×
13.03.2020
220.018.0b84

Результат интеллектуальной деятельности: Способ пеленгации и устройство для его осуществления

Вид РИД

Изобретение

№ охранного документа
0002716273
Дата охранного документа
11.03.2020
Аннотация: Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой в составе комплекса или как автономное устройство. Достигаемый технический результат - повышение точности углового обнаружения цели для произвольной поляризации сигналов от цели. Указанный результат достигается за счет того, что способ пеленгации в процессе обзора пространства включает излучение и прием волны от цели, определение сдвига фазы между волной, прошедшей через пластину из диэлектрического материала и отраженной от неё, преобразование сдвига фазы в управляющий сигнал, пропорциональный угловому положению цели в каждом положении луча антенны, при этом волна от цели произвольной поляризации направляется под углом к пластине из диэлектрического материала, электрическая толщина которой кратна половине длины волны. Устройство, реализующее способ, содержит приемо–передающую антенну, пластину из диэлектрического материала, приемную антенну, расположенные на платформе, вращающейся в плоскости пеленгации, снабженной приводом и датчиком углового положения платформы, соединенным с вычислителем угла положения цели на основе процессора, генератор, соединенный через коммутатор с приемо–предающей антенной и детектором обнаружения цели, измеритель сдвига фазы между сигналами с выхода приемо-передающей антенны через коммутатор и приемной антенны, соединенный с вычислителем угла положения цели, при этом пластина из диэлектрического материала закреплена на держателе с возможностью поворота относительно центра платформы, а приемная антенна установлена на подставке для крепления ее под определенным углом относительно центра платформы. 2 н.п. ф-лы, 5 ил.

Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой в составе комплекса или как автономное устройство.

Известны амплитудные способы пеленгации (US 5541608 G01S 5/04, 30.07.1996 г., US 2427029, 10.04.1942 г.). Недостатком амплитудного способа пеленгации является то, что он не позволяет получить высокой точности пеленгации в широком диапазоне углов из-за низкой крутизны амплитудной пеленгационной характеристики.

Известны фазовые способы пеленгации, в которых для достижения высокой точности требуется большое количество баз и каналов в приемном устройстве (US 5541608 G01S 5/04, 30.07.1996 г., US 2427029, 10.04.1942 г.).

Недостатком фазового способа пеленгации является то, что он является узкополосным и не перестраиваемым.

В патенте US 6061022, G01S 5/04, 09.05.2000 г. описано устройство, реализующее амплитудно-фазовый способ пеленгации.

Недостатком этого устройства является то, что оно также является узкополосным и не позволяет получить высокой точности пеленгации в широком диапазоне частот.

Наиболее близким к предлагаемому является способ фазовой пеленгации (Леонов А.И., Фомичев К.И. Моноимпульсная радиолокация. М., из-во «Советское радио»., 1970, 392 стр. (стр. 6-7, 20-23)), в котором сигнал от цели принимается приемной антенной, а сдвиг фаз между сигналами на выходе парциальных антенн меняется в зависимости от направления отклонения цели относительно равносигнального направления. Этот сигнал непосредственно используется для управления положением антенной системы в процессе пеленгования или в процессе автоматического сопровождения цели. Качество пеленгующих свойств системы определяется крутизной пеленгационной характеристики.

Недостатком представленного решения является то, что для высокой точности определения углового положения цели необходима реализация высокой крутизны пеленгационной характеристики антенной системы, для чего требуется высокая степень идентичности парциальных диаграмм пеленгующей антенны недостижимой в широкой полосе частот при использовании двух антенных систем, объединенных в один пеленгатор.

Наиболее близким к предлагаемому устройству является пеленгатор описанный в патенте США (US 2427029, 10.04.1942 г.) в котором содержится генератор, соединенный через коммутатор, с приемо-предающими антеннами, расположенными на платформе, вращающейся в плоскости пеленгации, с приводом и датчиком угла поворота, измеритель сдвига фазы между сигналами с выхода антенн, соединенный с вычислителем угла положения цели.

Недостатком пеленгатора является невысокая точность углового положения цели.

Задачей изобретения является повышение точности пеленгации, расширение частотного диапазона, повышение помехоустойчивости работы пеленгатора.

Поставленная задача достигается тем, что предлагается:

1. Способ пеленгации в процессе обзора пространства, включающий излучение и прием волны от цели, определение сдвига фаз между этими волнами, преобразование сдвига фазы в управляющий сигнал пропорциональный угловому положению цели в каждом положении луча антенны радиолокационной станции, отличающийся тем, что направленная на цель электромагнитная волна, проходит через диэлектрическую пластину полуволновой толщины, расположенную под углом относительно волны, приходящей от цели, а сдвиг фазы определяется между волной от цели, прошедшей через пластину из диэлектрического материала и волной, отраженной от нее.

2. Устройство, содержащее генератор, соединенный через коммутатор с приемо-предающей антенной, расположенные на платформе, вращающейся в плоскости пеленгации, с приводом и датчиком угла поворота, измеритель сдвига фазы между сигналами с выхода антенн, соединенный с вычислителем угла положения цели, отличающийся тем, что в центре платформы установлена пластина из диэлектрического материала полуволновой толщины, а на подставке, установленной на платформе, закреплена, с возможностью ее поворота относительно центра платформы, приемная антенна, принимающая отраженную волну от пластины.

Авторы установили, что при наклонном падении плоской электромагнитной волны с вектором электрического поля произвольной поляризации на пластину из диэлектрического материала угловая зависимость сдвига фазы между падающей и отраженной волнами составляет 180 градусов (±90 градусов) на частоте, соответствующей половине длины волны для диэлектрической проницаемости пластины, а угловое положение точки «нулевого» сдвига фазы соответствует направлению на цель. Эта угловая зависимость сдвига фазы соответствует пеленгационной зависимости для создаваемого пеленгатора.

На Фиг. 1 представлено расположение пластины из диэлектрического материала с диэлектрической и магнитной проницаемостями в свободном пространстве с диэлектрической и магнитной проницаемостями относительно падающей плоской волны с электрическим вектором под углом относительно нормали к поверхности . В рамках геометрической оптики условно изображено положение отраженного луча под углом и преломленного угла под углом ε.

Для пластины из диэлектрического материала проведено расчетное моделирование сдвига фазы отраженной волны в соответствии с матричным методом, рассмотренным в работе (Борн М., Вольф Э. Основы оптики. - М.: Наука, 1973.- 720 с.) в виде:

где ; ; ;

;

- длина волны;

с - скорость света;

f - частота измерения;

- угол преломления;

- толщина пластины диэлектрика из диэлектрического материала;

- диэлектрическая проницаемость материала пластины;

- магнитная проницаемость материала пластины;

- для угла падения между , при этом равно количеству слоев и для однослойной пластины равно:

Для параллельной поляризации сдвиг фазы отраженной ТМ волны, когда вектор электрического поля лежит в плоскости падения, равен:

Используя закон Снеллиуса и условия, следующие из Фиг. 1 и предполагая, что материал пластины имеет , запишем для продольной поляризации (ТМ волны):

, ,

Сдвиг фазы отраженной ТМ волны равен:

для перпендикулярной поляризации ТЕ волны, когда вектор электрического поля перпендикулярен плоскости падения:

, ,

Сдвиг фазы отраженной TE волны равен:

Как следует из анализа формулы (6), во всем диапазоне изменений угла падения ТЕ волны скачкообразного изменения сдвига фазы не наблюдается, а, как видно из выражения (4), сдвиг фазы отраженной ТМ волны имеет скачок, возникающий в точке неопределенности функции при условии, когда:

которое выполняется для при и соответствует углу Брюстера (Калитиевский Н.И. Волновая оптика. Учеб. Пособие для ун-тов. Изд. 2-е, испр. И доп.М., «Высшая школа». 1978 г. 383 с.) при отражении ТМ волны от пластины из диэлектрического материала, что соответствует условию пеленгации по прототипу.

Второй скачок сдвига фазы, соответствующий условию:

выполняется для сдвига фазы отраженной, как ТМ, так и ТЕ волн, в точках разрыва функции , тогда аргумент равен ±∞:

или , n=0,1,…N, ,

выполняется для толщины пластины кратной половине длины волны в материале при угле падения волны для обеих поляризаций ТЕ и ТМ волн:

где с - скорость света;

f - частота измерения;

- геометрическая толщина пластины из диэлектрического материала;

- угол падения волны на пластину;

- диэлектрическая проницаемость пластины из диэлектрического материала.

Условие (9) используется в предполагаемом изобретении для расчета параметров пластины при которой выполняется условие скачка сдвига фазы между падающей и отраженной волнами для реализации пеленгационной характеристики.

На фиг. 2 в качестве примера реализации изобретения методом расчетного моделирования показаны совпадающие для двух поляризаций угловые зависимости сдвига фазы между отраженной и падающей волнами при падении плоской волны на пластину с диэлектрической проницаемостью (ε) под углом для частоты f=10 ГГц для обеих поляризаций: ТМ волны с вектором электрического поля, лежащим в плоскости падения, совпадающей с плоскостью пеленга и для ТЕ волны с вектором электрического поля перпендикулярным плоскости падения.

Из фиг. 2 видно, что при выполнении условий соответствующих выражению (9) для пластины из диэлектрического материала с электрической толщиной равной половине длины волны на частоте измерений формируется фазовая пеленгационная характеристика при падении волны от цели под углом .

Источником угловой информации о положении цели в данном способе является угловая зависимость сдвига фазы отраженной волны от полуволновой пластины из диэлектрического материала.

Угловая информация о положении цели извлекается в процессе измерения сдвига фазы между волнами, отраженными от цели: падающей или прошедшей через пластину и отраженной от пластины.

Угловая зависимость сдвига фазы, как пеленгационная характеристика угломерной системы, является нечетной действительной функцией угла прихода волны относительно равносигнального направления.

Измеряемое значение сдвига фазы при переходе от положительного к отрицательному приходу волны изменяется на обратное, так как угловая зависимость сдвига фазы симметрична относительно равносигнального направления.

Волна, принятая приемо-передающей антенной, соответствует суммарному каналу и используется не только в качестве опорного канала, но и для обнаружения цели, а также для измерения дальности до цели и ее скорости.

Отраженная волна используется, как разностный канал для управления положением антенной системы в процессе пеленгования или в процессе автоматического сопровождения.

На фиг. 3 представлена расчетная угловая зависимость ориентации приемной антенны относительно платформы для управления пеленгатором по частоте для пластины с диэлектрической проницаемостью .

На фиг. 3 представлен широкополосный пеленгатор. На платформе 1, вращающейся в плоскости пеленгации, с генератором 2 соединена приемо-передающая антенна произвольной поляризации 3. В центре платформы перпендикулярно плоскости пеленга, расположена пластина из диэлектрического материала 4, установленная на держателе 5, а приемная антенна 6 с плоскостью поляризации соответствующей передающей антенне, принимающая отраженную волну от пластины из диэлектрического материала, установлена на подставке 7 для закрепления антенны под определенным углом относительно центра платформы.

При обнаружении детектором 8 волны от цели происходит уточнение положения цели по сдвигу фазы пеленгатора. Волны от цели через коммутатор 9 и с выхода приемной антенны 6 подаются на измеритель сдвига фазы 10, с выхода которого, сигнал пропорциональный сдвигу фазы, попадает в вычислитель угла положения цели, выполненный на основе процессора 11, в котором с учетом данных об угловом положении платформы, поступающих с датчика углового положения платформы 12, определяется угловое положение цели. Вращение платформы осуществляется управляемым приводом 13, а при сопровождении цели положение платформы управляется по сигналу рассогласования U(α), поступающему с вычислителя угла положения цели, выполненного на основе процессора 11.

На фиг. 4 представлена расчетная угловая зависимость ориентации приемной антенны относительно платформы для управления пеленгатором при перестройке по частоте для пластины с диэлектрической проницаемостью . Изменяя угол расположения приемной антенны относительно центра платформы и пластины, производится перестройка пеленгатора по частоте.

На фиг. 5 представлена блок-схема платформы с геометрическим угловым взаимным расположением элементов конструкции пеленгатора. Пластина из диэлектрического материала 4 закрепляется в центре платформы и располагается под углом α относительно начальной оси ОХ. Цель условно ориентирована под углом β относительно оси ОХ. При наблюдении цели приемо-передающая антенна А1 неподвижно закреплена под углом к нормали относительно пластины и под углом относительно оси ОХ, а приемная антенна А2 также закреплена неподвижно относительно пластины и принимает сигнал от цели, отраженный от пластины и расположена под углом . При повороте платформы направление антенны А1 на цель происходит тогда, когда угол направления на цель равен .

Настройка пеленгатора на частоту производится выбором диэлектрической проницаемости материала пластины, толщины пластины из диэлектрического материала или углом расположения приемной антенны относительно центра платформы.

Таким образом, способ пеленгации и устройство, выполненное по предлагаемому техническому решению, позволяет повысить помехоустойчивость углового обнаружения цели для произвольной поляризации сигналов от цели.


Способ пеленгации и устройство для его осуществления
Способ пеленгации и устройство для его осуществления
Способ пеленгации и устройство для его осуществления
Способ пеленгации и устройство для его осуществления
Способ пеленгации и устройство для его осуществления
Способ пеленгации и устройство для его осуществления
Источник поступления информации: Роспатент

Showing 11-19 of 19 items.
14.05.2020
№220.018.1ca4

Способ управления нагревом при тепловых испытаниях керамических обтекателей

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть ракеты в наземных условиях. Заявлен способ управления нагревом при тепловых испытаниях керамических...
Тип: Изобретение
Номер охранного документа: 0002720738
Дата охранного документа: 13.05.2020
20.05.2020
№220.018.1e30

Способ изготовления изделий из эпоксидно-керамического материала

Изобретение относится к технологии изготовления крупногабаритных сердечников для формования керамических заготовок (либо модели для изготовления пористых форм) из эпоксидно-керамического материала. Способ включает нанесение на металлический каркас изделия внутреннего слоя эпоксидной смолы с...
Тип: Изобретение
Номер охранного документа: 0002721051
Дата охранного документа: 15.05.2020
21.06.2020
№220.018.28d7

Оснастка для формования крупногабаритных изделий из композиционного материала

Изобретение относится к авиационной и аэрокосмической технике, а именно к оснасткам для изготовления крупногабаритных корпусных деталей из полимерных композиционных материалов для отсеков космических кораблей, и может быть использовано при изготовлении замкнутых конструкций оболочечного типа....
Тип: Изобретение
Номер охранного документа: 0002723879
Дата охранного документа: 17.06.2020
31.07.2020
№220.018.3a3b

Способ изготовления термостойкой керамики

Изобретение относится к области технической керамики и может быть использовано для изготовления огнеупорных форсунок, сопел, втулок для распыления металлических расплавов, дозаторов для непрерывной разливки сталей, тиглей для индукционной плавки драгметаллов и промышленных сплавов, деталей,...
Тип: Изобретение
Номер охранного документа: 0002728431
Дата охранного документа: 29.07.2020
12.04.2023
№223.018.49ae

Способ ультразвукового неразрушающего контроля качества изделий из стеклопластиков

Использование: для ультразвукового неразрушающего контроля качества изделий из стеклопластиков. Сущность изобретения заключается в том, что выполняют излучение импульсов ультразвуковых колебаний излучателем, прием импульсов, прошедших в изделии, приемником, измерение скорости их...
Тип: Изобретение
Номер охранного документа: 0002760512
Дата охранного документа: 25.11.2021
16.05.2023
№223.018.6362

Способ соединения керамического изделия с металлическим шпангоутом

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении сложнопрофильных керамических изделий типа обтекателей высокоскоростных летательных аппаратов различных классов. Предложен способ соединения керамического изделия с металлическим...
Тип: Изобретение
Номер охранного документа: 0002779164
Дата охранного документа: 05.09.2022
02.06.2023
№223.018.756c

Способ получения изделий из стеклокристаллического материала литийалюмосиликатного состава

Изобретение относится к производству керамических изделий радиотехнического назначения типа оболочки головного антенного обтекателя скоростных ракет. Предложен способ получения изделий из стеклокристаллического материала литийалюмосиликатного состава, который включает измельчение предварительно...
Тип: Изобретение
Номер охранного документа: 0002768554
Дата охранного документа: 24.03.2022
17.06.2023
№223.018.7ea4

Способ обезгаживания и активирования газопоглотителя в рентгеновской трубке и катод рентгеновской трубки для его осуществления

Изобретение относится к области вакуумной технологии для поддержания высокого вакуума в различных приборах, в частности к области вакуумирования металлокерамических рентгеновских трубок. Технический результат - повышение эффективности активирования геттеров в рентгеновских трубках, увеличение...
Тип: Изобретение
Номер охранного документа: 0002775545
Дата охранного документа: 04.07.2022
17.06.2023
№223.018.7fc6

Вакуумный пост для изготовления электровакуумного прибора

Изобретение относится к вакуумной технике и предназначено для изготовления и герметизации электровакуумных приборов (ЭВП). Технический результат - повышение надежности и качества откачки, вакуумирования и диффузионной сварки штенгеля ЭВП, снижение неустранимого брака, упрощение конструкции...
Тип: Изобретение
Номер охранного документа: 0002768364
Дата охранного документа: 24.03.2022
Showing 21-30 of 41 items.
01.03.2019
№219.016.cd4a

Широкополосный обтекатель

Изобретение относится к антенно-фидерным устройствам, преимущественно к широкополосным антенным обтекателям. Задачей изобретения является снижение искажений, вносимых обтекателем, в поле падающей волны в рабочем диапазоне частот. В широкополосном обтекателе, содержащем стенку из...
Тип: Изобретение
Номер охранного документа: 0002364998
Дата охранного документа: 20.08.2009
01.03.2019
№219.016.ce98

Устройство для определения диэлектрической проницаемости образца материала при воздействии внешних факторов

Изобретение относится к измерениям диэлектрической проницаемости материалов при воздействии внешних факторов, преимущественно к устройствам измерения диэлектрической проницаемости при нагреве. Устройство, содержащее излучающий генератор, передающую линейно поляризованную антенну, камеру для...
Тип: Изобретение
Номер охранного документа: 0002453856
Дата охранного документа: 20.06.2012
01.03.2019
№219.016.cefb

Широкополосная система "антенна-обтекатель"

Изобретение относится к антенно-фидерным устройствам преимущественно к широкополосным системам «антенна-обтекатель» для работы в совмещенных диапазонах. Техническим результатом является снижение пеленгационных ошибок в системе «антенна-обтекатель», работающей в совмещенных диапазонах....
Тип: Изобретение
Номер охранного документа: 0002459324
Дата охранного документа: 20.08.2012
20.05.2019
№219.017.5cf1

Широкополосная система "антенна-обтекатель"

Изобретение относится к антенно-фидерным устройствам, преимущественно к широкополосным системам «антенна-обтекатель». Широкополосная система «антенна-обтекатель» содержит пеленгующую антенну и обтекатель со стенкой из диэлектрического материала, снабженный узлом крепления к летательному...
Тип: Изобретение
Номер охранного документа: 0002688034
Дата охранного документа: 17.05.2019
24.05.2019
№219.017.5e22

Устройство для испытания колец на растяжение и способ испытания

Изобретение относится к испытательной технике и может использоваться для оценки прочностных и деформационных характеристик материала кольца из хрупких материалов, преимущественно керамических, при испытании на растяжение путем последовательного создания в двенадцати зонах растягивающих...
Тип: Изобретение
Номер охранного документа: 0002688590
Дата охранного документа: 21.05.2019
24.05.2019
№219.017.5e7a

Способ определения распределения по размерам и концентрации включений в частично прозрачных сильно рассеивающих материалах

Изобретение относится к области контрольно-измерительной техники и касается способа определения распределения по размерам и концентрации включений в частично прозрачных сильно рассеивающих материалах. Способ включает в себя получение в качестве экспериментальных данных спектральных...
Тип: Изобретение
Номер охранного документа: 0002688587
Дата охранного документа: 21.05.2019
24.05.2019
№219.017.5e83

Способ измерения удельного сопротивления материалов в полосе сверхвысоких частот и устройство для его осуществления

Изобретение относится к измерительной технике сверхвысоких частот и предназначено для измерения удельного сопротивления материалов. Сущность: в измеряемом частотном диапазоне волноводный резонатор с подвижным торцевым поршнем последовательно настраивают в резонанс на ряде фиксированных частот....
Тип: Изобретение
Номер охранного документа: 0002688579
Дата охранного документа: 21.05.2019
24.05.2019
№219.017.5f3f

Способ определения сверхвысокочастотных параметров материала в полосе частот и устройство для его осуществления

Использование: для определения сверхвысокочастотных параметров материала. Сущность изобретения заключается в том, что способ включает измерение мощности и фазы прошедшей волны между передающей и приемной антеннами без образца материала, установку образца материала на вращающую подставку в...
Тип: Изобретение
Номер охранного документа: 0002688588
Дата охранного документа: 21.05.2019
11.07.2019
№219.017.b2af

Способ определения степени черноты поверхности натурного обтекателя ракет при тепловых испытаниях и установка для его реализации

Изобретение относится к области теплофизики и касается способа определения степени черноты поверхности натурных обтекателей при тепловых испытаниях. Способ включает радиационный нагрев обтекателя, полностью соответствующего натурному обтекателю, на тепловом стенде кварцевыми галогенными лампами...
Тип: Изобретение
Номер охранного документа: 0002694115
Дата охранного документа: 09.07.2019
10.08.2019
№219.017.bdad

Способ определения предела прочности керамики при осевом растяжении

Изобретение относится к методам определения механических характеристик керамики и может быть использовано для оценки предела прочности при растяжении хрупких материалов. Сущность: осуществляют растяжение образца путем приложения к нему статической растягивающей нагрузки, измерение разрушающей...
Тип: Изобретение
Номер охранного документа: 0002696934
Дата охранного документа: 07.08.2019
+ добавить свой РИД