×
19.03.2020
220.018.0dbd

Результат интеллектуальной деятельности: СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ ТРУБОПРОВОДОВ

Вид РИД

Изобретение

№ охранного документа
0002716864
Дата охранного документа
17.03.2020
Аннотация: Изобретение относится к области определения местоположения трубопроводов. Система для определения положения трубопроводов с помощью по меньшей мере одного внутритрубного инспекционного геоприбора, который вводится в трубопровод, продвигается в нем и имеет магнитный источник для создания магнитного поля, при этом предусмотрен по меньшей мере один беспилотный летательный аппарат, имеющий сенсоры магнитного поля и устройства для определения положения, и предусмотрены средства управления для определения профиля силы магнитного поля и для позиционирования беспилотного летательного аппарата на заданном расстоянии от внутритрубного инспекционного геоприбора и средства для определения положения внутритрубного инспекционного геоприбора из положения беспилотного летательного аппарата и с заданного расстояния между внутритрубным инспекционным геоприбором и беспилотным летательным аппаратом. Технический результат – повышение точности определения положения трубопровода. 5 з.п. ф-лы, 2 ил.

Изобретение касается системы для определения местоположения трубопроводов с помощью по меньшей мере одного внутритрубного инспекционного геоприбора (внутритрубный инспекционный снаряд/ скребок/поршень), который вводится в трубопровод, продвигается в нем и имеет магнитный источник для создания магнитного поля.

Местоположение подземных трубопроводов, таких как магистральные трубопроводы для газа, нефти, воды и пр. должно быть с высокой точностью известно для инспекционных задач, обычно эти магистральные трубопроводы и, в частности, местоположение их верхней кромки после прокладки и восстановления грунта больше не могут просматриваться снаружи.

При новой прокладке магистральных трубопроводов во время прокладки, то есть перед повторной насыпкой грунта, они замеряются современными методами с кадастровой точностью. Более старые фонды магистральных трубопроводов при прокладке в прошлом, в отличие от этого, не регистрировались с достаточной точностью. К тому же из-за нестабильных подпочв, таких как, напр., топи, пустынный песок и пр. может случиться, что местоположение магистрального трубопровода в подпочве, в которую он заделан, изменится.

Из уровня техники известны методы локализации магистрального трубопровода или, соответственно, его металлической структуры в грунте.

Это происходит близко к поверхности земли, например, посредством ручных измерительных приборов, которые продаются CORROCONT Group (http://www.corrocont.com/surveys/pipeline-locating-and-depth-measurement), что способствует передаче введенного измерительного сигнала и вместе с тем чувствительности измерения.

Также известные способы внутренней инспекции магистральных трубопроводов используют так называемые внутритрубные инспекционные геоприборы, которые вводятся в магистральные трубопроводы и продвигаются в магистральном трубопроводе потоком транспортируемой среды. Определение положения внутритрубного инспекционного геоприбора осуществляется с помощью инерциальных измерительных систем.

Эти системы обладают тем недостатком, что они имеют дрейф результата измерения, то есть увеличение погрешности вследствие инкрементного определения подачи.

Этот характер погрешностей в отсутствие контакта с внешним миром не может тривиальным образом компенсироваться внешними и вместе с тем абсолютными измерениями, при этом, в частности, указанная, чаще всего металлическая структура магистрального трубопровода представляет собой препятствие, которое мешает передаче беспроводных сигналов (электрических полей) (клетка Фарадея).

Из уровня техники, например, из https://en.wikipedia.org/wiki/Pigging, известны установленные на наружной оболочке магистрального трубопровода акустические, магнитные ил основанные на беспроводной технологии локационные устройства, которые могут обнаруживать прохождение внутритрубного инспекционного геоприбора.

Но этот вид сенсорики именно у плохо замеренных старых фондов отсутствует.

В основе изобретения лежит задача усовершенствовать уровень техники и, в частности, улучшить применение профилемеров для съемки магистральных трубопроводов.

Эта задача решается с помощью системы по п.1 формулы изобретения. Предпочтительные варианты осуществления вытекают из зависимых пунктов формулы изобретения.

Изобретение поясняется подробнее с помощью фигур. В качестве примера показано:

фиг.1: применение предлагаемой изобретением системы на схематичном изображении сбоку;

фиг.2: применение предлагаемой изобретением системы на виде в плане.

На изображениях показано применение внутритрубного инспекционного геоприбора GM для определения местоположения трубопровода RL.

Внутритрубный инспекционный геоприбор GM оснащен магнитным источником MQ, который создает магнитное поле MF. Профиль силы магнитного поля обнаруживается и координируется в пространстве с помощью сенсора MFS магнитного поля, установленного на беспилотном летательном аппарате UAV.

Беспилотный летательный аппарат UAV следует максимуму магнитного сигнала на заданной высоте полета и позиционируется всегда на заданном расстоянии от внутритрубного инспекционного геоприбора GM, например, прямо над ним.

Поэтому при движении внутритрубного инспекционного геоприбора GM в трубопроводе RL беспилотный летательный аппарат UAV также будет следовать ходу трубопровода RL.

Из определенного посредством спутниковой навигации в текущем режиме положения беспилотного летательного аппарата UAV и определенного из профиля сил магнитного поля MF расстояния между внутритрубным инспекционным геоприбором GM и беспилотным летательным аппаратом UAV находятся местоположение и ход трубопровода RL.

При этом целесообразно, когда полученная посредством инерциальных измерительных систем информация о положении внутритрубного инспекционного геоприбора тоже используется в случаях нахождения местоположения и хода трубопровода RL.

В качестве магнитного источника возможны, например, постоянные магниты или магнитные катушки.

Предпочтительно применение катушки, на которую подается переменный ток, в качестве магнитного источника MQ для создания магнитного переменного поля MF, имеющего выраженную сигнатуру частоты, так что становится возможным распознавание сигналов помех.

Для этого целесообразно, когда частота и сила магнитного поля MF адаптируются к свойствам трубопровода RL так, что индуцируемые в них вихревые токи становятся минимальными.

Предпочтительным может быть также вариант осуществления магнитного поля MF в виде постоянного поля, на которое наложено переменное поле, так как проницаемость переменного поля магнитных материалов может улучшаться при наложении постоянного поля, которое производит магнитное насыщение материала в соответствующем месте.

Во избежание магнитного прилипания внутритрубного инспекционного геоприбора к окружающей трубе магнитное постоянное поле должно также проходить внутри трубы как можно более симметрично.

При определении положения внутритрубного инспекционного геоприбора GM целесообразно, когда для этого как положение…

Может быть также предпочтительно оснастить беспилотный летательный аппарат UAV несколькими сенсорами MFS магнитного поля и расположить их крестообразно, как это изображено на фиг.2. При этом локализация внутритрубного инспекционного геоприбора GM и вместе с тем трубопровода RL в латеральном направлении улучшается при обнаружении максимума.

Один из предпочтительных вариантов осуществления изобретения предусматривает, что магнитное поле также одновременно применяется для обнаружения слабых мест в оболочке трубопровода или неравномерностей в лежащих выше областях (напр., «illegal Tapping» (англ. несанкционированные врезки) при установке отводящих трубопроводов).

Возможно было бы также двунаправленное измерение, при этом измеренный зондом MFS магнитного поля сигнал, например, на другой, более низкой частоте посылается обратно во внутритрубный инспекционный геоприбор GM. При этом с помощью надлежащей кодировки на протяжении времени прохождения сигналов может определяться расстояние между беспилотным летательным аппаратом UAV и внутритрубным инспекционным геоприбором GM.

Альтернативно возможно было бы также измерение расстояния путем сравнения положения фаз сигналов.

Преимущества, достигаемые с помощью предлагаемой изобретением системы, заключаются, в частности, в высокой точности определения положения внутритрубного инспекционного геоприбора GM, прежде всего, у сравнительно длинных трубопроводов RL путем устранения характерного дрейфа инкрементного измерения посредством инерциальной измерительной системы.

При этом во внутритрубном инспекционном геоприборе GM могут также находить применение сравнительно простые и экономичные измерительные системы.

Эта система позволяет также полностью автоматизировать измерительный процесс.

СПИСОК ССЫЛОЧНЫХ ОБОЗНАЧЕНИЙ

GM Внутритрубный инспекционный геоприбор

UAV Беспилотный летательный аппарат

RL Трубопровод

MF Магнитное поле

MFS Сенсор магнитного поля

MQ Магнитный источник.


СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ ТРУБОПРОВОДОВ
СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ ТРУБОПРОВОДОВ
Источник поступления информации: Роспатент

Showing 641-650 of 1,427 items.
13.01.2017
№217.015.7511

Гидравлический подшипник для стационарной газовой турбины

Изобретение относится к гидравлическому подшипнику для стационарной газовой турбины, содержащему масляную ванну, в которой предусмотрен сток для гидравлического масла, при этом сток содержит расположенное в масляной ванне сточное отверстие и примыкающий к сточному отверстию сточный трубопровод,...
Тип: Изобретение
Номер охранного документа: 0002598498
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.76f7

Монтажное устройство для измерительных зондов

Монтажное устройства (10) содержит два измерительных зонда (20) с соединительной частью (22) и измерительной частью (24) для измерения параметров машины (100) и/или вращающегося элемента (110), опорную структуру (30) зондов с одним сквозным отверстием (32) для каждого из них и с монтажными...
Тип: Изобретение
Номер охранного документа: 0002599594
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7747

Токарный или накатно-полировальный станок

Токарный или накатно-полировальный станок, содержащий основание, предназначенное для неподвижного монтажа, в частности, на обрабатываемой детали, привод, ротационную часть, установленную на основании с возможностью вращения относительно него вокруг центральной оси с использованием привода, и...
Тип: Изобретение
Номер охранного документа: 0002599655
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.79bb

Подмодуль для модульного многоступенчатого преобразователя частоты

Изобретение относится к электротехнике, а именно к подмодулю модульного многоступенчатого преобразователя частоты с однополюсным аккумулятором энергии и с включенной параллельно аккумулятору энергии мощной полупроводниковой последовательной схемой, содержащей два последовательно включенных...
Тип: Изобретение
Номер охранного документа: 0002599261
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.79d1

Система герметизирующих корпусов с изменяемой длиной для герметизированного устройства передачи электроэнергии

Изобретение относится к электротехнике, к устройствам передачи энергии. Технический результат состоит в расширении эксплуатационных возможностей путем обеспечения использования под открытым небом. Система герметизирующих корпусов с изменяемой длиной имеет первый и второй герметизирующий корпус...
Тип: Изобретение
Номер охранного документа: 0002599383
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a06

Канал для охлаждения корпуса

Турбина, в частности газовая турбина, содержит внутренний корпус, предназначенный для установки по меньшей мере одной статорной лопатки турбинной ступени, и наружный корпус, расположенный вокруг внутреннего корпуса таким образом, что образуется наружный охлаждающий канал между внутренним...
Тип: Изобретение
Номер охранного документа: 0002599413
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7bf1

Преобразователь и способ его эксплуатации для преобразования напряжений

Изобретение относится к области электротехники. Для передачи электроэнергии между системой постоянного напряжения и, по меньшей мере, n-фазной системой переменного напряжения создан преобразователь (10), содержащий n-фазный трансформатор (20) и преобразовательную схему (12) из n-го числа...
Тип: Изобретение
Номер охранного документа: 0002600125
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7cad

Разъединительное устройство

Разъединительное устройство устройства передачи электроэнергии имеет изоляционный промежуток (2), который продолжается вдоль оси (5), пересекающей перпендикулярно первую плоскость (1) и лежащей в или параллельно второй плоскости (14). Разъединительное устройство также имеет заземляющий...
Тип: Изобретение
Номер охранного документа: 0002600724
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7d70

Лопаточный узел со связующим ptal покрытием и термобарьерным покрытием и соответствующий способ изготовления

Лопаточный узел для газовой турбины содержит внутренний и внешний бандажи и лопатку, расположенную между ними. Лопатка содержит покрытую секцию поверхности, которая покрыта платино-алюминидным и термобарьерным покрытиями и представляет собой часть полной поверхности лопатки. Термобарьерное...
Тип: Изобретение
Номер охранного документа: 0002600837
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7e19

Способ и устройство для управления, соответственно, регулирования транспортера текучей среды для транспортировки текучей среды внутри трубопровода для текучей среды

Способ предназначен для управления/регулирования транспортера (112) текучей среды для транспортировки текучей среды (118) внутри трубопровода (114, 116) для текучей среды. Способ содержит: получение информации (128) о заданной величине потока текучей среды внутри трубопровода для текучей среды;...
Тип: Изобретение
Номер охранного документа: 0002600835
Дата охранного документа: 27.10.2016
Showing 1-3 of 3 items.
08.12.2019
№219.017.eb7a

Измерение толщины слоя земляного покрытия

Изобретение относится к способу измерения толщины слоя земляных покрытий, в частности, при проложенных под землей газовых и нефтяных трубопроводах. Способ измерения толщины слоя земляных покрытий, в частности, при проложенных под землей газовых и нефтяных трубопроводах, в котором подлежащее...
Тип: Изобретение
Номер охранного документа: 0002708093
Дата охранного документа: 04.12.2019
21.05.2020
№220.018.1eda

Способ управления беспилотными летательными аппаратами

Изобретение относится к способу управления беспилотным летательным аппаратом (UAV), применяемым для регистрации и замера объектов в заданной области. Для управления UAV для регистрируемой и замеряемой области устанавливают практически беспрепятственную зону перелета, в которой UAV с помощью...
Тип: Изобретение
Номер охранного документа: 0002721450
Дата охранного документа: 19.05.2020
23.05.2023
№223.018.6f3e

Способ для визуализации и валидации событий процесса и система для осуществления способа

Изобретение относится к способу для визуализации и валидации событий процесса в системах контроля процессов, содержащему следующие признаки: - стационарно установленная система датчиков сообщает состояния в систему контроля процесса, - при превышении заданных предельных значений система...
Тип: Изобретение
Номер охранного документа: 0002746442
Дата охранного документа: 14.04.2021
+ добавить свой РИД