Осуществляют определение эталонных характеристик процесса горения водоугольного топлива, расчет значений эталонных характеристик процесса горения водоугольного топлива осуществляют с помощью программного обеспечения, реализующего физико-математическую модель воспламенения и выгорания водоугольного топлива в данной топке, расчет значений эталонных характеристик процесса горения водоугольного топлива выполняют для 2, 3 и более значений расхода топлива из диапазона его изменения, рассчитанные значения эталонных характеристик процесса горения водоугольного топлива сохраняют на жестком диске компьютера в базе эталонных характеристик процесса горения водоугольного топлива, измерения осуществляют датчиками температуры газов в одной и более контрольных фиксированных точках внутри топочной камеры и одной контрольной фиксированной точке на выходе из топочной камеры. Технический результат - снижение удельного количества используемого топлива и окислителя на единицу полученного тепла, уменьшение энергозатрат на подачу и нагревание избыточно поданного в топку окислителя, вследствие этого улучшаются экологические и экономические показатели энергетических установок.
Реферат Свернуть Развернуть

Изобретение относится к энергетике. Изобретение относится к способам для сжигания водоугольного топлива (ВУТ), в различных котельных установках промышленной теплоэнергетики, жилищно-коммунального хозяйства и других теплогенерирующих системах.

Известен способ оптимизация работы котла [CN103939940, 23.07.2014, F23N5/00], оптимизация работы котла которым достигается на основе использования базы данных по эффективности сжигания топлива без указания того, как эта база получена. В частности, нет указания на использование результатов физико-математического моделирования топочных процессов, что снижает эффективность способа.

Известен способ оптимизации систем управления работой котла [CN201368471, 23.12.2009, F23N5/00; G05B19/418]. Указанное изобретение не включает использование результатов моделирования топочных процессов, что снижает его эффективность.

Наиболее близким по технической сущности является способ контроля и управления процессом горения углеводородного топлива в топках котлов и промышленных печей [Патент РФ №:2551714, 27.05.2015], при котором опытным путем определяют стехиометрическое соотношение горючего и окислителя для данного вида топлива в данной топке; определяют значения абсолютных величин электрических потенциалов в трех зонах пламени факела: зоне подготовки, зоне сгорания и зоне догорания при стехиометрическом соотношении горючего и окислителя и принимают их за эталонные; непрерывно измеряют значения абсолютных величин электрических потенциалов в трех зонах пламени факела и сравнивают их с эталонными, причем по результатам сравнений непрерывно регулируют подачу окислителя в соответствии с полученными показателями.

Недостатком способа является сложность его использования.

Основным недостатком рассмотренных способов является низкая точность экспериментальных способов определения эталонных значений характеристик процесса горения ВУТ и большие технические трудности, связанные с их реализацией.

Задачей, на решение которой направлено настоящее изобретение, является оптимизация технологии капельно-факельного сжигания водоугольного топлива в вихревом потоке с целью обеспечения полного сгорания топлива в топках котлов, промышленных печей или других энергетических установок при минимальной концентрации окислителя за счет постоянного поддержания концентраций горючего и окислителя в соотношении, близком к эталонному значению коэффициента избытка воздуха, равному отношению действительного расхода воздуха-окислителя, необходимого для сжигания 1 кг данного топлива, к теоретически необходимому (стехиометрическому).

Согласно изобретению способ оптимизации капельно-факельного сжигания водоугольного топлива в вихревом потоке включает определение эталонных характеристик процесса горения для данного вида ВУТ в данной топке с помощью программного обеспечения, реализующего физико-математическую модель воспламенения и выгорания водоугольного топлива, для 2-3 и более значений расхода топлива из диапазона его изменения, и сохранение эталонных характеристик процесса горения ВУТ на жестком диске компьютера в базе эталонных характеристик процесса горения ВУТ. Затем полученные эталонные характеристики процесса горения ВУТ используют для оптимизации капельно-факельного сжигания водоугольного топлива в реальных условиях. Согласно изобретению периодическое измерение показаний датчиков температуры газов осуществляют в одной и более контрольных фиксированных точках внутри топочной камеры и одной контрольной фиксированной точке на выходе из топочной камеры, показания датчиков передают в компьютер, снабженный соответствующим программным обеспечением, осуществляющим сравнение результатов измерения со значениями эталонных характеристик процесса горения и передачу сигналов АСУ (Автоматизированная система управления) для непрерывного регулирования подачи топлива и окислителя в соответствии с полученными показаниями.

Оптимизацию осуществляют на основе сравнения данных численного моделирования, позволяющего исследовать аэродинамику и распределение температур в топке котла, и экспериментальных данных. Численное моделирование топочных процессов позволяет получить наиболее представительную информацию об аэродинамике и теплообмене в топке котла при сжигании водоугольного топлива.

В результате достигается снижение удельного количества используемого топлива и окислителя на единицу полученного тепла, уменьшение энергозатрат на подачу и нагревание избыточно поданного в топку окислителя, вследствие этого улучшаются экологические и экономические показатели энергетических установок.

В случае использования технологии капельно-факельного сжигания водоугольного топлива в муфельных топочных камерах энергетических котлов, проработка нового котла начинается с задания мощности котла, выбора типа котла и, в частности, конструкции его топочной камеры (с местами расположения топливной форсунки и сопл для вдува воздуха-окислителя), определения характеристик водоугольной суспензии (ВУС) таких, как марка угля, его теплотворная способность, влажность, зольность, гранулометрический состав угольной массы. Задают форму газо-капельного топливного факела, распределение капель по размеру и скорости движения в факеле. Указывают также режимы работы котла, различающиеся его теплопроизводительностью, а следовательно, расходом топлива.

На основании указанной информации по программе, построенной на основе физико-математического моделирования процессов воспламенения и горения водоугольного топлива, производят расчет сжигания топлива на данном котле при заданном значении расхода топлива с заданными свойствами. Расчет проводят для 2-3 и более значений расхода топлива из диапазона его изменения.

Математическая модель процессов воспламенения и горения водоугольного топлива включает в себя модель движения многокомпонентной неизотермической газовой среды (несущей фазы); модель движения капель/частиц на основе подхода Лагранжа; модель горения в газовой фазе на основе гибридной модели, сочетающей механизмы химического реагирования и турбулентного обмена; модель выгорания коксового остатка. Течение газов в топочных камерах принимается пространственным и турбулентным. Характер его обусловлен способами подвода топлива, воздуха-окислителя и газов рециркуляции, внутренней конструкцией. Максимальные скорости движения газов в топочных камерах не превышают 100 м/с. При температурах около 1800°К это соответствует числам Маха М≤0,12. Для описания движения газов при таких числах Маха используется модель несжимаемой жидкости. Для турбулентного режима течения уравнения движения могут быть записаны в форме осредненных по Рейнолдьсу уравнений Навье-Стокса. Уравнения сохранения для газовой фазы записываются в виде обобщенного закона сохранения в контрольном объеме. Для объема записывается конечно-разностный аналог уравнения. Для вычисления диффузионных потоков на гранях контрольного объема используется центрально-разностная схема, имеющая второй порядок точности. Для расчета стационарного течения использован метод установления. Подаваемое в топку и распыляемое через форсунки водоугольное топливо представляется дискретным набором капель, которые состоят из комплекса вода+угольные частицы. В модели процесс воспламенения и горения частицы происходит стадийно. Вначале происходит испарение внешней влаги, для описания этого процесса используется модель испарения капли. После испарения влаги образуются твердые частицы, для описания выгорания которых используется модель воспламенения и горения угольных частиц.

Расчеты характеристик процесса горения, а именно, расходов топлива и воздуха-окислителя, подаваемых в данную топку для обеспечения нужного режима котла, и температуры газов в контрольных точках топки, выполняют для нескольких значений расхода топлива из заданного диапазона его изменения, и сохраняют в качестве эталонных характеристик процесса горения ВУТ на жестком диске компьютера в базе эталонных характеристик процесса горения ВУТ.

Таким образом, предлагаемый способ оптимизации капельно-факельного сжигания водоугольного топлива в вихревом потоке, включает следующую последовательность шагов:

1) расчет значений эталонных характеристик процесса горения ВУТ, включающий:

ввод в компьютер исходных данных по ВУТ (теплотворная способность и зольность угля, содержание воды, дисперсный состав угольной массы, форма топливного факела, дисперсный состав капель топлива в факеле), геометрических параметров топочной камеры (форма, геометрические размеры, расположение форсунок и сопл для подачи воздуха-окислителя);

расчет значений эталонных характеристик процесса горения ВУТ с помощью, установленного на компьютере, программного обеспечения, реализующего физико-математическую модель процессов воспламенения и горения водоугольного топлива, в которой учитывают основные стадии горения капли: прогрев капли ВУТ, испарение воды, содержащийся внутри капли, выход и горение летучих веществ, содержащихся в угле, и выгорание углерода, при этом каплю ВУТ представляют в виде сферы с постоянными по всему ее объему свойствами;

сохранение рассчитанных значений эталонных характеристик процесса горения ВУТ на жестком диске ПК в базе эталонных характеристик процесса горения ВУТ;

2) мониторинг и управление работой котла, включающий:

периодическое измерение блоком датчиков температуры температур газов в одной и более контрольных фиксированных точках внутри топочной камеры и одной контрольной фиксированной точке на выходе из топочной камеры;

передача результатов измерения в снабженный соответствующим программным обеспечением и базой эталонных значений компьютер;

сравнение результатов измерения со значениями эталонных характеристик процесса горения ВУТ, соответствующими данному значению расхода топлива;

регулирование с помощью АСУ в соответствии с полученными результатами сравнения подаваемого в топочную камеру объема ВУТ и окислителя.

При известных значениях расхода топлива и расхода дутьевого воздуха, температура газа на выходе из топки определяет производительность тепловой энергии котла. В том случае, если температура газа на выходе из канала оказывается ниже эталонного значения, изменяют расход воздуха-окислителя и расход топлива и последовательными шагами находят такие их значения, которые обеспечивают с заданной точностью необходимые показатели по температуре газов на выходе из топки.

Предложенный способ позволяет контролировать и поддерживать коэффициент избытка окислителя в топке на таком уровне, что концентрации горючего и окислителя находятся в соотношении, обеспечивающем полное сгорание топлива при минимальной концентрации окислителя. Вследствие этого минимизируются концентрации вредных продуктов неполного сгорания топлива (таких как СО и СН), что повышает экологичность процесса сжигания топлива, а также уменьшается расход электроэнергии на подачу окислителя и снижаются потери теплоты, полученной от сгорания топлива, ввиду отсутствия необходимости нагрева избыточно подаваемого окислителя в топку.

На основе численного моделирования и экспериментальных исследований проведен анализ сжигания водоугольного топлива в водогрейном котле малой мощности при различных режимах. Для исследования процессов воспламенения и горения водоугольного топлива в вихревом потоке и сравнения расчетных и экспериментальных данных был использован водогрейный котел с номинальной мощностью 1 МВт.В левой боковой стенке топки котла было предусмотрено 9 отверстий для измерения температуры в отдельных точках топочного объема. Через данные отверстия осуществляли ввод датчиков температуры и замер температуры.

Использовано топливо, приготовленное на основе кека ОФ «Северная» (Кемеровская область, Россия) и представляющее собой смесь угля марки «К» и воды с массовым соотношением 50/50.

С помощью пакета "SigmaFlow" [Чернецкий, М.Ю. Математическая модель процессов теплообмена и горения пылеугольного топлива при факельном сжигании / М.Ю. Чернец-кий, А.А. Дектерев // Физика горения и взрыва. - 2011. - №3. - С. 37-46] рассмотрена и реализована математическая модель горения частиц водоугольного топлива, которая включает в себя: модель движения частиц/капель, уравнение сохранения энергии для капли ВУТ и частицы угля, модель испарения капли, модель испарения остаточной влаги из угольной частицы, модель выхода летучих веществ и модель горения коксового остатка, модель переноса газовых компонент, модель турбулентности, метод пристеночных функций [Делягин Г.Н. Вопросы теории горения водоугольной суспензии в потоке воздуха // Сб. Сжигание высокообводненного топлива в виде водоугольных суспензий. - М.: изд-во АН СССР, 1967. С.45-55. Делягин Г.Н. Вопросы теории воспламенения и горения распыленной водоугольной суспензии // В кн.: Кинетика и аэродинамика процессов горения топлива. - М.: Наука, 1969. С. 71-77. М. Chernetskiy, K. Vershinina, P. Strizhak Computational modeling of the combustion of coal water slurries containing petrochemicals. Fuel 220 (2018) 109-119]. Задача решалась в трехмерной постановке. Сетка составляла 864140 узлов, в области форсунки сетка строилась более дробной, для того чтобы более детально описать процесс распыливания водоугольного топлива.

Полученные расчетные результаты достаточно хорошо совпали с экспериментом, что свидетельствует об эффективности предложенного способа оптимизации капельно-факельного сжигания водоугольного топлива в вихревом потоке.

Способ оптимизации капельно-факельного сжигания водоугольного топлива в вихревом потоке, включающий определение эталонных характеристик процесса горения для данного вида топлива в данной топке, периодическое измерение показаний датчиков в контрольных фиксированных точках в топочной камере, передачу показаний датчиков в снабженный соответствующим программным обеспечением компьютер, сравнение результатов измерения со значениями эталонных характеристик процесса горения, непрерывное регулирование с помощью АСУ подачи топлива и окислителя в соответствии с полученными показаниями, отличающийся тем, что осуществляют определение эталонных характеристик процесса горения водоугольного топлива, расчет значений эталонных характеристик процесса горения водоугольного топлива осуществляют с помощью программного обеспечения, реализующего физико-математическую модель воспламенения и выгорания водоугольного топлива в данной топке, расчет значений эталонных характеристик процесса горения водоугольного топлива выполняют для 2, 3 и более значений расхода топлива из диапазона его изменения, рассчитанные значения эталонных характеристик процесса горения водоугольного топлива сохраняют на жестком диске компьютера в базе эталонных характеристик процесса горения водоугольного топлива, измерения осуществляют датчиками температуры газов в одной и более контрольных фиксированных точках внутри топочной камеры и одной контрольной фиксированной точке на выходе из топочной камеры.
Источник поступления информации: Роспатент

Showing 11-20 of 95 items.
10.05.2014
№216.012.bfb5

Способ свч-градиентной активации угольного топлива с использованием защитной пленки

Изобретение относится к способу СВЧ-градиентной активации угольного топлива с использованием защитной пленки путем СВЧ-воздействия на угольное топливо, при котором производят СВЧ-градиентную активацию угольной частицы, при этом поверхность кусков угля покрыта защитной пленкой, задерживающей...
Тип: Изобретение
Номер охранного документа: 0002514826
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.ccb0

Электродуговой нагреватель водяного пара

Изобретение относится к области электротехники, а именно к электродуговым нагревателям газа (плазмотронам), используемым для получения стационарных потоков низкотемпературной плазмы различных газов, и может быть применено в химической и металлургической промышленности, машиностроении,...
Тип: Изобретение
Номер охранного документа: 0002518171
Дата охранного документа: 10.06.2014
20.07.2014
№216.012.e1cd

Горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим для горения перегретый водяной пар. Горелочное устройство содержит расположенные соосно корпус, парогенератор водяного пара, установленный в корпусе и состоящий из бачка-испарителя, паросепаратора, выполненных в виде...
Тип: Изобретение
Номер охранного документа: 0002523591
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e25d

Многоходовая фокусирующая система и способ фокусировки лазерного излучения, обеспечивающий многократное прохождение лазерного пучка через измерительный объем

Система может быть использована при исследовании свойств газовых сред, в том числе, с химическими реакциями, в малых объемах, методами спектроскопии рассеяния или поглощения света. Система включает способные перемещаться в направлении к точке фокуса сборки оптических элементов, каждая из...
Тип: Изобретение
Номер охранного документа: 0002523735
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e25f

Способ бесконтактной оптико-лазерной диагностики нестационарного гидропотока и устройство для его реализации

Изобретение относится к контрольно-измерительной технике и позволяет исследовать кинематические характеристики гидропотоков. Способ, основанный на совместном использовании лазерной доплеровской анемометрии (ЛДА) и цифровой трассерной визуализации (PIV), включает установку CCD камер под углом,...
Тип: Изобретение
Номер охранного документа: 0002523737
Дата охранного документа: 20.07.2014
10.10.2014
№216.012.fae0

Способ синтеза полых наночастиц γ-alo

Изобретение относится к плазменно-дуговой технологии синтеза наноструктурированных композиционных материалов, в частности полых наночастиц γ-AlO. Способ синтеза полых наночастиц γ-AlO реализуют в две стадии, причем на первой проводят плазменно-дуговой синтез алюминий-углеродного материала,...
Тип: Изобретение
Номер охранного документа: 0002530070
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.054e

Способ синтеза наноструктурного композиционного сео-pdo материала

Изобретение относится к области нанотехнологий, а именно к пламенно-дуговой технологии синтеза наноструктурированных композиционных материалов. Предложенный способ синтеза наноструктурного композиционного CeO-PdO материала в плазме электрического разряда включает откачивание вакуумной камеры,...
Тип: Изобретение
Номер охранного документа: 0002532756
Дата охранного документа: 10.11.2014
27.12.2014
№216.013.14ae

Способ повышения устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки

Изобретение относится к теплоэнергетике, а более конкретно, к способу устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки. Способ включает формирование и стабилизацию вихревого потока. Формирование вихревого потока осуществляют за счет симметричного...
Тип: Изобретение
Номер охранного документа: 0002536718
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.17ce

Способ триангуляционного измерения толщины листовых изделий

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. Техническим результатом изобретения является повышение точности определения толщины листового изделия. В...
Тип: Изобретение
Номер охранного документа: 0002537522
Дата охранного документа: 10.01.2015
20.02.2015
№216.013.2867

Способ использования и утилизации соломы злаковых культур

Изобретение относится к сельскому хозяйству. Способ включает извлечение полезного продукта, преимущественно растворимых биоусвояемых сахаров, и последующую утилизацию лигноцеллюлозных отходов. При извлечении полезного продукта солому злаковых культур подвергают глубокой переработке, а именно:...
Тип: Изобретение
Номер охранного документа: 0002541800
Дата охранного документа: 20.02.2015
Showing 11-20 of 30 items.
25.08.2017
№217.015.ce03

Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения величин расходов фаз в двухфазных потоках, например, при добыче или переработке углеводородного топлива. Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси...
Тип: Изобретение
Номер охранного документа: 0002620776
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.e111

Генератор кавитации

Изобретение относится к технике генерации пузырьковой кавитации и может быть использовано в энергетике, в химической, строительной, пищевой и других отраслях промышленности для диспергирования, эмульгирования, получения однородных смесей и т.д. Генератор кавитации можно использовать для...
Тип: Изобретение
Номер охранного документа: 0002625463
Дата охранного документа: 14.07.2017
19.01.2018
№218.016.09ac

Способ сжигания угля, подвергнутого механической и плазменной обработке

Изобретение относится к области теплоэнергетики и может быть использовано в любой энергетической установке по переработке угля в другие виды топлива. Способ сжигания угля, подвергнутого механической и плазменной обработке, включает механическую активацию, воспламенение и сжигание, уголь...
Тип: Изобретение
Номер охранного документа: 0002631959
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.1172

Устройство для стабилизации вихревого потока

Изобретение относится к прикладной газодинамике, в частности к устройству для стабилизации вихревого потока. Устройство для стабилизации вихревого потока содержит корпус с входным и выходным патрубками для вихревого потока и направляющий элемент, расположенный внутри корпуса. Корпус выполнен в...
Тип: Изобретение
Номер охранного документа: 0002634021
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1622

Генератор кавитации

Изобретение относится к технике генерации пузырьковой кавитации и может быть использовано в энергетике, в химической, строительной, пищевой и других отраслях промышленности для диспергирования, эмульгирования, получения однородных смесей и т.д. Генератор кавитации включает корпус с внутренней...
Тип: Изобретение
Номер охранного документа: 0002635142
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.162a

Двухступенчатая вихревая горелка

Изобретение относится к области теплоэнергетики и может найти применение в любой отрасли промышленности, связанной со сжиганием угольного топлива в вихревых топках. Двухступенчатая вихревая горелка содержит камеру с тангенциальными патрубками подвода окислителя и центральной подачей пропана...
Тип: Изобретение
Номер охранного документа: 0002635178
Дата охранного документа: 09.11.2017
14.06.2018
№218.016.61f6

Электролизер для получения алюминия

Изобретение относится к электролизерам для получения алюминия. Электролизер включает размещенный в анодном кожухе самоспекающийся анод, токоподводящие штыри и систему газоотсоса, при этом самоспекающийся анод на границе между коксопековой композицией и зоной полукокса разделен горизонтальной...
Тип: Изобретение
Номер охранного документа: 0002657395
Дата охранного документа: 13.06.2018
25.01.2019
№219.016.b41e

Горелочное устройство

Изобретение относится к теплоэнергетике. Горелочное устройство содержит корпус, камеру газогенерации с соплом и воздухоподводящими отверстиями, встроенный парогенератор водяного пара, состоящий из бачка-испарителя, паропровода и паровой форсунки, размещенной в камере газогенерации соосно с...
Тип: Изобретение
Номер охранного документа: 0002678150
Дата охранного документа: 23.01.2019
29.03.2019
№219.016.f124

Пневматическая форсунка

Изобретение относится к энергетике и предназначено для распыливания жидкостей и суспензий, например водоугольного топлива (ВУТ). Пневматическая форсунка содержит корпус с внутренней кольцевой камерой и патрубок для подвода в нее сжатого газа, установленную по оси корпуса трубу для подачи...
Тип: Изобретение
Номер охранного документа: 0002390386
Дата охранного документа: 27.05.2010
29.03.2019
№219.016.f1e4

Топочное устройство для сжигания жидкого топлива

Изобретение относится к созданию энергетических котлов для сжигания жидкого, в том числе, водоугольного топлива и может быть использовано в котельных коммунально-бытового хозяйства и промышленных предприятий для обогрева зданий, горячего водоснабжения и получения технологического тепла....
Тип: Изобретение
Номер охранного документа: 0002389945
Дата охранного документа: 20.05.2010
+ добавить свой РИД