×
27.03.2020
220.018.10b8

Результат интеллектуальной деятельности: Способ винтовой прокатки сплавов системы титан-цирконий-ниобий

Вид РИД

Изобретение

Аннотация: Изобретение относится к термомеханической обработке титановых сплавов, а именно к созданию способа винтовой прокатки сплавов системы титан-цирконий-ниобий, и может быть использовано в качестве полупродукта для изготовления костных имплантатов. Способ винтовой прокатки сплавов системы титан-цирконий-ниобий заключается в том, что осуществляют многопроходную винтовую прокатку заготовки с промежуточными подогревами при углах подъема винтовых траекторий движения металла в очаге деформации 12-24°, при этом сочетают проходы с траекториями движения по правым винтовым линиям и проходы с траекториями движения по левым винтовым линиям, причем суммарная доля истинной деформации в проходах с траекториями движения металла по одному из видов винтовой линии не превышает 65% от общей истинной деформации. Увеличивается прочность и пластичность, а также повышаются служебные свойства сплавов системы титан-цирконий-ниобий, работающих в условиях долговременных скручивающих нагрузок переменного направления. 1 ил., 2 табл., 2 пр.

Изобретение относится к термомеханической обработке титановых сплавов, а именно к созданию способа винтовой прокатки сплавов системы титан-цирконий-ниобий. Прутковые заготовки после обработки с использованием предлагаемого способа могут быть использованы в качестве полупродукта для изготовления костных имплантатов, а также для последующей обработки давлением с целью уменьшения поперечного сечения.

Известен способ получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий, включающий нагрев заготовок до температуры 800-950°С и их деформационно-термическую обработку путем многопроходной винтовой прокатки с промежуточными подогревами и ротационной ковки, отличающийся тем, что винтовую прокатку выполняют с истинной степенью деформации, составляющей 0,55-0,85 от суммарной истинной степени деформации при винтовой прокатке и ротационной ковке, со скоростью вращения раската 9-70 рад/с и при соблюдении соотношения:

где nΣц - где суммарное число частных обжатий при винтовой прокатке за все проходы; N - число проходов (RU 2692003 С1, опублик. 19.06.2019). В отношении способа винтовой прокатки сплавов системы титан-цирконий-ниобий известный способ имеет недостатки. Предписываемая способом винтовая прокатка производится без установленного сочетания проходов с траекториями движения по правым винтовым линиям и проходов с траекториями движения по левым винтовым линиям и без установленных углов подъема винтовых траекторий движения металла в очаге деформации. Это может формировать резко выраженную анизотропию структуры и свойств, которые:

- существенно снижают деформируемость прокатанных промежуточных заготовок, и последующая деформационная обработка может сопровождаться обрывами.

- не позволяет получить требуемый уровень комплекса специальных свойств, в частности высокую пластичность.

Известен также способ получения наноструктурированных прутков круглого сечения из титанового сплава ВТ22, который включает деформацию заготовки прокаткой, отличающийся тем, что нагревают заготовку до температуры 850°С и деформируют путем трехвалковой поперечно-винтовой прокатки в диапазоне температур 850-750°С со ступенчатым снижением температуры заготовки на каждом последующем проходе с непосредственной закалкой с прокатки после каждого прохода, причем степень истинной логарифмической деформации заготовки на каждом проходе составляет 0,21-0,54, а суммарная истинная логарифмическая деформация составляет 1,2, при этом после поперечно-винтовой прокатки полученный пруток подвергают старению при температуре 420-550°С в течение 5 или 10 часов (RU 2604075 С1, опублик. 10.12.2016).

Недостатки известного способа. Предписываемая способом винтовая прокатка производится без установленного сочетания проходов с траекториями движения по правым винтовым линиям и проходов с траекториями движения по левым винтовым линиям и без установленных углов подъема винтовых траекторий движения металла в очаге деформации. Это может формировать резко выраженную анизотропию структуры и свойств, которые:

- существенно снижают деформируемость прокатанных промежуточных заготовок, и последующая деформационная обработка может сопровождаться обрывами.

- не позволяет получить требуемый уровень комплекса специальных свойств, в частности высокую пластичность.

Кроме того, обрабатываемый материал сплав ВТ22 не является сверхупругим. Соответственно материал после реализации данного способа не будет проявлять сверхупругое поведение, а величина накопленной остаточной деформации, оцениваемая в ходе функциональных циклических механических испытаний прутков на растяжение (с постоянной величиной деформации в цикле 2%) будет значительно выше 2%. Непосредственная закалка с прокатки после каждого прохода отрицательно сказывается на трудоемкости и энергоемкости передела.

Наиболее близким техническим решением, принятым за прототип, является способ получения субмикрокристаллической структуры в сортовом прокате из нелегированного титана, включающий деформацию заготовки осуществляемой трехвалковой винтовой прокаткой со скручиванием при условии повышения коэффициента вытяжки в каждом последующем проходе. По п. 2. способ предусматривает трехвалковую винтовую прокатку с положительным скручиванием, а по п. 3 с отрицательным скручиванием. (Патент РФ №2389568, МПК В21В 1/02 (2006.01), C22F 1/18 (2006.01). Опубликовано: 20.05.2010, Бюл. №14.)

Недостатками способа-прототипа являются наличие неспошностей и развитая поперечная (спиральная) волокнистость в структуре получаемых прутков, которые снижают уровень специальных свойств в прутках сплавов системы титан-цирконий-ниобий, применяемых в качестве заготовок для изготовления костных имплантатов. Особенно сплавов типа Ti-18Zr-(14-15)Nb (в ат. %) и особенно при эксплуатации знакопеременных нагрузках изделий с кручением и изгибом.

Данный недостаток обусловлен отсутствием регламента при выполнении винтовой прокатки в отношении геометрии геликоидальных траекторий течения металла в очаге деформации, направленных на формирование заданной структуры и свойств в сплавах этого типа.

Основными параметрами геометрии геликоидальных траекторий течения металла являются углы подъема винтовых траекторий движения металла в очаге деформации и их ориентация правая или левая (правая и левая хиральность,

https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D0%BD%D1%82%D0%BE%D0%B2%D0%B0%D1%8F_%D0%BB%D0%B8%D0%BD%D0%B8%D1%8F).

Перемещение прокатываемой заготовки по правым винтовым линиям происходит с вращением ее по часовой стрелке (при взгляде по направлению прокатки) и против часовой стрелки при движении по левым винтовым линиям.

При малых углах подъема траекторий (углах подачи валков β<12°) характерных для процесса прошивки трубного производства, деформация металла существенно неравномерна по сечению. Максимальна на периферии, минимальна в центре. В центральной зоне заготовки наблюдается разрыхление металла вплоть до осевого разрушения. (Потапов И.Н., Полухин П.И. Технология винтовой прокатки, М: Металлургия, 334 с., ил.) При чрезмерно больших углах β>24° ухудшаются условия вращения заготовки, нарушается стабильность условий захвата и винтового движения заготовки в очаге деформации. Заготовка может двигаться рывками, с проскальзыванием, вплоть до полной пробуксовки. На поверхности образуются задиры и плены.

Углы подъема траекторий изменяется по длине очага деформации, достигая максимального значения на выходе из валков и минимального значения на входе. Максимальное значение β на выходе задается настройкой валков и практически совпадает углом подачи валков. Минимальное значение на входе определяется отношением начального диаметра заготовки di-1 к конченному диаметру di проката в i-ом проходе (точнее кубом отношения di-1/di по зависимости * см. ниже). В данном способе прокатка ведется при увеличении отношения (di-1/di) и, соответственно, уменьшением минимального значения β в каждом последующем проходе. Когда в части очага деформации, примыкающей сечению входа движение заготовки, происходит с малыми углами β<12°, то в ней реализуются условия прошивного стана. Т.е. металл в центральной части разрыхляется, вплоть до образования разрушения, следы которого остаются в готовом прутке. Физико-механические и служебные свойства металла резко снижаются.

Кроме, того известный способ предписывает винтовую прокатку с однонаправленным скручиванием во всех проходах, либо положительным, либо отрицательным. В станах винтовой прокатки типа 14-40, на который ориентирован известный способ скручивание задается направлением вращения заготовки. Т.е., согласно способу, заготовка вращается в одном направлении во всех проходах - либо по часовой стрелке, либо против.

Как известно (Никулин А.Н. Винтовая прокатка. Напряжения и деформации. М.: Металлургиздат, 2015, 380 с., ил.) формирование макроструктуры металла характеризуется образованием в поперечных сечениях спиральных волокон, изгибающихся против направления вращения заготовки. Спиралезация структурного строения до определенной стадии способствует раздроблению структурных составляющих, измельчению зерна. Однако, постепенно процесс измельчения зерна затухает и переходит в стадию образования нежелательной спиральной анизотропии в виде скрученного жгута из элементов структурного строения. Это сопровождается снижением служебных свойств сплава. Особенно, при действии скручивающих нагрузок противоположного направления или знакопеременного скручивания, что недопустимо для костных имплантатов.

Технический результат (эффект) изобретения состоит в значительном увеличении пластичности, а также в повышении служебных свойств сплавов системы титан-цирконий-ниобий, работающих в условиях долговременных скручивающих нагрузок переменного направления. Применение этого способа позволит получать длинномерные прутковые заготовки из сверхупругих сплавов Ti-Zr-Nb. Полученные прутковые заготовки будут демонстрировать предел прочности не менее 550 МПа и относительное удлинение не менее 20% при испытаниях на растяжение. Величина накопленной остаточной деформации, оцениваемая в ходе функциональных циклических механических испытаний прутков на растяжение (с постоянной величиной деформации в цикле 2%), будет составлять не более 1,5%. Имплантаты, изготовленные из прутковых заготовок, будут адекватно функционировать в контакте с костной тканью человека, в частности, обладать схожим с живой тканью механическим поведением (низкий модуль Юнга менее 60 ГПа, выраженный эффект сверхупругости), а также обладать высокой коррозионной стойкостью (не ниже чистого титана).

Технический результат достигается тем, что в способе винтовой прокатки сплавов системы титан-цирконий-ниобий, включающем нагрев заготовок до температуры 800-950°С и их деформационно-термическую обработку сочетанием многопроходной винтовой прокатки с промежуточными подогревами, отличающийся тем, что винтовую прокатку выполняют при углах подъема винтовых траекторий движения металла в очаге деформации 12-24°, при этом сочетают проходы с траекториями движения по правым винтовым линиям и проходы с траекториями движения по левым винтовым линиям, причем суммарная доля истинной деформации в проходах с траекториями движения металла по одному из видов винтовой линии не должна превышать 65% от общей истинной деформации.

Изобретение поясняется рисунком, где на фиг. 1 показана схема реализации винтовой прокатки, где А - проход(ы) с траекториями движения металла по левым винтовым линиям; В - подогрев; С - проход(ы) с траекториями движения металла по правым винтовым линиям; β0, β, β1 - углы подъема винтовых траекторий движения металла в различных сечениях. На увеличенных поперечных сечениях D-D и Е-Е показана схема спиральной макроструктуры при прокатке по левым и правым винтовым линиям, соответственно.

В данном способе реализуются принципы приспособляемости металла к условиям эксплуатации, путем адаптирующих условий проведения термомеханической обработки. Адаптация металла к знакопеременным нагрузкам производится за счет двух уровневой дробно-циклической деформации. Дробность деформации первого уровня выполняется многопроходной (3-10 проходов) винтовой прокаткой с промежуточными подогревами. В каждом отдельном проходе цикличность деформации второго уровня создается винтовым движением по заданным траекториям. При этом сочетают проходы с траекториями движения по правым винтовым линиям и проходы с траекториями движения по левым винтовым линиям, причем суммарная доля истинной деформации в проходах с траекториями движения металла по одному из видов винтовой линии не должна превышать 65% от общей истинной деформации.

В условиях реализации способа радиально-сдвиговой прокаткой формируется функционально градиентная по сечению заготовки структура металла. В периферийных слоях образуется мелкодисперсное строение с практически изотропным распределением структурных элементов и максимальным уровнем вязкопластических свойств металла. По мере приближения к центру прутка линейные размеры зерен укрупняются и вытягиваются в осевом направлении. При это повышаются прочностные показатели. В целом создается естественный псевдокомпозит с пластичной оболочкой и «жесткой» сердцевиной, который обеспечивает достижение технического результата.

Существенные отличительные признаки предлагаемого способа установлены в результате прямой экспериментальной отработки. Они необходимы для достижения технического результата.

Существенный отличительный признак способа состоит в сочетании проходов с траекториями движения по правым винтовым линиям и проходов с траекториями движения по левым винтовым линиям, при котором суммарная доля истинной деформации в проходах с траекториями движения металла по одному из видов винтовой линии не должна превышать 65% от общей истинной деформации. Он задает требуемые условия по цикличности пластической деформации и предупреждает образование чрезмерной спиральной анизотропии.

В условиях цикличности процесса формоизменения при РСП, угол подъема винтовой траектории β является одним из основных факторов, определяющих напряженно-деформированное состояние заготовки.

При малых углах подъема траекторий (углах подачи валков β1<12°) характерных для процесса прошивки трубного производства, деформация металла существенно неравномерна по сечению. Максимальна на периферии, минимальна в центре. В центральной зоне заготовки наблюдается разрыхление металла вплоть до осевого разрушения. При чрезмерно больших углах β1>24° ухудшаются условия вращения заготовки, нарушается стабильность условий захвата и винтового движения заготовки в очаге деформации. Заготовка может двигаться рывками, с проскальзыванием, вплоть до полной пробуксовки. На поверхности образуются задиры и плены.

Физическая сущность признака поясняется схемой реализации винтовой прокатки на фиг. 1. и состоит в следующем. Цикличность винтовой прокатки является, с одной стороны, фактором прямого действия, обеспечивающим искомый технический результат, но с другой стороны, от числа циклов зависит деформируемость заготовок и вероятность образования разрыв и дефектов. Чтобы получить результат и не допустить образования дефектов, необходимо предусматривать подогревы (выдержку прутка при температуре 800-950°С). В процессе подогрева в сплаве титан-цирконий-ниобий за счет термодиффузионных процессов и релаксационных явлений снимается накопленная деформационная поврежденность металла. Его пластические свойства восстанавливаются на повышенном уровне, и становится возможной дальнейшая прокатка.

Угол β изменяется вдоль оси прокатки от максимального значения β1 на выходе из очага деформации до β0 на входе. Между углами β1 и β0 существует соотношение

где di-1 и di диаметр исходной заготовки и получаемого проката в i-ом проходе, соответственно.

Режим деформирования в каждом проходе назначается следующим образом. Угол β1 на выходе устанавливается углом подачи валков β1=21-24°. Угол на входе контролируется выбором коэффициента обжатия по диаметру в данном проходе, таким что

Соблюдение этих условий позволит создать благоприятные условия формоизменения, исключающие разрыхление металла во всем объеме очага деформации.

Пример 1 реализации способа.

Слиток сплава Ti-18Zr-14Nb (в ат. %) диаметром 50 мм, длиной 500 мм был выплавлен методом вакуумной индукционной плавки

Слиток был обточен до диаметра 46 мм. Контрольные пробы были отобраны на образцы для исследования структуры и свойств.

Далее слиток был подвергнут деформационно-термической обработке. Нагрев в камерной электропечи сопротивления до температуры 900°С в течении 60 мин.

Нагретый слиток был деформирован винтовой прокаткой за четыре прохода с траекториями движения по правым винтовым линиям до диаметра 26,4 мм по маршруту ∅58,0→∅47,7→∅39,1→∅32,1→∅26,4. Далее деформация заготовки проводилась винтовой прокаткой за четыре прохода с траекториями движения по левым винтовым линиям до диаметра 12 по маршруту ∅26,4→∅21,7→∅17,8→∅14,6→∅12. Между проходами раскат подогревался (выдерживался) в печи в течение 10-15 мин при температуре 850°С.

Углы подъема винтовых траекторий движения металла в очаге деформации и деформационные режимы винтовой прокатки приведены в табл. 1.

Как видно из Таблицы 1 общая истинная деформация за передел составляет 3,15, суммарная в проходах с траекториями движения по правым винтовым линиям составляет 1,58, т.е. 0,5 от общей.

Деформационно-термическая обработка слитка сочетанием многопроходной винтовой прокатки с промежуточными подогревами на всех этапах проходила устойчиво без образования каких-либо дефектов.

Полученные прутковые заготовки были подвергнуты всесторонним исследованиям, в результате которых установлено, что технический результат, достигнут в полном объеме.

Таким образом, в результате применения способа, включающего деформационно-термическую обработку заготовок сочетанием многопроходной винтовой прокатки и ротационной ковки по определенному режиму получены прутковые заготовки из сверхупругого сплава системы Ti-18Zr-14Nb. Показано, что полученные заготовки демонстрируют предел прочности 601 МПа и относительное удлинение 32% при испытаниях на растяжение. Модуль Юнга полученных заготовок составляет 50ГПа. Величина накопленной остаточной деформации, оцениваемая в ходе функциональных циклических механических испытаний прутков на растяжение (с постоянной величиной деформации в цикле 2%), составляет 0,9%. В ходе функциональных циклических механических испытаний прутковые заготовки проявляют выраженный эффект сверхупругости. Имплантаты, изготовленные из прутковых заготовок, будут адекватно функционировать в контакте с костной тканью человека, в частности, обладать схожим с живой тканью механическим поведением.

Пример 2 реализации способа.

Слиток сплава Ti-18Zr-15Nb (в ат. %) диаметром 73 мм, длиной 200 мм был выплавлен методом вакуумной индукционной плавки

Слиток был обточен до диаметра 69,3 мм. Контрольные пробы были отобраны на образцы для исследования структуры и свойств.

Далее слиток был подвергнут деформационно-термической обработке. Нагревался в камерной электропечи сопротивления до температуры 950°С в течении 60 мин.

Нагретый слиток был деформирован винтовой прокаткой с траекториями движения по левым винтовым линиям до диаметра 25,5 мм по маршруту ∅69,3→∅56,8→∅46,5→∅38,1→∅31,2→025,5. Далее деформация заготовки проводилась винтовой прокаткой за три прохода с траекториями движения по правым винтовым линиям до диаметра 14 по маршруту ∅25,5→∅20,9→∅17,1→∅14,0.

Между проходами раскат подогревали (выдерживали) в печи в течение 10-15 мин при температуре 850°С.

Углы подъема винтовых траекторий движения металла в очаге деформации и деформационные режимы винтовой прокатки приведены в табл. 2.

Как видно из Таблицы 2, суммарная истинная деформация в проходах с траекториями движения по правым винтовым линиям составляет 37% от общей, а по левым, соответственно 63%.

Деформационно-термическая обработка слитка сочетанием многопроходной винтовой прокатки с промежуточными подогревами и ротационной ковки на всех этапах проходила устойчиво без образования каких-либо дефектов.

Полученные прутковые заготовки были подвергнуты всесторонним исследованиям, в результате которых установлено, что технический результат, достигнут в полном объеме.

Таким образом, в результате применения способа, включающего деформационно-термическую обработку заготовок сочетанием многопроходной винтовой прокатки и ротационной ковки по определенному режиму получены прутковые заготовки из сверхупругого сплава системы Ti-18Zr-14Nb. Показано, что полученные заготовки демонстрируют предел прочности 615 МПа и относительное удлинение 24% при испытаниях на растяжение. Модуль Юнга полученных заготовок составляет 53 ГПа Величина накопленной остаточной деформации, оцениваемая в ходе функциональных циклических механических испытаний прутков на растяжение (с постоянной величиной деформации в цикле 2%), составляет 1,1%. В ходе функциональных циклических механических испытаний прутковые заготовки проявляют выраженный эффект сверхупругости. Имплантаты, изготовленные из прутковых заготовок, будут адекватно функционировать в контакте с костной тканью человека, в частности, обладать схожим с живой тканью механическим поведением.

Способ винтовой прокатки сплавов системы титан-цирконий-ниобий, заключающийся в том, что осуществляют многопроходную винтовую прокатку заготовки с промежуточными подогревами при углах подъема винтовых траекторий движения металла в очаге деформации 12-24°, при этом сочетают проходы с траекториями движения по правым винтовым линиям и проходы с траекториями движения по левым винтовым линиям, причем суммарная доля истинной деформации в проходах с траекториями движения металла по одному из видов винтовой линии не превышает 65% от общей истинной деформации.
Способ винтовой прокатки сплавов системы титан-цирконий-ниобий
Источник поступления информации: Роспатент

Showing 91-100 of 322 items.
25.08.2017
№217.015.c6de

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита бария, позволяющее снизить температуру...
Тип: Изобретение
Номер охранного документа: 0002618781
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c74b

Способ контроля напряженного состояния массива горных пород в окрестности выработки

Способ контроля напряженного состояния массива горных пород предназначен для определения пространственного распределения напряжений в окрестности горной выработки и глубины максимума зоны опорного давления. Для этого осуществляют прозвучивание ультразвуковыми стационарными шумовыми сигналами со...
Тип: Изобретение
Номер охранного документа: 0002618778
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c85e

Способ приготовления катализатора для получения синтез газа из метана, катализатор, приготовленный по этому способу, и способ получения синтез газа из метана с его использованием

Изобретение относится к способу приготовления катализатора для получения синтез-газа из газообразного углеводородного сырья, например природного газа или попутных нефтяных газов. Способ приготовления катализатора для получения синтез-газа из метана включает носитель и нанесенные на его...
Тип: Изобретение
Номер охранного документа: 0002619104
Дата охранного документа: 12.05.2017
25.08.2017
№217.015.d045

Рабочее тело на основе магнитоактивных и пьезоактивных материалов для магнитных твердотельных тепловых насосов

Изобретение относится к области холодильной и криогенной техники. Рабочее тело с применением магнитокалорического эффекта в твердотельных тепловых насосах содержит хладагент, выполненный из материала с гигантским магнитокалорическим эффектом, и, по меньшей мере, один пьезоэлектрический...
Тип: Изобретение
Номер охранного документа: 0002621192
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d081

Полиолефиновый композит на основе эластомера, модифицированного углеродными нанотрубками для повышения электропроводности полимерматричных композитов

Изобретение относится к области полимерных композиционных материалов, предназначенных для изготовления полимерматричных композитов, требующих повышенных значений электропроводности. Полиолефиновый композит на основе эластомера, модифицированного углеродными нанотрубками, содержит полисилоксаны...
Тип: Изобретение
Номер охранного документа: 0002621335
Дата охранного документа: 02.06.2017
25.08.2017
№217.015.d10c

Гель для травления стеклянной оболочки микропроводов

Изобретение относится к химической обработке поверхности аморфных магнитомягких микропроводов диаметром до 35 мкм со стеклянной оболочкой до 10 мкм, предназначенных для изготовления ГМИ-датчиков, в частности к равномерному травлению стеклянной оболочки микропроводов. Гель содержит...
Тип: Изобретение
Номер охранного документа: 0002621336
Дата охранного документа: 02.06.2017
25.08.2017
№217.015.d1ef

Способ получения отливок из высокопрочного сплава на основе алюминия

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С, таких как детали летательных аппаратов (самолетов, вертолетов, ракет), автомобилей и...
Тип: Изобретение
Номер охранного документа: 0002621499
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d22c

Интерметаллический сплав на основе tial

Изобретение относится к области металлургии, в частности легированным сплавам на основе TiAl с преобладающей фазой γ-TiAl, и может быть использовано при изготовлении компонентов авиационных газотурбинных двигателей. Сплав на основе TiAl содержит, ат.%: алюминий 44-47, ниобий 5-8, хром 1-3,...
Тип: Изобретение
Номер охранного документа: 0002621500
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d3bc

Катализатор и способ получения синтез-газа из метана с его использованием

Изобретение относится к группе изобретений, включающей катализатор и способ получения синтез-газа из газообразного углеводородного сырья, например природного газа или попутных нефтяных газов. Катализатор для получения синтез-газа из метана получен на основе керамического носителя с...
Тип: Изобретение
Номер охранного документа: 0002621689
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d492

Способ получения прутков из высокопрочного алюминиевого сплава

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок, таких как детали летательных аппаратов, автомобилей и других транспортных средств, детали спортинвентаря и др....
Тип: Изобретение
Номер охранного документа: 0002622199
Дата охранного документа: 13.06.2017
Showing 21-23 of 23 items.
01.07.2020
№220.018.2d4d

Устройство для изучения коррозионно-усталостного разрушения металлов и сплавов в ходе механических испытаний в жидком электролите

Изобретение относится к способу механических испытаний металлических материалов, а именно к созданию устройства, позволяющего циклически деформировать изгибом образцы металлических материалов, погруженных в электролит, с одновременным непрерывным измерением электродного потенциала образца....
Тип: Изобретение
Номер охранного документа: 0002725108
Дата охранного документа: 29.06.2020
15.05.2023
№223.018.59b4

Способ винтовой прокатки

Изобретение относится к винтовой прокатке сплошных заготовок. Осуществляют нагрев заготовок, деформацию имеющими обжимной и калибрующий участки валками, развернутыми на угол подачи и раскатки так, что оси валков по отношению к оси прокатки являются скрещивающимися прямыми. Угол скрещивания...
Тип: Изобретение
Номер охранного документа: 0002761838
Дата охранного документа: 13.12.2021
01.06.2023
№223.018.751e

Способ прогнозирования разрушения заготовок в процессе обработки металлов давлением

Изобретение относится к области обработки металлов давлением. Способ прогнозирования разрушения заготовок в процессах обработки металлов давлением основан на использовании компьютерного моделирования в вычислительной среде конечно-элементного анализа и экспериментальной оценки. Проводится...
Тип: Изобретение
Номер охранного документа: 0002748138
Дата охранного документа: 19.05.2021
+ добавить свой РИД