×
14.03.2020
220.018.0bf7

СПОСОБ ПОЛУЧЕНИЯ БИОРАЗЛАГАЕМОЙ НИЗКОТЕМПЕРАТУРНОЙ КОНСИСТЕНТНОЙ СМАЗКИ НА ОСНОВЕ ЦЕЛЛЮЛОЗЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получения биоразлагаемой низкотемпературной консистентной смазки путем введения в сложноэфирное масло органомодифицированной глины и микрокристаллической целлюлозы с получением исходной смеси компонентов и перемешивания при комнатной температуре. Способ характеризуется тем, что в качестве органомодифицированной глины используют монтмориллонит, модифицированный солями четвертичного аммония, по крайней мере, один из заместителей которого состоит из не менее 12 атомов углерода, исходную смесь компонентов сначала перемешивают в течение 3-10 мин, нагревают до 150-250°С, выдерживают при достигнутой температуре в течение 20-60 мин, не давая смеси остыть, перемешивают ее на роторном смесителе со скоростью вращения ротора 10000-30000 об/мин в течение 5-30 мин, затем смесь охлаждают и получают смазку при следующем соотношении компонентов, мас. %: микрокристаллическая целлюлоза 5-25; органомодифицированная глина 3-9; сложноэфирное масло остальное. При этом более 95-99% об. органомодифицированной глины в составе смазки содержит частицы, размер которых не превышает 55-100 нм. Технический результат: уменьшение коэффициента трения, а также увеличение биоразлагаемости до 80.1% по сравнению с 60.8% по прототипу. 1 з.п. ф-лы, 3 ил., 1 табл., 5 пр.
Реферат Свернуть Развернуть

Изобретение относится к областям нефтехимии и целлюлозно-бумажной промышленности, более конкретно, к созданию многоцелевой низкотемпературной биоразлагаемой консистентной смазки на основе целлюлозы, и может быть использовано для работы узлов трения в диапазоне температур от минус 50 до плюс 200°С. Среди возможных областей применения низкотемпературной консистентной смазки следует указать широкий круг машин и механизмов, эксплуатируемых в условиях Арктики и Крайнего Севера, в том числе все виды транспорта, буровые установки, оборудование для переработки нефти и газа.

К известному техническому решению в области получения низкотемпературной консистентной смазки относится способ получения пластичной смазки для смазывания и герметизации запорной арматуры магистральных и газораспределительных станций (см. патент RU 2214449 С10М 161/00, опубл. 20.10.2003). Способ заключается в загрузке части минерального масла в обогреваемую мешалку, введении при перемешивании стеариновой кислоты и добавлении гидроокиси лития, нейтрализующей стеариновую кислоту при 85-95°С, испарении воды и загрузки в мешалку оставшегося количества минерального масла и полимера с перемешиванием до получения однородной смеси, которую затем прогревают до 240°C с последующим охлаждением до 40-80°С и введением при перемешивании диалкилдитиофосфата цинка, графита и целлюлозы при следующем соотношении компонентов (мас. %): стеариновая кислота - 12.0-18.0, гидроокись лития - 2.0-3.0, полимер - 0.4-8.0, графит - 0.5-5.0, диалкилдитиофосфат цинка, модифицированный бором - 0.1-1.0, целлюлоза - 0.5-5.0, минеральное масло с температурой застывания ниже минус 45°С - до 100. В качестве полимера используют полиизобутилен, бутандиен-стирольный термоэластопласт, этиленпропиленовый синтетический каучук или атактический полипропилен. Технический результат изобретения заключался в повышении герметизирующих свойств и улучшении смазочных свойств пластичной смазки благодаря расширению температурного интервала работоспособности от минус 60 до плюс 120°С, обеспечение экологической безопасности.

К недостаткам данного изобретения можно отнести использование в рецептуре полиолефинов, минерального масла и гидроксида лития, что делает смазку не биоразлагаемой.

Известен способ получения низкотемпературной пластичной смазки (см. RU 2476588, кл. МПК С10М 169/06, опубл. 27.02.2013), заключающийся в приготовлении раствора присадки неозона А в трикрезилфосфате при перемешивании и нагревании с последующей подготовкой дисперсионной среды путем смешивания в варочном аппарате полиальфаолефинового масла ПАОМ-4, диоктилсебацината и триоктилфосфата, в одной части которой затем растворяют полиизоцианат, а во второй - смесь октадециламина и анилина, совмещении двух частей дисперсионной среды, ее нагревании, выдерживании в течение некоторого времени и охлаждении с получением готовой пластичной смазки по изобретению при следующем соотношении компонентов, % мас.: ПАОМ-4 - 37.46-39.44, диоктилсебацинат - 37.46-39.44, триоктилфосфат - 22.08-24.08, загуститель - продукт взаимодействия октадециламина - 3.57, полиизоцианата - 3.47-3.89 и анилина - 1.18-1.32, фенил-альфа-нафтиламин (неозон А) - 0.45-0.55, трикрезилфосфат - 3.9-4.1. Полученная смазка пригодна для высокоскоростных радиально-упорных подшипников, для гироскопов и синхронных гиромоторов и работоспособна в интервале рабочих температур от минус 50°С до плюс 150°С.

Недостатком данного изобретения является достаточно высокое содержание небиоразлагаемого компонента - полиальфаолефинового масла, а также сложный способ приготовления.

Наиболее близкий к изобретению способ получения низкотемпературной пластичной смазки (см. RU 2697057, кл. МПК С10М 169/06, опубл. 09.08.2019) заключается в добавлении к сложноэфирному маслу органомодифицированной глины, перемешивании смеси при 25°С на роторном смесителе в течение трех минут, введении микрокристаллической целлюлозы с последующим перемешиванием и выдержкой в течение суток с получением готовой консистентной смазки при следующем соотношении компонентов, % мас.:

Микрокристаллическая целлюлоза 10-30;
Органомодифицированная глина 10-30;
Сложноэфирное масло остальное.

Способ позволяет получать низкотемпературную консистентную смазку на основе нетоксичных компонентов и, как следствие, с высокой экологичностью и безопасностью, а также расширенным температурным диапазоном применения от -50 до +150°С.

Недостатком изобретения является достаточно высокое содержание небиоразлагаемого компонента - органомодифицированной глины, а также ее высокая густота (низкий показатель пенетрации), приводящая к невозможности ее применения в узлах трения, эксплуатирующихся в условиях невысоких скоростей и высоких нагрузок, например, закрытых зубчатых передачах, центральных смазочных системах, низкоскоростных шариковых и роликовых подшипниках.

Задача данного изобретения состоит в разработке способа получения биоразлагаемой смазки на основе сложноэфирного масла, целлюлозы и органомодифицированной глины, обеспечивающего смазке повышенную биоразлагаемость и более жидкую консистенцию для расширения возможностей ее применения.

Поставленная задача решается тем, что предложен способ получения биоразлагаемой низкотемпературной консистентной смазки путем введения в сложноэфирное масло органомодифицированной глины и микрокристаллической целлюлозы с получением исходной смеси компонентов и перемешивания при комнатной температуре, в котором исходную смесь компонентов сначала перемешивают в течение 3-10 мин, нагревают до 150-250°С, выдерживают при достигнутой температуре в течение 20-60 мин, не давая смеси остыть, перемешивают ее на роторном смесителе со скоростью вращения ротора 10000-30000 об/мин в течение 5-30 мин, затем смесь охлаждают и получают смазку при следующем соотношении компонентов, мас. %:

микрокристаллическая целлюлоза 5-25;
органомодифицированная глина 3-9;
сложноэфирное масло остальное,

при этом более 95-99% об. органомодифицированной глины в составе смазки содержит частицы, размер которых не превышает 55-100 нм.

В качестве базового масла смазка содержит сложный эфир с двумя или тремя сложноэфирными группами, а в качестве органомодифицированной глины - монтмориллонит, модифицированный солями четвертичного аммония, по крайней мере, один из заместителей которого состоит из не менее 12 атомов углерода.

Технический результат, который может быть получен от использования предлагаемого изобретения, заключается в улучшении антифрикционных характеристик получаемой низкотемпературной смазки, а именно, в уменьшении коэффициента трения до 0.078-0.125 по сравнению с 0.18-0.29 по прототипу, а также в достижении биоразлагаемости смазки до 80.1% по сравнению с 60.8% по прототипу.

Способ позволяет получать биоразлагаемую низкотемпературную многоцелевую смазку, предназначенную для смазывания самых разных узлов трения и работоспособную в интервале температур от -50°С до +200°С (от температуры замерзания сложноэфирного масла до температуры его вспышки).

Сочетание высокой температуры и высокой скорости перемешивания обеспечивает эксфолиацию слоистых микрочастиц монтмориллонита с образованием наноразмерных частиц, более эффективно загущающих сложноэфирное масло и стабилизирующих частицы микрокристаллической целлюлозы. Без проведения указанной процедуры получение устойчивых смазок, содержащих менее 10 мас. % органомодифицированной глины, не возможно.

Нижеперечисленные примеры иллюстрируют техническое решение. В качестве них рассмотрены смеси с различным содержанием целлюлозного загустителя, повышение содержания которого позволяет получать более густые консистентные смазки, что актуально в случае их применения в высокоскоростных узлах трения и при высоких температурах. При этом выбор типа сложноэфирного масла и модификатора глины заметного влияния не оказывает.

Антифрикционные и противоизносные свойства смазок выражают в коэффициентах трения и износа, измеренных с использованием пары трения шар-пластина (диаметр шара 6.35 мм, сталь марки 440С) при линейной скорости контртела 0.15 м/с и силе трения 30 Н. Консистентные смазки также можно охарактеризовать пределом прочности (ГОСТ 7143-73), биоразлагаемостью в аэробных условиях за десятидневный период в течение 28 дней испытания (OECD 301В, ISO 14852) и пенетрацией (ГОСТ 5346-78). Последний показатель определяет класс смазки согласно Национальному институту пластичных смазок США (NLGI). Класс 00 соответствует жидкой консистенции смазок, применяемых, как правило, в центральных системах смазывания. Смазки с классом 0 характеризуют как очень мягкие и применяют для смазывания закрытых зубчатых передач. Для смазывания подшипников скольжения и качения применяют, соответственно, мягкие смазки классов 1 и 2, тогда как полутвердые смазки класса 3 используют в насосных установках и других высокоскоростных системах. Твердые смазки классов 4 и 5 используют как уплотнительные смазки, а очень твердые класса 6 применяют для смазывания открытых зубчатых передач. Таким образом, использование способа по изобретению позволяет получать консистентные смазки любых типов повышением содержания целлюлозы в составе смазки. Во всех случаях смазка является легко и полностью биодеградируемой, поскольку показатель биодеградируемости превышает 60%.

Пример 1

В 90 г сложноэфирного масла (диоктилсебацината) добавляют 5 г органомодифицированной монтмориллонитовой глины (модифицирована диметилдиоктадециламмоний бромидом) и 5 г микрокристаллической целлюлозы. Смесь перемешивают на верхнеприводной мешалке в течение 3 мин, нагревают до 150°С и выдерживают при этой температуре 60 мин. Затем, не давая системе остыть, перемешивают ее на роторном смесителе со скоростью вращения ротора 10000 об/мин в течение 30 мин. После смесь охлаждают, получая готовую смазку.

Полученная консистентная смазка характеризуется свойствами, приведенными в таблице.

Пример 2

В 85 г сложноэфирного масла (триметилолпропантригептаноата) добавляют 5 г органомодифицированной глины (модифицирована метилдиэтанолгексадециламмоний бромидом) и 10 г микрокристаллической целлюлозы. Смесь перемешивают на верхнеприводной мешалке в течение 5 мин, нагревают до 200°С и выдерживают при этой температуре 30 мин. Затем, не давая системе остыть, перемешивают ее на роторном смесителе со скоростью вращения ротора 24000 об/мин в течение 10 мин. После смесь охлаждают, получая готовую смазку.

Полученная консистентная смазка характеризуется физико-механическими и трибологическими свойствами, приведенными в таблице.

Пример 3

В 80 г сложноэфирного масла (диоктилсебацината) добавляют 5 г органомодифицированной глины (модифицирована диметилдиоктадециламмоний бромидом) и 15 г микрокристаллической целлюлозы. Смесь перемешивают на верхнеприводной мешалке в течение 10 мин, нагревают до 250°С и выдерживают при этой температуре 20 мин. Затем, не давая системе остыть, перемешивают ее на роторном смесителе со скоростью вращения ротора 30000 об/мин в течение 5 мин. После смесь охлаждают, получая готовую смазку.

Полученная консистентная смазка характеризуется физико-механическими и трибологическими свойствами, приведенными в таблице. От образца берут пробу и проводят ее рентгеноструктурный анализ на дифрактометре Rigaku Rotaflex D-Max-RC (Фиг 1).

Пример 4

В 75 г сложноэфирного масла (диоктилсебацината) добавляют 5 г органомодифицированной глины (модифицирована метилдигептадециламмоний бромидом) и 20 г микрокристаллической целлюлозы. Смесь перемешивают на верхнеприводной мешалке в течение 5 мин, нагревают до 200°С и выдерживают при этой температуре 40 мин. Затем, не давая системе остыть, перемешивают ее на роторном смесителе со скоростью вращения ротора 20000 об/мин в течение 30 мин. После смесь охлаждают, получая готовую смазку.

Полученная консистентная смазка характеризуется физико-механическими и трибологическими свойствами, приведенными в таблице.

Пример 5

В 70 г сложноэфирного масла (диоктиладипината) добавляют 5 г органомодифицированной глины (модифицирована диметилдиоктадециламмоний бромидом) и 25 г микрокристаллической целлюлозы. Смесь перемешивают на верхнеприводной мешалке в течение 7 мин, нагревают до 220°С и выдерживают при этой температуре 30 мин. Затем, не давая системе остыть, перемешивают ее на роторном смесителе со скоростью вращения ротора 24000 об/мин в течение 30 мин. После смесь охлаждают, получая готовую смазку.

Полученная консистентная смазка характеризуется физико-механическими и трибологическими свойствами, приведенными в таблице.

Использование высокотемпературного высокоскоростного смешения позволяет провести преобразование загустителя - органомодифицированной глины - с переводом ее микроразмерных частиц в наноразмерные. На дифрактограмме смазки по прототипу можно обнаружить два пика (Фиг. 1, кривая 1): в области 3.5 и 7 градусов по 2θ, что соответствует межплоскостным расстояниям 25.7 и 12.4 . Последнее значение соответствует показателям нативной глины и свидетельствует о неполной модификации глины солью четвертичного аммония, которая увеличивает межплоскостное расстояние до 25.7 . В результате приготовления смазки по изобретению происходит уменьшение интенсивности пика, соответствующего межплоскостному расстоянию 12.4 (Фиг. 1, кривая 2), т.е. происходит интеркаляция сложноэфирного масла в межслоевое пространство глины. Это приводит к появлению пика в области 4.6°, что соответствует межплоскостному расстоянию 19.3 . Иными словами, сложноэфирное масло, проникая в глину, раздвигает ее слои, увеличивая между ними расстояние с 12.4 до 19.3 . Кроме того, в результате высокоинтенсивного перемешивания происходит исчезновение пика при 7°, что доказывает отрыв чешуек глины друг от друга. Поскольку толщина чешуйки глины составляет 0.96 нм, то в результате обработки происходит образование анизометричных наночастиц, эффективно загущающих сложноэфирное масло.

Размер частиц глины в смазках определяют на анализаторе Zetasizer Nano ZS (Malvern Instrument, Великобритания). В смазке по прототипу размер частиц глины лежит в пределах 1.9-5.4 мкм (Фиг. 2), тогда как высокотемпературное высокоскоростное смешение при приготовлении смазки по настоящему изобретению позволяет перевести 99 об. % частиц глины в наноразмерные с эффективным диаметром порядка 55-100 нм (Фиг. 3). Благодаря этому смазка по изобретению может содержать меньшую концентрацию глины по сравнению с прототипом и характеризуется меньшим коэффициентом трения с сопоставимой при этом величиной коэффициента износа.

Полученная таким образом многоцелевая биоразлагаемая низкотемпературная консистентная смазка может быть использована для работы узлов трения в диапазоне температур от минус 50 до плюс 200°С. Среди возможных областей применения низкотемпературной консистентной смазки следует указать широкий круг машин и механизмов, эксплуатируемых в условиях Арктики и Крайнего Севера, в том числе все виды транспорта, буровые установки, оборудование для переработки нефти и газа.


СПОСОБ ПОЛУЧЕНИЯ БИОРАЗЛАГАЕМОЙ НИЗКОТЕМПЕРАТУРНОЙ КОНСИСТЕНТНОЙ СМАЗКИ НА ОСНОВЕ ЦЕЛЛЮЛОЗЫ
СПОСОБ ПОЛУЧЕНИЯ БИОРАЗЛАГАЕМОЙ НИЗКОТЕМПЕРАТУРНОЙ КОНСИСТЕНТНОЙ СМАЗКИ НА ОСНОВЕ ЦЕЛЛЮЛОЗЫ
СПОСОБ ПОЛУЧЕНИЯ БИОРАЗЛАГАЕМОЙ НИЗКОТЕМПЕРАТУРНОЙ КОНСИСТЕНТНОЙ СМАЗКИ НА ОСНОВЕ ЦЕЛЛЮЛОЗЫ
СПОСОБ ПОЛУЧЕНИЯ БИОРАЗЛАГАЕМОЙ НИЗКОТЕМПЕРАТУРНОЙ КОНСИСТЕНТНОЙ СМАЗКИ НА ОСНОВЕ ЦЕЛЛЮЛОЗЫ
Источник поступления информации: Роспатент

Showing 1-10 of 141 items.
10.02.2013
№216.012.2309

Коллоидный раствор наночастиц серебра, металл-полимерный нанокомпозитный пленочный материал, способы их получения, бактерицидный состав на основе коллоидного раствора и бактерицидная пленка из металл-полимерного материала

Изобретение может найти применение в качестве стерилизующей среды или антибактериального компонента, в частности, при создании бактерицидных жидких пластырей, компонента при создании материалов для восстановления костных и других тканей организма в репаративной медицине, пленочный материал как...
Тип: Изобретение
Номер охранного документа: 0002474471
Дата охранного документа: 10.02.2013
10.04.2013
№216.012.3256

Катализатор, способ его получения и способ трансалкилирования бензола диэтилбензолами с его использованием

Изобретение относится к катализаторам трансалкилирования. Описан катализатор трансалкилирования бензола диэтилбензолами в виде цилиндрических гранул правильной формы, включающий цеолит типа Y в кислотной Н-форме, который содержит 100 мас.% цеолита со степенью замещения ионов Na на H не менее...
Тип: Изобретение
Номер охранного документа: 0002478429
Дата охранного документа: 10.04.2013
27.05.2013
№216.012.43bc

Способ получения гетерогенного катализатора для получения ценных и энергетически насыщенных компонентов бензинов

Изобретение относится к способам получения катализаторов. Описан способ получения гетерогенного катализатора для получения ценных и энергетически насыщенных компонентов бензинов путем алкилирования изобутана олефинами на основе цеолита типа NaNHY при остаточном содержании оксида натрия не более...
Тип: Изобретение
Номер охранного документа: 0002482917
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.49cf

Способ получения биоспецифического гидрогелевого сорбента для выделения протеиназ

Настоящее изобретение относится к области медицины и описывает способ получения биоспецифического гидрогелевого сорбента для выделения протеиназ путем радикальной полимеризации при комнатной температуре под действием окислительно-восстановительного катализатора полимеризации водного раствора,...
Тип: Изобретение
Номер охранного документа: 0002484475
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b74

Способ повышения времени стабильной работы катализатора в реакции гидроалкилирования бензола ацетоном с получением кумола и способ получения кумола гидроалкилированием бензола ацетоном

Изобретение относится к каталитическим процессам получения кумола. Описан способ повышения времени стабильной работы катализатора, содержащего гидрирующий и алкилирующий компоненты, в реакции получения кумола гидроалкилированием бензола ацетоном, включающим послойное размещение гидрирующего и...
Тип: Изобретение
Номер охранного документа: 0002484898
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5369

Способ получения модифицированного титан-магниевого нанокатализатора

Изобретение относится к производству полимеров, а именно: к металлокомплексным катализаторам полимеризации, и может быть использовано для получения транс-1,4-полиизопрена. Описан способ получения модифицированного титан-магниевого нанокатализатора для полимеризации изопренат путем...
Тип: Изобретение
Номер охранного документа: 0002486956
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.56ea

Способ трансалкилирования бензола полиалкилбензолами

Изобретение относится к способу трансалкилирования бензола полиалкилбензолами на цеолитсодержащем катализаторе с получением этилбензола или изопропилбензола. Способ характеризуется тем, что в качестве полиалкилбензолов используют диэтилбензолы или диизопропилбензолы, процесс проводят в...
Тип: Изобретение
Номер охранного документа: 0002487858
Дата охранного документа: 20.07.2013
10.08.2013
№216.012.5c22

Катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии

Изобретение относится к катализаторам получения алифатических углеводородов. Описан катализатор для получения алифатических углеводородов из оксида углерода и водорода, содержащий наноразмерные частицы железа и сформированный in situ непосредственно в зоне реакции в процессе термообработки...
Тип: Изобретение
Номер охранного документа: 0002489207
Дата охранного документа: 10.08.2013
20.09.2013
№216.012.6b82

Способ получения полиакриламидного гидрогеля

Настоящее изобретение относится к способу получения полиакриламидного гидрогеля, который применяется в качестве разделяющей среды в жидкостной хроматографии, в качестве носителя иммобилизованных биологически активных веществ, а также для изготовления эндопротезов мягких тканей. Данный способ...
Тип: Изобретение
Номер охранного документа: 0002493173
Дата охранного документа: 20.09.2013
10.11.2013
№216.012.7caa

Способ получения мембранного катализатора и способ дегидрирования углеводородов с использованием полученного катализатора

Изобретение относится к области создания и использования катализаторов дегидрирования углеводородов, представляющего собой пористую подложку из нержавеющей стали, никеля или меди, на одну сторону которой нанесен слой пиролизованного инфракрасным излучением полиакрилонитрила (ИК-ПАН), а на...
Тип: Изобретение
Номер охранного документа: 0002497587
Дата охранного документа: 10.11.2013
Showing 1-10 of 13 items.
22.06.2019
№219.017.8eaa

Способ получения биоразлагаемой низкотемпературной пластичной смазки

Изобретение относится к области смазочных материалов и, более конкретно, к биоразлагаемым пластичным смазкам, применяемым в узлах трения различных машин или механизмов, эксплуатируемых в условиях низких температур. Предложен новый способ получения биоразлагаемой низкотемпературной пластичной...
Тип: Изобретение
Номер охранного документа: 0002692090
Дата охранного документа: 21.06.2019
27.07.2019
№219.017.b987

Способ получения целлюлозного загустителя для пластичной смазки

Изобретение относится к способам применения целлюлозы, более конкретно, к способам получения дисперсий целлюлозы как органического биоразлагаемого загустителя для смазочных материалов, в том числе пластичных смазок. Способ получения целлюлозного загустителя для смазок включает получение...
Тип: Изобретение
Номер охранного документа: 0002695665
Дата охранного документа: 25.07.2019
12.08.2019
№219.017.be37

Низкотемпературная консистентная смазка

Изобретение относится к нефтехимической области, а конкретнее к смазкам, применяемым в узлах трения машин и механизмов, эксплуатируемых в условиях Крайнего Севера и Арктики. Предложена низкотемпературная консистентная смазка, включающая базовое масло и загуститель, которая в качестве...
Тип: Изобретение
Номер охранного документа: 0002697057
Дата охранного документа: 09.08.2019
08.12.2019
№219.017.eabd

Способ получения геля для химического пилинга

Изобретение относится к способу получения геля для химического пилинга, который включает растворение кислотного отшелушивающего агента в органическом полярном растворителе, добавление полимерного гелеобразователя и смешение, после чего добавление к полученной основе добавок - консервантов,...
Тип: Изобретение
Номер охранного документа: 0002708250
Дата охранного документа: 05.12.2019
14.12.2019
№219.017.edb5

Низкотемпературная пластичная смазка (варианты)

Изобретение относится к области смазочных материалов и, более конкретно, к пластичным смазкам, применяемым в узлах трения различных машин или механизмов, эксплуатируемых в условиях экстремально низких температур. Низкотемпературная пластичная смазка включает основу - ацетилтрибутилцитрат и...
Тип: Изобретение
Номер охранного документа: 0002708882
Дата охранного документа: 12.12.2019
06.02.2020
№220.017.feb5

Низкотемпературная экологичная пластичная смазка и способ ее получения

Изобретение относится к области создания пластичных смазок, которые рекомендуются для смазывания тяжело нагруженных механизмов, а именно: основных узлов трения автомобилей, тракторов, вездеходов, работающих в широком диапазоне скоростей и соответствующих механических нагрузок, а также в большом...
Тип: Изобретение
Номер охранного документа: 0002713451
Дата охранного документа: 05.02.2020
06.02.2020
№220.017.ff38

Способ получения антифрикционного самосмазывающегося материала для узлов трения (варианты)

Изобретение относится к антифрикционным полимерным самосмазывающимся материалам, которые могут использоваться для изготовления вкладышей и втулок подшипников скольжения, сепараторов подшипников качения и других элементов узлов трения, работающих без смазки и предназначенных для применения в...
Тип: Изобретение
Номер охранного документа: 0002713446
Дата охранного документа: 05.02.2020
18.03.2020
№220.018.0cbc

Способ получения полимерной пленки

Изобретение относится к способу получения полимерных гидрофобных пленок и может применяться для получения специальных покрытий для предотвращения коррозии металлических поверхностей, антиобледенительных покрытий для элементов строительных конструкций, самоочищающихся деталей транспортных...
Тип: Изобретение
Номер охранного документа: 0002716795
Дата охранного документа: 16.03.2020
21.03.2020
№220.018.0e74

Способ получения основы для пластырей и гелей (варианты)

Изобретение относится к медицинской и химико-фармацевтической промышленности, а именно к вариантам способа получения основы для пластырей или гелей, которые могут быть использованы в лечебно-профилактических учреждениях, в домашних условиях для наружного применения в качестве лечебного средства...
Тип: Изобретение
Номер охранного документа: 0002717086
Дата охранного документа: 18.03.2020
21.06.2020
№220.018.28c2

Способ получения клея-расплава

Изобретение относится к области клеящих материалов и, более конкретно, к способам получения полимерных клеев-расплавов, предназначенных для формирования адгезионных соединений между различными материалами, в том числе металлами, характеризующихся высокой прочностью образованной связи в...
Тип: Изобретение
Номер охранного документа: 0002724047
Дата охранного документа: 19.06.2020
+ добавить свой РИД