×
21.03.2020
220.018.0ec6

Результат интеллектуальной деятельности: Неорганический поликристаллический сцинтиллятор на основе Sc, Er:ИАГ и способ его получения

Вид РИД

Изобретение

№ охранного документа
0002717158
Дата охранного документа
18.03.2020
Аннотация: Настоящее изобретение относится к области прозрачных керамических материалов со структурой иттрий-алюминиевого граната, легированного ионами эрбия и скандия кубической структуры Er:ИАГ(Sc), обладающих свойствами для использования в качестве люминесцентных сцинтилляционных материалов, предназначенных для сканирующих систем медицинской высокоскоростной компьютерной томографии, рентгеновских установок и установок гамма-излучения. Готовят исходный раствор хлоридов иттрия, алюминия, эрбия и скандия, упаривают до концентрированного состояния, распыляют в раствор осадителя -основного раствора водного аммиака с получением осадка – прекурсора. Отфильтрованный осадок, имеющий однородную композицию кубического твердого раствора, сушат и прокаливают при температуре в диапазоне от 800 до 1000°С, прессуют изостатическим прессованием в компакт заданной формы с плотностью 55% от теоретической плотности. Далее полученный компакт спекают в вакууме при температуре 1700-1750°С, степень вакуума 10 Па. Технический результат изобретения – получение прозрачной керамики со светопропусканием до 85% и улучшенными сцинтилляционными параметрами: область высвечивания 540-700 нм, световой выход 56-74% относительно CsI:Tl, длительность импульса 53-44 нс. 3 з.п. ф-лы, 5 ил., 1 табл., 3 пр.

Область техники, к которой относится изобретение

Настоящее изобретение относится к области керамических материалов, а более конкретно, к улучшенным легированием редкоземельными элементами керамических люминесцентных сцинтилляционных материалов со структурой иттрий-алюминиевого граната, которые особенно полезны для использования в сканирующих системах медицинской высокоскоростной компьютерной томографии, при других рентгеновских излучениях, гамма-излучениях, а также для применения в целях обнаружения радиации.

Уровень техники

Твердотельные сцинтилляционные материалы уже давно используются в качестве детекторов излучения для обнаружения проникающего излучения, как рентгеновские счетчики. Такие детекторы совсем недавно, сыграли важную роль в компьютерной томографии, цифровой радиографии, при других рентгеновских излучениях, гамма-излучении, ультрафиолетовом излучении, а также для применения в целях обнаружения радиации. Решение задач обеспечения радиационной безопасности окружающей среды, ядерной медицины, рентгеновской компьютерной томографии и ряда других, связанных с развитием ядерного приборостроения и физики высоких энергий, требует расширения числа сцинтилляционных материалов. Применимость того или иного оксидного монокристаллического сцинтиллятора определяется совокупностью его люминесцентных, сцинтилляционных, оптических и физико-химических свойств. Перспективы развития физики высоких энергий и ядерной медицины расширяются в связи с разработками поликристаллических оксидных материалов, обладающих определенным световым выходом, короткими временами высвечивания и незначительным послесвечением. Условия эксплуатации сцинтилляторов в детекторах излучения высоких энергий требуют, прежде всего, значительной поглощающей способности и быстродействия. Для создания современных приборов, в которых бы сцинтиллятор сочетался с твердотельным фотодиодом, нижний предел области высвечивания кристалла должен находиться на уровне 650 нм. Для того чтобы извлечь весь люминесцентный свет, генерируемый в люминесцентном материале, люминесцентный материал должен быть прозрачным. В противном случае большая часть люминесцентного света не достигнет фоточувствительного детектора из-за рассеяния и поглощения в пределах люминесцентного материала. Для того чтобы соответствовать требованиям к сцинтиллятору материал должен иметь однородные оптические и люминесцентные свойства, и свойства источника поглощения излучения по всей его длине. Для получения активированных сцинтилляционных монокристаллов требуется растить исходные були, имеющие однородную концентрацию люминесцентного активатора, как в радиальном направлении, так и в продольном направлении були, поскольку люминесцентный выход зависит от локальной концентрации ионов активатора.

Только два монокристаллических люминофора, как известно, используются в системах коммерческих преобразователей рентгеновского излучения - йодид цезия (CsI) и вольфрамат кадмия (CdWO4). Сцинтилляторы на основе кристалла йодида цезия (CsI) обладают высокой сцинтилляционной эффективностью, однако имеют очень малую химическую устойчивость, растворяются в спирте и слабых неорганических кислотах. Кроме того, кристаллы йодида цезия (CsI) и вольфрамата кадмия (CdWO4) высвечиваются в ответ на рентгеновскую стимуляцию от 0,3 до 1,2 мкс. Поликристаллическая альтернатива йодистого цезия и вольфрамата кадмия описана в заявках на изобретения US 4421671, 4466929; 4466930; 4473413; 4518545; 4518546; 4525628; 4571312; 4747973 и 4783596. Твердотельные сцинтилляционные материалы, описанные в этих заявках, представляют собой кубический иттрий-гадолиниевый оксид и иттрий - алюминиевый фанат с добавками различных редкоземельных элементов, чтобы обеспечить сцинтилляционный материал, требуемыми люминесцентными свойствами. Этот поликристаллический материал имеет существенное преимущество по сравнению с йодидом цезия и вольфраматом кадмия: отсутствие радиационных повреждений и гистерезиса. Однако, недостатком сцинтилляционных композиций, обладающих кубической сингонией является достаточно низкое послесвечение до 0,5 мкс, а этого недостаточно, чтобы удовлетворить требования к системе сканирования высокого качества. Кроме того, этот поликристаллический материал имеет первичное время затухания порядка 1000 мкс - не такое быстрое, как требуется для существующих систем сканирования.

В заявке на изобретение DE 3704813 А1 описывается монокристаллический сцинтиллятор Gd3-X CeX Al5-Y ScY О12 (Х=0,05-0,2; Y=0,5-2,5), полученный путем распылительной сушки раствора сульфата исходных компонентов, прокаливания высушенного сульфата, смешивания оксидов, с последующим прессованием, спеканием, плавкой и вытягиванием монокристалла в высоком вакууме. Спектр для люминесцентного выхода этого материала содержит пик в районе 560 нм. Существенным недостатком монокристаллического сцинтиллятора Gd3-X CeX Al5-Y ScY О12 (Х=0,05-0,2; Y=0,5-2,5), является низкий световой выход быстрого свечения кристалла: 10% от такового для наиболее широко используемого сцинтиллятора CsI:Tl, при коротком времени высвечивания 65- 100 не.

Наиболее близким к заявляемому изобретению и выбранный в качестве прототипа, является способ получения прозрачной керамики на основе галлий-гадолиниевого граната (ГГГ), галлий-скандий-гадолиниевого граната (ГСП) и иттрий-алюминиевого граната (ИАГ), легированного ионами редкоземельных металлов Cr3+, Се3+, Nd3+ и сцинтиллятор на основе этой керамики (Патент US 5484750 A1 GENERAL ELECTRIC COMPANY 16.01.1996). Известный способ получения прозрачной керамики на основе кубических структур граната заключается в смешивании исходного раствора солей хлоридов желаемых катионов с водным раствором гидроксида аммония с получением осадка, имеющего однородную композицию. Этот осадок отделяют от раствора, сушат, термически разлагают при температуре в диапазоне от 700 до 1000°С, прессуют изостатическим прессованием в полуфабрикат с плотностью 45% от теоретической плотности. Далее полученный полуфабрикат спекают в атмосфере кислорода при температуре от 1400 до 1700°С, затем спекают горячим изостатическим прессованием при высоком давлении и температуре 1400-1600°С, для получения желаемого светопропускания (до 78%). Основные сцинтилляционные параметры керамики на основе кубических структур граната, полученной по данному способу, составляют: световой выход 16-36% относительно светового выхода CsI:Tl (Сотн); при этом время высвечивания 82-95 нс.

Недостатком данного способа является сложность процесса изготовления, связанная с необходимостью проведения двух операций спекания в атмосфере кислорода при температуре 1700°С, и горячего изостатического при высоком давлении и температуре 1600°С, а также низкий световой выход быстрого свечения керамики: 16% от такового для наиболее широко используемого сцинтиллятора CsI:Tl. Также, использование в качестве легирующих ионов переходных металлов Cr3+, Се3+ не позволяет получить сцинтиллятор на основе иттрий-алюминиевого граната с высоким световым выходом - по прототипу 39-43%.

Раскрытие изобретения

Целью настоящего изобретения является создание керамического сцинтилляционного материала для детекторов ионизирующего излучения на основе активированного иттрий-алюминиевого граната, высвечивающего в интервале длин волн 550-700 нм, имеющего короткие времена люминесценций и высокий световой выход, а также способ получения такого материала в виде прозрачной керамики со светопропусканием в диапазоне длин волн 400-1100 нм до 85%.

Техническая задача, решаемая посредством настоящего изобретения, заключается в создании сцинтилляционного материала на основе поликристаллического иттрий-алюминиевого граната (Y3Al5O12), легированного ионами эрбия (0,5 ат. % по отношению к атому иттрия), содержащего в качестве активирующей добавки скандий трехвалентный в количестве 10,0-20,0 ат. %, с улучшенными сцинтилляционными параметрами. Область высвечивания 550-650 нм; световой выход 45-74% относительно CsI:Tl; время высвечивания 55-60 нс. В качестве активирующей добавки для поликристаллического иттрий-алюминиевого граната, легированного ионами эрбия Er:ИАГ используют Sc3+, который ранее в этом качестве для сцинтилляторов на основе Er:ИАГ не применялся.

Указанный технический результат достигается за счет того, что сцинтилляционный материал для регистрации ионизирующих излучений, состоящий из поликристаллического иттрий-алюминиевого граната, легированный Ег3+, содержит активирующую добавку оксида скандия в количестве 10,0-20,0 ат. %, с образованием твердых растворов в соответствии с общей формулой: Y3-n-0,4mErnScm Al5-0,6m О12 (n=0,015; m=0,3-0,6); способ получения, включающий растворение исходных катионов в виде хлоридов в горячей деонизированной воде, упаривают до концетрированного состояния и далее с использованием гетерофазного метода соосаждения через распыление в осадитель. Осадитель получают следующим образом. Предварительно готовят раствор в деионизированной воде углеаммонийных солей 25% концентрации при 25°С. Затем полученный раствор углеаммонийных солей 25% концентрации смешивают с 25% раствором гидроксида аммония в объемном соотношении 1:1. При осаждении используют 100% избыток осадителя по отношению к стехиометрическому количеству катионов в растворе из хлоридов, проводят синтез порошка прекурсора заданного состава. В результате чего получают порошок прекурсора фазово-чистый представленный кубическим твердым раствором иттрий-алюминиевого граната изоморфно-замещенным оксидами эрбия и скандия в форме округлых сферических частиц. После синтеза полученный порошок нагревают на воздухе до температуры 1000°С для термического разложения, затем измельчают в среде этанола в присутствии пластификатора, такого как поливиниловый спирт, с последующей сушкой и получением гранул. После гранулирования порошок формуют изостатическим прессованием при давлении до 200 МПа для получения образцов с относительной плотностью 55%, затем термообрабатывают в среде инертного газа при температуре 800°С в течение 4 часов, с последующим вакуумным спеканием при температуре 1700-1750°С в течение 15 часов. После вакуумного спекания образцы подвергают термическому отжигу на воздухе при температуре 1400°С в течение 5 часов, с целью преобразования ионов Er2+ в Er3+ и восполнения дефицита кислорода. После отжига образцы механически шлифуют до толщины 1,5 мм и полируют алмазными пастами. Керамика Er:ИАГ(Sc), полученная таким образом, является оптически прозрачным материалом с кубической структурой, с плотностью 99,99% от теоретической и светопропусканием в видимой области спектра 85%. Основные сцинтилляционные параметры составляют: область высвечивания 540-700 нм с двумя максимумами 557 нм и 680 нм; световой выход 56-74% относительно CsI(Tl); длительность сцинтилляционного импульса 53-44 не.

Заявляемый интервал активирующей добавки Sc3+ 10,0-20,0 ат. %. обусловлен тем, что при концентрации, меньшей 10,0 ат. % резко снижается световой выход керамики (до 7-5%), а при концентрации, большей 20,0 ат. % не наблюдается дальнейшее нарастание светового выхода, в связи, с чем увеличение концентрации Sc3+ становится нецелесообразным.

Осуществление изобретения

Класс сцинтилляционных материалов основан на активированной люминесценции кубических кристаллов гранатов. Гранаты представляют собой класс материалов с химической формулой А3В5О12. Кристаллическая структура кубическая, 160 ионов в элементарной ячейке, содержащей восемь формульных единиц. В соответствии с настоящим изобретением, катионы А являются ионом иттрия или в комбинациях с редкоземельными ионами активаторами. Катионы В являются ионами алюминия или, в комбинации и/или с заменами другими ионами активаторами. В частности, мы обнаружили, что с ионами-активаторами, расположенными в восьмерной координации или шестерной координации, иттрий-алюминиевый гранат является люминесцентным в ответ на рентгеновскую стимуляцию. Особенно важным рентгенолюминесцентным ионом-активатором является Sc3+, который находится в шести согласованных участках.

Люминесцентные свойства Sc3+ в иттрий-алюминиевом гранате, легированном ионами эрбия Er3+ характерны при расположении Sc3+ иона в узлах решетки, где поле кристалла является относительно сильным.

В соответствии с настоящим изобретением процесс изготовления поликристаллического иттрий-алюминиевого граната, легированного ионами Er3+ (0,015 моль % в пересчете на оксид эрбия), содержащий активирующую добавку оксида скандия в количестве 10-20 ат. %, осуществляют следующим образом. Исходный раствор желаемых катионов заданного состава формируют путем растворения хлоридов иттрия, алюминия, эрбия и скандия в деионизированной воде при нагревании и упаривают до концентрированного состояния. Затем горячий концентрированный раствор хлоридов катионов распыляют в осадитель. При контакте между двумя растворами мгновенно образуется осадок из малых сферических частиц, которые присутствуют в виде коллоидной суспензии осадка. Далее осадок декантируют в деонизированной воде. Процесс декантирования удаляет избыток гидроксида аммония и углекислого аммония и продуктов реакции, в виде хлорида аммония из осадка. Затем осадок отделяют от промывного раствора путем фильтрации. Осадок сушат при температуре 90-110°С методом вакуумной сушки в течении 2 часов. Высушенный осадок прокаливают на воздухе при температуре 1000°С в течение 2 часов для термического разложения и образования кристаллической структуры кубического твердого раствора на основе иттрий-алюминиевого граната.

Удельная площадь поверхности полученных порошков со структурой граната была измерена методом абсорбции азота по методу БЭТ, и варьировалась от 8 до 20 м2/г. Размеры кристаллитов со структурой граната, измеренные при помощи растровой электронной микроскопии, составили от 110 до 65 нм. Полученный после термического разложения порошок измельчают на планетарной мельнице с использованием диоксида циркония в качестве мелющей оснастки и жидкой среды в виде этанола в присутствии пластификатора: поливиниловый спирт в количестве 4,0 масс. % от массы порошка. Измельчение на планетарной мельнице проводят в течение 60 минут. После измельчения, порошок сушат с последующей грануляцией методом распылительной сушки, температура в распылительной сушилке на входе составляет порядка 90-110°С. Полученные порошки формуют изостатическим прессованием при давлении до 200 МПа для получения компактов заданной формы с относительной плотностью 55%. После холодного изостатического прессования отформованные образцы термообрабатывают в среде инертного газа при температуре 800°С, со скоростью нагрева 1°С/мин, время выдержки 4 часа. Далее компакты спекают в вакууме. Температура спекания 1700-1750°С, время выдержки составляет 15 часов, степень вакуума 10-5Па. Образцы керамики после вакуумного спекания отжигают на воздухе, нагревая до 1400°С со скоростью нагрева 1°С/мин, время выдержки 5 часов, охлаждают до 600°С со скоростью 3°С/мин, далее с печью. После спекания в вакууме получают керамические образцы, которые подвергают термическому отжигу на воздухе при температуре 1400°С в течение 5 часов.

Краткое описание прилагаемых иллюстраций

Фиг. 1 - Микрофотография образца (по примеру 1) состава Y2,76Er0,015Sc0,6Al4,625O12.

Фиг.2 - Спектральная кривая светопропускания керамики Er:ИАГ(Sc), содержание эрбия (Er3+) 0,5 ат. %, скандия (Sc3+) 20,0 ат. %.

Фиг. 3 - Спектр люминесценции образца керамики Er:ИАГ(Sc), содержание эрбия (Er3+) 0,5 ат. %, скандия (Sc3+) 20,0 ат. %. Здесь проявляется характерная серия полос в области 540-700 нм, наиболее интенсивными линиями, которой являются полосы на 557 и 680 нм.

Фиг. 4 - Микрофотография образца (по примеру 2) состава Y2,813Er0,015Sc0,45Al4,719O12.

Фиг. 5 - Микрофотография образца (по примеру 3) состава Y2,873Er0,015Sc0,3Al4,813O12.

В таблице 1 (см. в конце описания) представлены основные характеристики сцинтилляторов изготовленных по прототипу и предлагаемого материала, способы получения которого иллюстрируются следующими примерами (В таблице приведены данные для примеров 1 и 3).

Пример 1. Готовят исходный раствор из хлоридов иттрия, алюминия, эрбия и скандия заданного состава, исходя из формулы композиции Y2,76Er0,015Sc0,6Al4,625O12, путем растворения хлоридов в деионизированной воде при нагревании и упаривают до концентрированного состояния. Затем горячий концентрированный раствор хлоридов распыляют в раствор осадителя. Осадитель получают следующим образом. Предварительно готовят раствор в деионизированной воде углеаммонийных солей 25% концентрации при 25°С. Затем полученный раствор углеаммонийных солей 25% концентрации смешивают с 25% раствором гидроксида аммония в объемном соотношении 1:1. При осаждении используют 100% избыток осадителя по отношению к стехиометрическому количеству катионов в растворе из хлоридов. При контакте между раствором из хлоридов иттрия, алюминия, эрбия и скандия и осадителя мгновенно образуется осадок из малых сферических частиц, которые присутствуют в виде коллоидной суспензии осадка в маточном растворе. Далее осадок декантируют в деонизированной воде. Процесс декантирования удаляет избыток гидроксида аммония и карбоната аммония и продуктов реакции: хлорид аммония из осадка. Затем осадок отделяют от промывного раствора путем фильтрации. Осадок сушат при температуре около 100°С методом вакуумной сушки в течении 2 часов. Исследования полученного прекурсора методом абсорбции азота по методу БЭТ показали, что образцы имеют удельную поверхность, равную 3,741 м2/г. Высушенный осадок прокаливают на воздухе при температуре 1000°С в течение 2 часов для термического разложения и образования кристаллической структуры кубического твердого раствора со структурой граната. Удельная площадь поверхности полученных порошков со структурой граната была измерена методом абсорбции азота по методу БЭТ, и варьировалась от 8 до 20 м2/г. Размеры кристаллитов со структурой граната, измеренные при помощи растровой электронной микроскопии, составили от 110 до 65 нм. Полученный после термического разложения порошок измельчают на планетарной мельнице с использованием диоксида циркония в качестве мелющей оснастки и жидкой среды в виде этанола в присутствии пластификатора: поливиниловый спирт в количестве 4,0 масс. % от массы порошка. Измельчение на планетарной мельнице проводят в течение 60 минут. После измельчения, порошки сушат с последующей грануляцией методом распылительной сушки, температура в распылительной сушилке на входе составляет порядка 90-110°С. Полученные порошки формуют изостатическим прессованием при давлении до 200 МПа для получения компактов заданной формы с относительной плотностью 55%. После холодного изостатического прессования отформованные образцы термообрабатывают в среде инертного газа при температуре 800°С, со скоростью нагрева 1°С/мин, время выдержки 4 часа. Далее компакты спекают в вакууме. Композицию Y2,76Er0,015Sc0,6Al4,625O12, спекают в вакууме при температуре 1700°С в течение 15 часов. Относительная плотность керамического материала >99,99%. Содержание Sc3+ - 20,0 ат. %, средний размер зерна 3,0 мкм.

Вид и структура образца керамики показана на фиг. 1. После спекания в вакууме получают керамические образцы, которые подвергают термическому отжигу на воздухе при температуре 1400°С в течение 5 часов.

Основные сцинтилляционные параметры представлены в таблице 1. Полученная из данного прекурсора оптическая керамика имела следующие характеристики: светопропускание 85% (фиг.2), на спектре люминесценции (фиг.3) проявляется характерная серия полос в области 540-700 нм, наиболее интенсивными линиями, которой являются полосы на 557 и 680 нм.

Пример 2. Готовят исходный раствор из хлоридов иттрия, алюминия, эрбия и скандия заданного состава, исходя из формулы композиции Y2,813Er0,015Sc0,45Al4,719O12, путем растворения хлоридов в деионизированной воде при нагревании и упаривают до концентрированного состояния. Затем горячий концентрированный раствор хлоридов распыляют в раствор осадителя. Осадитель получают следующим образом. Предварительно готовят раствор в деионизированной воде углеаммонийных солей 25% концентрации при 25°С. Затем полученный раствор углеаммонийных солей 25% концентрации смешивают с 25% раствором гидроксида аммония в объемном соотношении 1:1. При осаждении используют 100% избыток осадителя по отношению к стехиометрическому количеству катионов в растворе из хлоридов. При контакте между раствором из хлоридов иттрия, алюминия, эрбия, скандия и осадителя мгновенно образуется осадок из малых сферических частиц, которые присутствуют в виде коллоидной суспензии осадка в маточном растворе. Далее осадок декантируют в деонизированной воде. Процесс декантирования удаляет избыток гидроксида аммония и карбоната аммония и продуктов реакции: хлорид аммония из осадка. Затем осадок отделяют от промывного раствора путем фильтрации. Осадок сушат при температуре около 100°С методом вакуумной сушки в течении 2 часов. Исследования полученного прекурсора методом абсорбции азота по методу БЭТ показали, что образцы имеют поверхность, равную 3,741 м2/г. Высушенный осадок прокаливают на воздухе при температуре 1000°С в течение 2 часов для термического разложения и образования кристаллической структуры кубического твердого раствора со структурой граната. Удельная площадь поверхности полученных порошков со структурой граната была измерена методом абсорбции азота по методу БЭТ и варьировалась от 8 до 20 м2/г. Размеры кристаллитов со структурой граната, измеренные при помощи растровой электронной микроскопии, составили от 110 нм до 65 нм. Полученный после термического разложения порошок измельчают на планетарной мельнице с использованием диоксида циркония в качестве мелющей оснастки и жидкой среды в виде этанола в присутствии пластификатора: поливиниловый спирт, в количестве 4,0 масс. % от массы порошка. Измельчение на планетарной мельнице проводят в течение 60 минут. После измельчения, порошки сушат с последующей грануляцией методом распылительной сушки, температура в распылительной сушилке на входе составляет порядка 90-110°С. Полученные порошки формуют изостатическим прессованием при давлении до 200 МПа для получения компактов заданной формы с относительной плотностью 55%. После холодного изостатического прессования отформованные образцы термообрабатывают на воздухе, в среде инертного газа при температуре 800°С, со скоростью нагрева 1°С/мин, время выдержки 4 часа. Далее компакты спекают в вакууме. Композицию Y2,813Er0,015Sc0,45Al4,719O12, спекают в вакууме при температуре 1700°С в течение 15 часов. Относительная плотность керамического материала >99,99%. Содержание Sc3+ - 15,0 ат. %, средний размер зерна 4,0 мкм.

Вид и структура образца керамики показана на фиг. 4. После спекания в вакууме получают керамические образцы, которые подвергают термическому отжигу на воздухе при температуре 1400°С в течение 5 часов. Полученная из данного прекурсора оптическая керамика имела светопропуекание 85%.

Пример 3. Готовят исходный раствор из хлоридов иттрия, алюминия, эрбия и скандия заданного состава, исходя из формулы композиции Y2,873Er0,015Sc0,3Al4,813O12, путем растворения хлоридов в деионизированной воде при нагревании и упаривают до концентрированного состояния. Затем горячий концентрированный раствор хлоридов распыляют в раствор осадителя. Осадитель получают следующим образом. Предварительно готовят раствор в деионизированной воде углеаммонийных солей 25% концентрации при 25°С. Затем полученный раствор углеаммонийных солей 25% концентрации смешивают с 25% раствором гидроксида аммония в объемном соотношении 1:1. При осаждении используют 100% избыток осадителя по отношению к стехиометрическому количеству катионов в растворе из хлоридов. При контакте между раствором из хлоридов иттрия, алюминия, эрбия, скандия и осадителя мгновенно образуется осадок из малых сферических частиц, которые присутствуют в виде коллоидной суспензии осадка в маточном растворе. Далее осадок декантируют в деонизированной воде. Процесс декантирования удаляет избыток гидроксида аммония и карбоната аммония и продуктов реакции: хлорид аммония из осадка. Затем осадок отделяют от промывного раствора путем фильтрации. Осадок сушат при температуре около 100°С методом вакуумной сушки в течении 2 часов. Исследования полученного прекурсора методом абсорбции азота по методу БЭТ показал, что образцы имеют удельную поверхность, равную 3,741 м2/г. Высушенный осадок прокаливают на воздухе при температуре 1000°С в течение 2 часов для термического разложения и образования кристаллической структуры кубического твердого раствора со структурой граната. Удельная площадь поверхности полученных порошков со структурой граната была измерена методом абсорбции азота по методу БЭТ и варьировалась от 8 до 20 м2/г. Размеры кристаллитов со структурой граната, измеренные при помощи растровой электронной микроскопии, составили от 110 до 65 нм. Полученный после термического разложения порошок измельчают на планетарной мельнице с использованием диоксида циркония в качестве мелющей оснастки и жидкой среды в виде этанола в присутствии пластификатора: поливиниловый спирт в количестве 4,0 масс. % от массы порошка. Измельчение на планетарной мельнице проводят в течение 40 минут.

После измельчения порошки сушат с последующей грануляцией методом распылительной сушки, температура в распылительной сушилке на входе составляет порядка 90-110°С. Полученные порошки формуют изостатическим прессованием при давлении до 200 МПа для получения компактов заданной формы с относительной плотностью 55%. После холодного изостатического прессования отформованные образцы термообрабатывают в среде инертного газа при температуре 800°С, со скоростью нагрева 1°С/мин, время выдержки 4 часа. Далее компакты спекают в вакууме. Композицию Y2,873Er0,015Sc0,3Al4,813O12, спекают в вакууме при температуре 1750°С в течение 15 часов. Относительная плотность керамического материала >99,99%. Содержание Sc3+ - 10,0 ат. %, средний размер зерна 4,5 мкм. Вид и структура образца керамики показана на фиг. 5.

После спекания в вакууме получают керамические образцы, которые подвергают термическому отжигу на воздухе при температуре 1400°С в течение 5 часов.

Основные сцинтилляционные параметры представлены в таблице 1. Полученная из данного прекурсора оптическая керамика имела светопропускание 85%.

Таким образом, заявленный способ получения прозрачных поликристаллических твердотельных сцинтилляционных материалов, а также создание сцинтилляционных структур, в которых основной матрицей материала является иттрий - алюминиевый гранат контролируемого состава, включающих частичное замещение катионов в основной композиции ИАГ, позволяет получать прозрачный керамический сцинтилляционный материал на основе иттрий - алюминиевого граната, легированного ионами Er3+ - 0,5 ат. % и ионами Sc3+ - 10,0 - 20,0 ат. %, со светопропусканием в видимой области спектра 85% и основными сцинтилляционными параметрами: область высвечивания 540-700 нм с двумя максимумами 557 нм и 680 нм; световой выход 56-74% относительно CsI(Tl); длительность сцинтилляционного импульса 53-44 нс.


Неорганический поликристаллический сцинтиллятор на основе Sc, Er:ИАГ и способ его получения
Неорганический поликристаллический сцинтиллятор на основе Sc, Er:ИАГ и способ его получения
Неорганический поликристаллический сцинтиллятор на основе Sc, Er:ИАГ и способ его получения
Неорганический поликристаллический сцинтиллятор на основе Sc, Er:ИАГ и способ его получения
Неорганический поликристаллический сцинтиллятор на основе Sc, Er:ИАГ и способ его получения
Источник поступления информации: Роспатент

Showing 51-60 of 174 items.
29.12.2018
№218.016.ac71

Мощный импульсный свч фотодетектор

Изобретение относится к области разработки и изготовления мощных фоточувствительных полупроводниковых приборов на основе GaAs, в частности к импульсным полупроводниковым сверхвысокочастотным (СВЧ) фотодетекторам. Мощный импульсный СВЧ фотодетектор лазерного излучения на основе гетероструктуры...
Тип: Изобретение
Номер охранного документа: 0002676228
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.ac8a

Способ изготовления полупроводниковых лазеров

Способ изготовления полупроводниковых лазеров содержит этапы, на которых расщепляют лазерную гетероструктуру на линейки полупроводниковых лазеров во внешней атмосфере, обеспечивая грани резонатора, напыляют на внутреннюю поверхность рабочей вакуумной камеры слой алюминия толщиной не менее 50...
Тип: Изобретение
Номер охранного документа: 0002676230
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acdd

Способ изготовления импульсного фотодетектора

Изобретение относится к области разработки и изготовления фоточувствительных полупроводниковых приборов на основе GaAs. Способ изготовления мощного импульсного фотодетектора, работающего в фотовольтаическом режиме (с нулевым напряжением смещения), на основе GaAs включает последовательное...
Тип: Изобретение
Номер охранного документа: 0002676221
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acf3

Способ изготовления свч фотодетектора

Изобретение относится к оптоэлектронике и может быть использовано для создания мощного СВЧ фотодетектора на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ заключается в создании многослойной структуры из системы чередующихся слоев AlGaAs...
Тип: Изобретение
Номер охранного документа: 0002676185
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acfa

Свч фотоприемник лазерного излучения

Изобретение относится к полупроводниковым приборам, применяемым в электронике. СВЧ фотоприемник лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: слоя тыльного потенциального барьера 2 n-AlGaAs, базового слоя, выполненного из n-GaAs 3, с толщиной...
Тип: Изобретение
Номер охранного документа: 0002676188
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acff

Свч фотодетектор лазерного излучения

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотодетекторов (ФД) лазерного излучения (ЛИ). СВЧ фотодетектор лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: Брегговского отражателя 2, настроенного на...
Тип: Изобретение
Номер охранного документа: 0002676187
Дата охранного документа: 26.12.2018
23.02.2019
№219.016.c6dd

Способ получения термостойких сополиэфиркетонов с улучшенными физико-механическими характеристиками

Настоящее изобретение относится к способу получения сополиэфиркетонов с высокой термостойкостью и повышенными физико-механическими характеристиками на основе 4,4'-дигидроксибензофенона, 4,4'-дифторбензофенона, карбоната калия в качестве щелочного агента, характеризующемуся тем, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002680524
Дата охранного документа: 22.02.2019
26.02.2019
№219.016.c81c

Способ изготовления чувствительного элемента электроакустического преобразователя на основе пьезоактивной пленки из поливинилиденфторида (пвдф) и устройство для склейки чувствительного элемента

Изобретение относится к области изготовления электроакустических преобразователей. Способ изготовления чувствительного элемента на основе пьезоактивной пленки ПВДФ с токопроводящим покрытием включает нанесение на поверхность двух пьезоактивных пленок липкого слоя эпоксидной клеевой композиции,...
Тип: Изобретение
Номер охранного документа: 0002680670
Дата охранного документа: 25.02.2019
28.02.2019
№219.016.c853

Ампульное устройство для реакторных исследований

Изобретение относится к ядерной технике, а именно к ампульным облучательным устройствам для реакторных исследований свойств тепловыделяющих элементов. Ампульное устройство для реакторных исследований включает внешнюю цилиндрическую оболочку с герметизирующими торцевыми крышками, внутри которой...
Тип: Изобретение
Номер охранного документа: 0002680721
Дата охранного документа: 26.02.2019
03.03.2019
№219.016.d231

Способ изготовления мощного фотодетектора

Изобретение может быть использовано для создания СВЧ-фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ заключается в создании фоточувствительной области и контактной площадки для бондинга вне фоточувствительной области на...
Тип: Изобретение
Номер охранного документа: 0002680983
Дата охранного документа: 01.03.2019
Showing 11-13 of 13 items.
18.05.2019
№219.017.57f3

Композиционный керамический материал для высокотемпературного применения (варианты)

Изобретение относится к керамическому материаловедению, в частности к получению композиционного керамического материала на основе тугоплавких бескислородных и оксидных соединений для применения в условиях, которые требуют высокой прочности, твердости и окислительной стойкости: для изготовления...
Тип: Изобретение
Номер охранного документа: 0002336245
Дата охранного документа: 20.10.2008
17.08.2019
№219.017.c0ea

Способ получения прозрачной высоколегированной er:иаг - керамики

Изобретение относится к области получения высоколегированного ионами эрбия прозрачного керамического материала со структурой иттрий-алюминиевого граната (Еr:ИАГ) для использования в качестве лазерного материала в медицине и оптической связи. Способ включает измельчение полученного методом...
Тип: Изобретение
Номер охранного документа: 0002697561
Дата охранного документа: 15.08.2019
02.10.2019
№219.017.cebb

Способ получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната с оксидами редкоземельных элементов

Изобретение относится к области получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната, легированных редкоземельными элементами для производства керамики, используемой в качестве активной среды твердотельного лазера, термостойкого высокотемпературного...
Тип: Изобретение
Номер охранного документа: 0002700062
Дата охранного документа: 12.09.2019
+ добавить свой РИД