×
06.03.2020
220.018.099c

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ПУАССОНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области определения упругих свойств конструкционных материалов и может быть использовано для определения коэффициента Пуассона. Сущность: испытуемый материал подвергают индентированию и определяют коэффициент Пуассона, при этом используют упругий индентор в виде сферы, определяют упругие константы материала сферического индентора, производят однократное индентирование нагрузкой, находящейся в диапазоне, соответствующем измерению твердости, измеряют в процессе снятия нагрузки суммарную величину упругого восстановления упругопластического отпечатка на поверхности испытуемого материала и упругодеформированной поверхности сферического индентора в центре контакта, измеряют диаметр остаточного отпечатка на поверхности испытуемого материала, а величину коэффициента Пуассона определяют по предложенной формуле. Технический результат: создание нового способа определения коэффициента Пуассона без разрушения материала деталей. 3 табл.

Изобретение относится к области механических испытаний материалов и может быть использовано для определения коэффициента поперечной деформации (коэффициента Пуассона μ) испытуемого материала.

Известен способ определения коэффициента Пуассона (ГОСТ 1497-84, ИСО 6892-84 «Металлы. Методы испытания на растяжение"), который предусматривает вырезку из детали заготовок и последующее изготовление образцов для испытания на растяжение (сжатие). При этом коэффициент Пуассона μ определяют как отношение относительного поперечного сужения (расширения) к относительному продольному удлинению (сжатию).

Недостатком этого способа является то, что он требует изготовления специальных образцов, вырезанных из готовой детали, что очевидно, приводит к частичному или полному разрушению испытуемой детали; этот способ невозможно использовать при необходимости стопроцентного контроля деталей или малом размере контролируемых деталей. Таким образом, этот способ не позволяет оперативно и без разрушения производить определение коэффициента Пуассона.

Наиболее близким по технической сущности является способ (патент РФ №2410667, опуб. 27.01.2011. Бюл. №3) определения коэффициента Пуассона μ, включающий определения модуля Юнга Е, при этом испытуемый материал подвергают индентированию жестким индентором в виде правильной пирамиды при непрерывном вдавливании с построением диаграммы «нагрузка-перемещение индентора», по которой определяют характеристику пластичности δA, как отношение площади между ветвями нагружения-разгружения к общей площади под кривой нагружения, определяют твердость по Мейеру НМ, как отношение нагрузки к площади проекции отпечатка индентора на контактной поверхности, а величину коэффициента Пуассона μ, рассчитывают по формуле

где γ - угол между осью и боковой гранью пирамиды.

Недостатком этого способа является то, что он предусматривает индентирование жестким индентором, то есть этот способ не учитывает реально имеющиеся упругие свойства (константы) материала индентора; в то же время использованный в прототипе алмазный индентор очевидно обладает упругими свойствами и имеет модуль нормальной упругости (8,25…9,0) 105 Н/мм2 соответственно для природного или синтетического алмаза; см. например, книгу Васильева Л.А., Белых З.П. Алмазы, их свойства и применение. М.: Недра. - 1983. - 101 с). Отсутствие учета упругих свойств индентора снижает точность определения коэффициента Пуассона. Недостатком этого способа также является необходимость непрерывного вдавливания индентора и построение диаграммы «нагрузка-перемещение индентора», что требует использования специального оборудования и существенно затрудняет применение этого способа в производственных условиях и снижает его оперативность.

Таким образом, известные способы имеют низкий технический уровень, поскольку не позволяют оперативно и высокой точностью определять коэффициент Пуассона.

В этой связи важнейшей задачей является создание нового способа определения коэффициента Пуассона, который позволял бы оперативно и с высокой точностью производить определение коэффициента Пуассона.

Техническим результатом заявленного способа является создание нового способа определения коэффициента Пуассона, который позволяет повысить точность и оперативно производить определение коэффициента Пуассона.

Указанный технический результат заключается в том, что определяют модуль Юнга испытуемого материала, затем испытуемый материал подвергают индентированию и определяют коэффициент Пуассона, при этом используют упругий индентор в виде сферы, определяют упругие константы материала сферического индентора, производят однократное индентирование нагрузкой, находящейся в диапазоне, соответствующем измерению твердости, измеряют в процессе снятия нагрузки суммарную величину упругого восстановления упругопластического отпечатка на поверхности испытуемого материала и упруго деформированной поверхности сферического индентора в центре контакта, измеряют диаметр остаточного отпечатка на поверхности испытуемого материала, а величину коэффициента Пуассона определяют по формуле

где μ2 - коэффициент Пуассона испытуемого материала,

Е2 - модуль Юнга испытуемого материала (МПа),

d - диаметр остаточного отпечатка на поверхности испытуемого материала (мм),

αУ - суммарная величина упругого восстановления упругопластического отпечатка на поверхности испытуемого материала и упруго деформированной поверхности сферического индентора в центре контакта (мм),

F - нагрузка на сферический индентор (Н),

μ1 - коэффициент Пуассона материала сферического индентора,

E1 - модуль Юнга материала сферического индентора (МПа).

Существенным отличием является то, что используют реальный упругий (а не условно жесткий) индентор в виде сферы и определяют упругие свойства (константы) материала сферического индентора (модуль Юнга и коэффициент Пуассона). Учет упругих свойств (констант) материала сферического индентора позволяет повысить точность определения коэффициента Пуассона.

Существенным отличием способа является предложение производить однократное индентирование нагрузкой, находящейся в диапазоне, соответствующем измерению твердости. Это позволяет существенно сократить время проведения испытания и соответственно повысить оперативность определения коэффициента Пуассона.

Существенным отличием способа является предложение измерять в процессе снятия нагрузки суммарную величину упругого восстановления упругопластического отпечатка на поверхности испытуемого материала и упруго деформированной поверхности сферического индентора в центре контакта. Это позволяет одновременно количественно оценить упругие свойства испытуемого материала и материала сферического индентора, что также позволяет повысить точность определения коэффициента Пуассона испытуемого материала.

Существенным отличием способа является предложение измерять диаметр остаточного отпечатка на поверхности испытуемого материала.

Совокупность отличительных признаков предлагаемого способа и новые взаимосвязи, установленные авторами между ними, позволили предложить новую зависимость для определения коэффициента Пуассона испытуемого материала. Эта зависимость в новой форме устанавливает взаимосвязи между всеми существенными параметрами, определяющими величину коэффициента Пуассона испытуемого материала: модулем Юнга испытуемого материала Е2 (учитывает упругие свойства испытуемого материала), модулем Юнга E1 и коэффициентом Пуассона μ1 материала сферического индентора (учитывают упругие свойства материала сферического индентора), суммарной величиной упругого восстановления упругопластического отпечатка на поверхности испытуемого материала и упруго деформированной поверхности сферического индентора в центре контакта (этот параметр в интегральной форме характеризует упругие свойства контактирующих деталей: испытуемого материала и индентора) диаметром остаточного отпечатка d на поверхности испытуемого материала и нагрузкой F на сферический индентор. Это позволяет оперативно и с высокой точностью определять коэффициент Пуассона испытуемого материала без разрушения детали.

Способ определения коэффициента Пуассона испытуемого материала реализуется следующим образом.

Предварительно любым известным способом определяют модуль Юнга Е2 испытуемого материала. Это можно реализовать, используя справочные данные (см., например, книгу Анурьев В.И. Справочник конструктора-машиностроителя: в 3-х т. Т 1. - М.: Машиностроение, 2006. - 928 с, на стр. 51, табл.14 или книгу Марковца М.П. Определение механических свойств металлов по твердости. - М.: Машиностроение, 1979. - 191 с, на стр. 39, табл. 7 или экспериментально (например, растяжением по ГОСТ 1497-84, ИСО 6892-84. Металлы. Методы испытания на растяжение). Определяют упругие свойства (константы) материала сферического индентора (модуль Юнга E1 и коэффициент Пуассона μ1); эти параметры можно определить по справочным данным, приведенным в указанных выше справочнике конструктора машиностроителя на стр. 51, табл. 14 или в книге Марковца М.П. на стр. 38 и 39, табл. 6 и 7).

Затем в испытуемый материал однократно индентируют упругий сферический индентор нагрузкой, находящейся в диапазоне, соответствующем измерению твердости. Значение нагрузки может быть выбрано, например, согласно ГОСТ 18835-73 Металлы. Метод измерения пластической твердости или согласно ГОСТ 9012-59. ИСО 6506-81 Металлы. Метод измерение твердости по Бринеллю. В качестве индентора используют термически обработанный стальной сферический индентор с твердостью материала не менее HV8500 МПа. Диаметр индентора можно выбирать согласно рекомендациям ГОСТ 18835-73 или ГОСТ 9012-59: 2,5, 5,0 или 10 мм. В качестве нагружающего устройства можно использовать: пресс Бринелля, прибор Роквелла, ручные винтовых прессы и т.п.

Далее измеряют в процессе снятия нагрузки суммарную величину упругого восстановления αу упругопластического отпечатка на поверхности испытуемого материала и упруго деформированной поверхности сферического индентора в центре контакта. Эту операцию можно выполнить с помощью приспособления для измерения контактных деформаций (см. книгу Н.Б. Демкина, Э.В. Рыжова "Качество поверхности и контакт деталей машин" - М: Машиностроение, 1981. - 244 с, на стр. 214, рис. 5.1), снабженное индикатором часового типа (с ценой деления 1,0 мкм), которое устанавливают, например, на предметный столик пресса Бринелля. Измеряют диаметр d остаточного отпечатка на поверхности испытуемого материала. Эту операцию можно выполнить с помощью инструментального микроскопа, например, ММИ-2 (с ценой деления 5,0 мкм). Затем определяют величину коэффициента Пуассона μ2 испытуемого материала по формуле (2)

Пример. Проведена экспериментальная проверка предложенного способа.

Определение коэффициента Пуассона проводили на образцах, изготовленных из различных материалов: стали 30ХГСА, бронзы Бр. АЖ9-4, меди М2, титана ВТ3-1.

В качестве упругого сферического индентора использовали термически обработанный стальной (из стали ШХ15) шарик диаметром 5 мм.

В таблице 1 представлены упругие свойства испытанных материалов и материала сферического индентора. Эти свойства определены по справочным данным, принятым в качестве эталонных; эти данные приведены в книге Марковца М.П. Определение механических свойств металлов по твердости. - М.: Машиностроение, 1979. - 191 с, на стр. 38 и 39, табл. 6 и 7 (модуль Юнга для меди - из книги Анурьева В.И. Справочник конструктора-машиностроителя: в 3-х т. Т. 1. - М.: Машиностроение, 2006. - 928 с, на стр. 51, табл. 14).

В таблице 2 приведены результаты экспериментального определения коэффициента Пуассона испытуемого материала по предлагаемому способу. В таблице 3 сопоставлены результаты определения коэффициента Пуассона предлагаемым способом и приведенными в таблице 1 справочными данными, принятыми в качестве эталонных. Как видно из таблицы 3, при использовании предлагаемого способа погрешность определения коэффициента Пуассона по сравнению с эталонным данными не превышает (3…5)% и имеет характер двухстороннего разброса.

Таким образом, результаты экспериментальной проверки свидетельствуют о пригодности предлагаемого способа для практического использования.

Использование предлагаемого способа по сравнению с известными обеспечивает следующие преимущества.

Способ обладает достаточно высокой точностью: погрешность определения коэффициента Пуассона не превышает (3…5)% для различных черных и цветных металлов в широком диапазоне изменения упругих свойств их материалов, что для оценки коэффициента Пуассона материала деталей вполне удовлетворительно. Отметим, что погрешность при определении коэффициента Пуассона по способу-прототипу (патент РФ №2410667) может достигать 9%.

В связи с этим предлагаемый способ позволяет повысить точность определения коэффициента Пуассона без разрушения материала и может быть использован для определения коэффициента Пуассона различных черных и цветных металлов, из которых изготавливаются детали машин.

Таким образом, способ, воплощающий заявленное изобретение, предусматривает, определение модуля Юнга испытуемого материала, затем испытуемый материал подвергают индентированию и определяют коэффициент Пуассона, при этом используют упругий индентор в виде сферы, определяют упругие константы материала сферического индентора, производят однократное индентирование нагрузкой, находящейся в диапазоне, соответствующем измерению твердости, измеряют в процессе снятия нагрузки суммарную величину упругого восстановления упругопластического отпечатка на поверхности испытуемого материала и упруго деформированной поверхности сферического индентора в центре контакта, измеряют диаметр остаточного отпечатка на поверхности испытуемого материала, а величину коэффициента Пуассона определяют по предложенной формуле.

Способ предназначен для использования в промышленности для определения коэффициента Пуассона без разрушения материала деталей.


СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ПУАССОНА
Источник поступления информации: Роспатент

Showing 121-130 of 362 items.
29.05.2018
№218.016.57f7

Оптическое устройство для измерения диаметров крупногабаритных деталей

Изобретение относится к оптическим устройствам для измерения и контроля, а именно к устройствам для измерения геометрических параметров нагретых изделий, и может быть использовано при производстве обечаек. Оптическое устройство для измерения диаметров крупногабаритных деталей содержит...
Тип: Изобретение
Номер охранного документа: 0002654952
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.5972

Способ вулканизации резиновой смеси на основе натурального каучука

Изобретение относится к резинотехнической промышленности и может быть использовано для производства автомобильных шин, полимерных напольных покрытий, промышленных шлангов, транспортеров, лент, ремней, строительных материалов. Осуществляют вулканизацию резиновой смеси на основе натурального...
Тип: Изобретение
Номер охранного документа: 0002655332
Дата охранного документа: 25.05.2018
29.05.2018
№218.016.5985

Термопластичная эластомерная композиция на основе натурального каучука и поливинилхлорида

Изобретение относится к области полимерных термопластичных композиций, предназначенных для изготовления изделий с повышенным уровнем бензомаслостойкости - уплотнителей, ремней, конвейерных лент, шлангов, и деталей с повышенной озоно- и атмосферостойкостью. Композиция содержит компоненты при...
Тип: Изобретение
Номер охранного документа: 0002655345
Дата охранного документа: 25.05.2018
29.05.2018
№218.016.5992

Композиция грунтовочная

Изобретение относится к полимерной промышленности и может быть использовано в качестве грунтовки для лакокрасочного покрытия поверхностей бетона, древесины, асбоцемента, кирпича, плит ДСП, ДВП, ОСВ. Грунтовочная композиция содержит компоненты при следующем соотношении, масс.ч: сополимер эфиров...
Тип: Изобретение
Номер охранного документа: 0002655337
Дата охранного документа: 25.05.2018
09.06.2018
№218.016.5c6c

Фотополимеризующаяся композиция для формирования негорючих покрытий

Изобретение относится к фотополимеризующейся композиций, содержащей предварительно растворенный полимер, и может быть использовано для ускоренного формирования из них композиций с пониженной горючестью. Описана фотополимеризующаяся композиция для формирования негорючих покрытий, включающая...
Тип: Изобретение
Номер охранного документа: 0002655973
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d41

Гидроциклон

Изобретение относится к области разделения неоднородных жидких систем под действием центробежных сил и может быть использовано в химической, нефтехимической, микробиологической, целлюлозно-бумажной и других отраслях промышленности. Гидроциклон содержит цилиндроконический корпус, патрубки для...
Тип: Изобретение
Номер охранного документа: 0002656003
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5dba

Комплексный противостаритель для резин с повышенной стойкостью к абразивному износу

Изобретение относится к комплексным противостарителям для резин, эксплуатируемых при повышенных температурах в условиях абразивного износа, и может быть использовано в шинной и резинотехнической промышленности для обеспечения резинам сопротивления абразивному износу в течение длительного...
Тип: Изобретение
Номер охранного документа: 0002656489
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.5f66

Вулканизуемая резиновая смесь на основе фторкаучука

Изобретение относится к резиновой промышленности, в частности к резиновой смеси на основе фторкаучука, и может быть использовано для изготовления колец, прокладок и других уплотнительных деталей, работающих в агрессивных средах при повышенных температурах. Вулканизуемая резиновая смесь...
Тип: Изобретение
Номер охранного документа: 0002656496
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.5fdf

Теплозащитный материал

Изобретение относится к теплозащитным материалам на основе этиленпропилендиеновых каучуков, которые могут использоваться в авиа- и ракетостроении. Теплозащитный материал содержит этиленпропилендиеновый каучук СКЭПТ-40, вулканизующие агенты - серу и тиурам Д, ускоритель вулканизации...
Тип: Изобретение
Номер охранного документа: 0002656862
Дата охранного документа: 07.06.2018
09.06.2018
№218.016.5ff9

Теплозащитный материал

Изобретение относится к теплозащитным материалам на основе этиленпропилендиеновых каучуков, которые могут использоваться в авиа- и ракетостроении. Теплозащитный материал содержит этиленпропилендиеновый каучук СКЭПТ-40, вулканизующие агенты - серу и тиурам Д, ускоритель вулканизации...
Тип: Изобретение
Номер охранного документа: 0002656860
Дата охранного документа: 07.06.2018
Showing 11-12 of 12 items.
15.05.2023
№223.018.5b04

Способ определения предела выносливости материала цилиндрической детали при кручении

Изобретение относится к области определения прочностных свойств металлов и может быть использовано для определения предела выносливости при кручении без разрушения материала деталей, работающих в условиях нагружения переменным во времени крутящим моментом. Сущность: осуществляют измерение...
Тип: Изобретение
Номер охранного документа: 0002765340
Дата охранного документа: 28.01.2022
15.05.2023
№223.018.5b0c

Способ определения предела текучести материала цилиндрической детали при кручении

Изобретение относится к области определения предела текучести при кручении без разрушения материала деталей, работающих в условиях нагружения крутящим моментом. Сущность: осуществляют нагружение поверхности испытуемого материала посредством индентора под углом скрещивания 90° оси...
Тип: Изобретение
Номер охранного документа: 0002765342
Дата охранного документа: 28.01.2022
+ добавить свой РИД