×
05.03.2020
220.018.08e4

Результат интеллектуальной деятельности: Способ снижения структурной погрешности традиционного цифрового датчика физической величины в аналого-цифровой системе автоматического управления или контроля

Вид РИД

Изобретение

Аннотация: Предлагаемое изобретение относится к области автоматики и управления (G05), вычислительной (G06) и измерительной (G01) техники и может быть реализовано в виде новой последовательности и структуры операций преобразования сигналов датчиков различных физических величин, предназначенных для работы в современных аналого-цифровых системах автоматического управления и контроля (САУ). Технический результат: снижение структурной погрешности цифрового датчика. Изобретение представляет собой способ снижения структурной погрешности цифрового датчика физической величины (1) в аналого-цифровой системе автоматического управления или контроля, который содержит чувствительный элемент (2), выход которого подключен к входу аналого-цифрового интерфейса (3), а также выход (4) датчика, в который добавлен дополнительный астатический быстродействующий дискретный корректор (5), имеющий конечный переходный процесс, порядок астатизма на единицу больше, чем степень полинома, описывающего входной непрерывный сигнал ξ(t) чувствительного элемента (2) как функцию времени t, а относительный порядок передаточной функции дополнительного астатического быстродействующего дискретного корректора (5) равен единице. 5 ил., 1 табл.

Предлагаемое изобретение относится к области автоматики и управления (G05), вычислительной (G06) и измерительной (G01) техники и может быть реализовано в виде новой последовательности и структуры операций преобразования сигналов датчиков различных физических величин, предназначенных для работы в современных аналого-цифровых системах автоматического управления и контроля (САУ).

Наиболее распространенным элементом современных аналого-цифровых САУ являются цифровые датчики [1-18, 22-33], содержащие чувствительный элемент (ЧЭ) и аналого-цифровой интерфейс (АЦИ), преобразующий выходные сигналы чувствительного элемента в дискретные выходные сигналы цифрового датчика, которые затем вводятся в систему автоматического управления. Такие цифровые датчики реализуют известную [4,5,7,14,15,16,20,22] последовательность операций формирования дискретного сигнала из входного аналогового сигнала и используются во многих САУ [19,3,21,22,17,23,25].

Ближайшим прототипом заявляемого способа является известная последовательность преобразования входного аналогового сигнала в цифровой дискретный сигнал, описанная в монографии [Клаассен К.Б. Основы измерений. Электронные методы и приборы в измерительной технике. Москва: Постмаркет, 2002. – с. 292-294, рис. 4.15]. Известный способ реализован применительно к цифровому датчику, который содержит (фиг. 1) чувствительный элемент 2, выход которого подключен ко входу аналого-цифрового интерфейса 3, а также выход 4 датчика, причем на чувствительный элемент 2 воздействует входной непрерывный сигнал , описываемый полиномиальной функцией времени t степени r, и являющийся выходной переменной некоторого объекта управления или контроля, при этом чувствительный элемент 2 и аналого-цифровой интерфейс 3 формируют в моменты времени t = kT, на выходе аналого-цифрового интерфейса (3) запаздывающий на целое число q периодов времени Т относительно входного непрерывного сигнала чувствительного элемента (2) выходной дискретный сигнал , и фильтруют его от шумов и помех с пренебрежимо малыми ошибками [22,23,24,25].

Существенный недостаток известного способа преобразования сигнала в традиционном датчике 1 фиг. 1 состоит в том, что при его практической реализации выходной дискретный сигнал датчика имеет задержку на целое число q периодов времени Т относительно входного непрерывного сигнала чувствительного элемента 2. Это приводит к существенным динамическим ошибкам в работе САУ, использующих традиционный цифровой датчик 1 [21,23,25].

Основная задача изобретения состоит во введении в известный способ [22] операции дополнительного преобразования выходного сигнала аналого-цифрового интерфейса 3 (АЦИ), которое осуществляется в дополнительном астатическом быстродействующем дискретном корректоре 5 (АБДК), который включается между выходом АЦИ 3 и выходом датчика 4. При выполнении заявляемых требований к порядку астатизма, относительной степени и порядку дополнительного АБДК задержка сигнала на выходе 4 датчика минимизируется [26,27,28]. Это позволяет уменьшить динамическую ошибку САУ с обратной связью (фиг. 2), в которых используются традиционный цифровой датчик 1. Таким образом, в предлагаемом способе при его практической реализации снижается структурная погрешность цифрового датчика 1, что крайне важно для построения современных систем автоматического управления, а также контроля (измерения) различных физических величин.

Поставленная задача достигается тем, что в известном способе преобразования сигналов, который реализуется в традиционном цифровом датчике 1, содержащем чувствительный элемент 2, выход которого подключен ко входу аналого-цифрового интерфейса 3, а выход аналого-цифрового интерфейса 3 подключен к выходу 4 датчика, причем на чувствительный элемент 2 воздействует входной непрерывный сигнал , описываемый полиномиальной функцией времени t степени r, и являющийся выходной переменной некоторого объекта управления или контроля, а чувствительный элемент 2 и аналого-цифровой интерфейс 3 формируют в моменты времени , на выходе аналого-цифрового интерфейса (3) запаздывающий на целое число q периодов времени Т относительно входного непрерывного сигнала чувствительного элемента (2) выходной дискретный сигнал , и фильтруют его от шумов и помех с пренебрежимо малыми ошибками, предусмотрена дополнительная операция преобразования выходного сигнала аналого-цифрового интерфейса 3 до его поступления на выход 4 датчика (фиг. 2) , состоящая в том, что выходной дискретный сигнал , аналого-цифрового интерфейса 3, запаздывающий на целое число q периодов времени T относительно дискретных значений ξ1(kT) входного непрерывного сигнала чувствительного элемента 2, обрабатывают в дополнительном астатическом быстродействующем дискретном корректоре 5, включенном между выходом аналого-цифрового интерфейса 3 и выходом 4 датчика, при этом дополнительный астатический быстродействующий дискретный корректор 5 имеет порядок астатизма на единицу больше, чем степень r полинома, описывающего входной непрерывный сигнал чувствительного элемента 2 как функцию времени t, т.е. . При этом передаточная функция АБДК

(1)

имеет относительную степень равную единице, а значение порядка АБДК таково, что полином имеет корней тождественно равных единице, т.е.

, (2)

где полиномы

, . (3)

При этом коэффициенты полинома могут иметь произвольные значения, а коэффициенты полинома определяют характер переходного процесса АБДК. Поэтому, если

, , (4)

то АБДК имеет постоянное перерегулирование .

На чертеже фиг. 1 показана схема цифрового датчика-прототипа 1, а на чертеже фиг. 2 – схема его включения в типовую аналого-цифровую систему автоматического управления и контроля, которая содержит объект управления и исполнительное устройство (ОУ и ИУ), модуль реализации алгоритмов управления (МРАУ), чувствительный элемент 2 (ЧЭ), аналого-цифровой интерфейс 3 (АЦИ).

На чертеже фиг. 3 представлена схема цифрового датчика, поясняющая сущность заявляемого способа в соответствии с формулой изобретения.

На чертеже фиг. 4 показана реакция датчика на переменную = 1(0,5k), а на чертеже фиг. 5 - реакция датчика на переменную = 0,5k.

Способ снижения структурной погрешности традиционного цифрового датчика физической величины 1 в аналого-цифровой системе автоматического управления или контроля, содержащего чувствительный элемент 2, выход которого подключен ко входу аналого-цифрового интерфейса 3, а также выход 4 датчика, причем на чувствительный элемент 2 воздействует входной непрерывный сигнал , описываемый полиномиальной функцией времени t степени r и являющийся выходной переменной некоторого объекта управления или контроля, при этом чувствительный элемент 2 и аналого-цифровой интерфейс 3 формируют в моменты времени t = kT, на выходе аналого-цифрового интерфейса 3 запаздывающий на целое число q периодов времени Т относительно входного непрерывного сигнала чувствительного элемента 2 выходной дискретный сигнал , и фильтруют его от шумов и помех с пренебрежимо малыми ошибками. Выходной дискретный сигнал , аналого-цифрового интерфейса 3, запаздывающий на целое число q периодов времени T относительно дискретных значений ξ1(kT), входного непрерывного сигнала чувствительного элемента 2, обрабатывают в дополнительном астатическом быстродействующем дискретном корректоре 5, включенном между выходом аналого-цифрового интерфейса 3 и выходом 4 датчика, при этом дополнительный астатический быстродействующий дискретный корректор 5 имеет конечный переходный процесс; его порядок астатизма на единицу больше, чем степень полинома, описывающего входной непрерывный сигнал чувствительного элемента 2 как функцию времени t, а относительная степень передаточной функции астатического быстродействующего дискретного корректора равна единице.

Рассмотрим работу цифрового датчика, реализующего заявляемый способ снижения его структурной погрешности (фиг. 3).

Датчики, традиционно используемые в системах автоматического управления и контроля (САУ), обычно представляют собой совокупность чувствительного элемента (ЧЭ) и аналого-цифрового интерфейса (АЦИ), который обеспечивает сопряжение чувствительного элемента с последующими элементами САУ [19,21,22,33]. Для повышения точности преобразования после традиционного цифрового датчика 1 предлагается ввести специальную обработку сигнала в дополнительном астатическом быстродействующем дискретном корректоре (АБДК), как показано на чертеже фиг. 3.

Будем предполагать, что чувствительный элемент 2 совместно с АЦИ 3 формирует с некоторыми периодом T дискретные значения выходной величины объекта управления, являющейся входным сигналом датчика. Обычно эти значения содержат случайные шумы и помехи, поэтому в АЦИ 3 они подвергаются процедурам сглаживания, так что поступающие на вход АБДК 5 дискретные значения содержат пренебрежимо малые отклонения от значений входной величины , измеряемой датчиком (в соответствующие моменты времени).

Сглаживающие свойства АЦИ 3, который является динамической системой, характеризуются некоторыми переходными процессами [24, 25, 26]. Вследствие этого, сглаженные дискретные значения измеряемой переменной формируются на выходе АЦИ 3 с некоторой задержкой по времени τз = qT, где q ≥ 0 целое число, что приводит к возникновению ошибок датчика фиг. 1, обусловленных этой задержкой. Основной целью специальной дополнительной обработки сигнала в АБДК 5 является компенсация влияния указанной задержки по времени на точность цифрового датчика в целом. Поэтому передаточная функция АБДК 5 формируется такой, чтобы к окончанию переходного процесса в АБДК 5 выходной сигнал датчика не имел задержки по отношению ко входному сигналу чувствительного элемента 1. Тем самым устраняется структурная ошибка, обусловленная запаздыванием выходного сигнала АЦИ 3 [27, 28].

Покажем это аналитически. Известно, что если некоторый цифровой элемент порядка имеет конечную длительность переходных процессов по входному воздействию , то его передаточная функция (3) по этому воздействию имеет вид

. (5)

С другой стороны, если тот же элемент (3) по воздействию имеет порядок астатизма , то его передаточная функция (5) удовлетворяет равенству

, (6)

где V(z) – нормированный по старшей степени полином, степень которого [21, 29, 30].

Покажем, что цифровой датчик, построенный по заявляемому способу (фиг. 3), т.е. характеризующийся выражениями (1) – (4), имеет конечный переходной процесс, порядок астатизма на единицу больше степени полинома от t, описывающего входной сигнал датчика, и по окончании переходного процесса его ошибка равна нулю.

Из формулы изобретения следует, что ЧЭ 2 и АЦИ 3 цифрового датчика (фиг. 3) при всех , формируют с периодом Т и с задержкой по времени на q периодов Т дискретные значения переменной , описываемой полиномом степени r и поступающей на вход цифрового датчика. Обозначим выходной сигнал АЦИ как , ; тогда его z-изображение определяется выражением

, (7)

где – z-изображение дискретного сигнала , значения которого в моменты времени , равны дискретным значениям непрерывного сигнала степени r, поступающего на вход рассматриваемого цифрового датчика, то есть , . Поэтому z-изображение сигнала , имеет вид

, (8)

где – некоторый полином, степень которого не более r +1. Обычно степень r – известная величина, а коэффициенты – заранее неизвестны.

С выхода АЦИ 3 (см. фиг. 3) дискретные значения , поступают на вход АБДК 5 с передаточной функцией, , которая имеет вид (1). Так как ЧЭ, АЦИ и АБДК соединены последовательно, то из выражений (1) и (7) следует, что передаточная функция датчика, построенного по предлагаемому способу, имеет вид

. (9)

Из сравнения выражений (9) и (5) с очевидностью следует, что рассматриваемый цифровой датчик, действительно, имеет конечный переходной процесс, продолжительностью .

Из выражения (2) следует, что полином из (9) определяется выражением , подставим это выражение в (9):

. (10)

Используя полученную передаточную функцию (10) цифрового датчика, найдем его передаточную функцию по ошибке :

. (11)

Отсюда в соответствии с выражением (6) следует, что порядок астатизма датчика, построенного по заявляемому способу, равен , т.е. действительно, на единицу больше степени r полинома, описывающего сигнал , поступающий на вход рассматриваемого цифрового датчика.

Покажем также, что его ошибка равна нулю после окончания переходного процесса, т.е. при , где . С этой целю из выражения (11) найдем z-изображение ошибки и учтем выражение (8). В результате будем иметь

.

Отсюда, сокращая полином , выводим равенство

. (12)

В соответствии с выражениями (3) и (8) степень произведения не превышает значения . Поэтому, применяя теорему z-преобразования о предельном значении [21, 31, 32 (с. 197)] к выражению (12), получим

.

В рассматриваемом случае датчик, построенный по заявляемому способу, имеет переходной процесс конечной длительности . Поэтому его ошибка при всех равна .

Отметим также, что АБДК, описывается передаточной функцией (1), (3) или (4), которая имеет относительную степень , поэтому он является функциональным модулем, реализуемым типовыми цифровыми средствами (микроконтроллеры, сигнальные процессоры, ПЛИС-элементы и т.п.) [21, 33-35].

Численные значения порядка АБДК определяются решением уравнения (2), где полином берется в виде либо (3), либо (4). Этот выбор зависит от желаемого порядка астатизма датчика и перерегулирования ; Выбор того или иного порядка астатизма определяется степенью r полинома , который описывает сигнал , поступающий на вход датчика. Если этот сигнал может иметь различные, но постоянные значения (тогда его ), то можно полагать . В этом случае полином берется в виде (4). При этом передаточная функция датчика определяется вытекающим из (9) и (4) выражением

, , (13)

где , а желаемое перерегулирование датчика в %.

Если входной сигнал имеет и линейную составляющую (тогда его ), то необходимо полагать , а передаточную функцию датчика также брать в виде (13). Значения обычно лежат в пределах от 10% до 35% [29, 30]. При этом необходимо иметь в виду, что с уменьшением значения увеличивается порядок (сложность) АБДК в особенности при . Значения порядка АБДК при и различных значениях и q приведены в таблице 1.

Таблица 1

Порядок АБДК при vдат = 2

q
σ %
0 1 2 3
10 % 11 21 31 41
15 % 8 15 22 29
20 % 6 11 16 21
25 % 5 9 13 17
33 % 4 7 10 13

Если требуется обеспечить первый порядок астатизма (), то можно полагать значение постоянного перерегулирования любым в указанных выше пределах, но и в этом случае с увеличением значения q порядок датчика увеличивается. Минимальный порядок АБДК или .

В тех случаях, когда , полином в (1) берется в виде (3); при этом порядок АБДК также находится путем решения уравнения (2) при заданном значении q, но одним из итерационных методов [31, 35]. Перерегулирование определяется в процессе решения уравнения (2).

Рассмотрим конкретный пример построения датчика, реализующего заявляемый способ снижения его структурной погрешности. Пусть требуется найти передаточную функцию датчика (фиг. 3), который должен иметь: порядок астатизма , постоянное перерегулирование , период с, при задержке по времени в ЧЭ 2 и АЦИ 3 , т.е. при . Так как , , то по таблице 1 находим , а по формуле (13) при и получим искомую передаточную функцию датчика:

. (14)

На чертежах фиг. 4 и фиг. 5 показаны полученные в MATLAB графики изменения выходной переменной цифрового датчика (фиг. 3) с найденной передаточной функцией (14) при его входных переменных и при Т = 0,5 с. По этим рисункам легко заключить, что:

- датчик фиг. 3 имеет перерегулирование 20%;

- переходный процесс длится ровно 9 секунд, т.е. 18Т;

- ошибки датчика, несмотря на наличие запаздывания, в обоих случаях равны нулю.

Таким образом, при найденной передаточной функции (14) цифровой датчик фиг. 3, реализующий предлагаемый способ снижения структурной погрешности, имеет требуемые свойства.

Отметим также, что если период работы ЧЭ 2, АЦИ 3 и АБДК 5 будет равен не 0,5с, а 0,05с, то передаточная функция датчика по-прежнему будет определяться выражением (10), но длительность переходных процессов, аналогичных показанным на чертежах фиг. 4, фиг. 5, будет равна 0,9 с.

При использовании цифрового датчика, реализующего заявляемый способ повышения точности, запаздывание может отсутствовать, быть равным одному или нескольким периодам дискретизации, но оно должно быть определенным и не изменяться в процессе функционирования датчика. При этом с увеличением запаздывания порядок цифрового датчика, как видно из таблицы 1, возрастает.

Таким образом, предложенный способ снижения структурной погрешности традиционного цифрового датчика реализуется с помощью дополнительной операции обработки сигнала на выходе АЦИ посредством АБДК с конечной длительностью переходных процессов и соответствующим порядком астатизма. При этом запаздывание в ЧЭ и АЦИ, может быть любым, но постоянным и равным целому числу периодов дискретизации [31,32].

Полученные результаты в связи с их высокой степенью обобщения могут использоваться при разработке высокоточных цифровых датчиков различных физических величин (ускорение, давление, перемещение, температура, радиация, вес, механические деформации, электрические величины и компоненты электронных схем, структура газов, химические процессы в материалах, оптические сигналы, медицинские, магнитные и электромагнитные сенсоры и т.д.) для применения в аналого-цифровых системах автоматического управления и контроля [19, 31, 32, 34, 35].

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Авт.свид. СССР № 467386, 1975 г.

2. Авт.свид. СССР 481130, 1975 г.

3. Авт.свид. СССР 723502, 1980 г.

4. Патент СССР 208003, 1968 г.

5. Авт.свид. СССР 373724, 1973 г.

6. Авт.свид. СССР 1613864, 1990 г.

7. Авт.свид. СССР 728071, 1980 г.

8. Патент SU 1831669, 1987 г.

9. Патент SU 364956, 1973 г.

10. Патент SU 1739185, 1980 г.

11. Авт.свид. СССР 458097, 1975 г.

12. Патент SU 1081548, 1984 г.

13. Патент EP 0714038, 1995 г.

14. Патент US 9320470, 2008 г.

15. Патент US 7834795, 2009 г.

16. Патент JP 5072190, 2005 г.

17. Патент CN 103101053, 2012 г.

18. Патент US 8588887, 2013 г.

19. Tsikin I.A., Discrete-Analog Signal Processing. Publishing Radio and Communications, Moscow, 1982. 161 p. (In Russian)

20. Войтович И.Д. Интеллектуальные сенсоры: Учебное пособие /И.Д. Войтович, В.М. Корсунский. – М.: Интернет-Университет Информационных Технологий; БИНОМ. Лаборатория знаний, 2012. – 624 с.: ил., табл. – (Основы информационных технологий).

21. Гайдук А.Р., Плаксиенко Е.А. Анализ и аналитический синтез цифровых систем управления: Монография.СПб.: Издательство «Лань», 2018. 272 с. ISBN 978-5-8114-2813-7.

22. Клаассен К.Б. Основы измерений. Электронные методы и приборы в измерительной технике. Москва: Постмаркет, 2002. – С. 292-294, рис. 4.15

23. Samoylov L.K. Сlassical Method of the Account of Influence Time Delays of signals in devices of Control Systems // Izv-ya SFedU. Engineering Sciences, 2016, No. 4. pp. 40 -49.

24. Прокопенко Н.Н., Гайдук А.Р., Бугакова А.В. Переходные процессы в операционном усилителе с экспоненциальной проходной характеристикой драйвера корректирующего конденсатора // Радиотехника, 2017. № 10. С. 148-153.

25. Samoylov L.K., Denisenko D.Y., Prokopenko N.N. The Function Approximation of the Signal Delay Time in the Anti-Alias Filter of the A/D Interface of the Instrumentation and Control System. 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), Saint Petersburg, Russia, 2018, pp. 18-21. doi: 10.1109/EExPolytech.2018.8564413

26. Прокопенко Н.Н., Гайдук А.Р., Будяков П., Бутурлагин Н. The synthesis of the correction circuit of the high speed sensors of the physical quantities and current-voltage converters with the parasitic capacitance. Proceeding of Design & Test Symposium (EWDTS), 2014 East-West. Kiev, Ukraine, September 26-29, 2014.

27. Гайдук А.Р., Семенов А.В. Метод построения желаемых передаточных функций дискретных систем с высоким порядком астатизма // Изв. ЮФУ. Технические науки. Таганрог: Изд-во ТТИ ЮФУ. № 2, 2013. С. 14-19.

28. Gaiduk A.R., Stojković N.M. Formation of transfer function for control systems under implementation conditions // FACTA UNIVERSITATIS, Series: Automatic Control and Robotics. Vol. 13. № 1. 2014. pp.15-25.

29. Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования. СПб.: Профессия, 2003. 768 с

30. Ким П.Д. Теория автоматического управления. Т. 1: Линейные системы. М.: Физматлит, 2003. 288 с.

31. Гайдук А.Р. Математические методы анализа и синтеза динамических систем. Saarbrücken, Deutschland: Lap Lambert Academic Publishing, 2015. 251 c.

32. Гайдук А.Р. Непрерывные и дискретные динамические системы. М.: УМ и ИЦ «Учебная литература», 2004. 252 с.

33. Алексеенко А.Г. Основы микросхемотехники. – 3-е изд., перераб. И доп. – М.: ЮНИМЕДИАСТАЙЛ, 2002. – 448 с.

34. Волович Г.И. Схемотехника аналоговых и аналого-цифровых электронных устройств. 2-е изд., испр. – М.: Издательский дом «Додэка-XXI», 2007. – 528 с., ил.

35. Гайдук А.Р. Синтез систем автоматического управления по передаточным функциям // Автоматика и телемеханика. 1980. № 1. С. 11–16.

Способ снижения структурной погрешности цифрового датчика физической величины (1) в аналого-цифровой системе автоматического управления или контроля, содержащего чувствительный элемент (2), выход которого подключен ко входу аналого-цифрового интерфейса (3), а также выход (4) датчика, причем на чувствительный элемент (2) воздействует входной непрерывный сигнал ξ(t), описываемый полиномиальной функцией времени t и являющийся выходной переменной объекта управления или контроля, при этом чувствительный элемент (2) и аналого-цифровой интерфейс (3) формируют в моменты времени t=kT, k=q, q+1, q+2, …, на выходе аналого-цифрового интерфейса (3) запаздывающий на целое число q периодов времени T относительно входного непрерывного сигнала ξ(t), t≥0, чувствительного элемента (2) выходной дискретный сигнал ξ((k-q)T), k=q, q+1, q+2, …, и фильтруют его от шумов и помех с пренебрежимо малыми ошибками, отличающийся тем, что выходной дискретный сигнал ξ((k-q)T), k=q, q+1, q+2, …, аналого-цифрового интерфейса (3), запаздывающий на целое число q периодов времени Т относительно дискретных значений ξ(kT) входного непрерывного сигнала ξ(t) чувствительного элемента (2), обрабатывают в дополнительном астатическом быстродействующем дискретном корректоре (5), включенном между выходом аналого-цифрового интерфейса (3) и выходом (4) датчика, при этом дополнительный астатический быстродействующий дискретный корректор (5) имеет конечный переходный процесс, порядок астатизма на единицу больше, чем степень полинома, описывающего входной непрерывный сигнал ξ(t) чувствительного элемента (2) как функцию времени t, а относительный порядок передаточной функции дополнительного астатического быстродействующего дискретного корректора (5) равен единице.
Способ снижения структурной погрешности традиционного цифрового датчика физической величины в аналого-цифровой системе автоматического управления или контроля
Способ снижения структурной погрешности традиционного цифрового датчика физической величины в аналого-цифровой системе автоматического управления или контроля
Способ снижения структурной погрешности традиционного цифрового датчика физической величины в аналого-цифровой системе автоматического управления или контроля
Способ снижения структурной погрешности традиционного цифрового датчика физической величины в аналого-цифровой системе автоматического управления или контроля
Источник поступления информации: Роспатент

Showing 71-80 of 186 items.
14.12.2018
№218.016.a6e8

Быстродействующий буферный усилитель

Изобретение относится к области радиотехники. Технический результат - повышение максимальной скорости нарастания выходного напряжения и уменьшение времени установления переходного процесса в буферном усилителе (БУ) при больших импульсных входных сигналах. Для этого предложен быстродействующий...
Тип: Изобретение
Номер охранного документа: 0002674885
Дата охранного документа: 13.12.2018
26.12.2018
№218.016.ab0f

Быстродействующий операционный усилитель

Изобретение относится к области радиотехники. Технический результат: повышение скорости нарастания выходного напряжения и уменьшение времени установления переходного процесса. Для этого предложен операционный усилитель, который содержит четыре входных транзистора, первый двухполюсник,...
Тип: Изобретение
Номер охранного документа: 0002676014
Дата охранного документа: 25.12.2018
18.01.2019
№219.016.b0db

Биполярно-полевой буферный усилитель

Изобретение относится к области радиотехники и связи и может быть использовано в качестве выходного каскада для усиления быстроизменяющихся аналоговых сигналов по мощности (буферного усилителя - БУ), в структуре аналоговых микросхем различного функционального назначения, например операционных...
Тип: Изобретение
Номер охранного документа: 0002677401
Дата охранного документа: 16.01.2019
18.01.2019
№219.016.b0e7

Входной каскад быстродействующего операционного усилителя

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в различных аналоговых микросхемах. Технический результат заключается в расширении диапазона активной работы входного дифференциального каскада, повышении максимальной скорости нарастания выходного напряжения...
Тип: Изобретение
Номер охранного документа: 0002677364
Дата охранного документа: 16.01.2019
18.01.2019
№219.016.b15d

Активный rc-фильтр

Изобретение относится к области аналоговой микросхемотехники и может быть использовано в качестве устройства частотной селекции в современных системах связи и телекоммуникации. Технический результат заключается в уменьшение влияния площади усиления применяемых операционных усилителей (ОУ) на...
Тип: Изобретение
Номер охранного документа: 0002677362
Дата охранного документа: 16.01.2019
16.02.2019
№219.016.bb79

Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов. Технический результат заключается в повышении стабильности статического режима при отрицательных температурах и изменении напряжений питания, также обеспечивается...
Тип: Изобретение
Номер охранного документа: 0002679970
Дата охранного документа: 14.02.2019
26.02.2019
№219.016.c822

Способ определения драпируемости материалов

Изобретение относится к легкой промышленности и может быть использовано для определения драпируемости различных материалов для женской поясной одежды. Заявленный способ определения драпируемости материалов заключается в подготовке пробы материала в форме круга, фиксации ее между двумя дисками...
Тип: Изобретение
Номер охранного документа: 0002680611
Дата охранного документа: 25.02.2019
29.03.2019
№219.016.edf0

Быстродействующий операционный усилитель с повышенной скоростью нарастания выходного напряжения

Изобретение относится к области радиотехники. Технический результат: повышение максимальной скорости нарастания выходного напряжения и уменьшение времени установления переходного процесса. Для этого предложен быстродействующий операционный усилитель, содержащий первый (1) и второй (2) входные...
Тип: Изобретение
Номер охранного документа: 0002683160
Дата охранного документа: 26.03.2019
30.03.2019
№219.016.f921

Компенсационный стабилизатор напряжения

Изобретение относится к области вторичных источников электропитания и может быть использовано в структуре систем на кристалле (СнК). Технический результат: уменьшение амплитуды «провалов» и «всплесков» выходного напряжения компенсационного стабилизатора напряжения (КСН) при импульсных токах...
Тип: Изобретение
Номер охранного документа: 0002683249
Дата охранного документа: 27.03.2019
30.03.2019
№219.016.fa12

Способ биологической очистки сточных вод

Изобретение относится к области биотехнологии. Предложен способ биологической очистки сточных вод. Способ включает обработку воды в аэротенках, причём перед вводом воду разбавляют очищенной водой 1:3, затем вводят микроводоросли Chlorella Vulgaris, смесь аэрируют, а процесс очистки...
Тип: Изобретение
Номер охранного документа: 0002683522
Дата охранного документа: 28.03.2019
Showing 71-80 of 216 items.
27.08.2016
№216.015.505c

Биполярно-полевой операционный усилитель

Изобретение относится к области радиоэлектроники. Технический результат заключается в расширении диапазона изменения выходного напряжения до уровней, близких к напряжениям на положительной и отрицательной шинах питания. Устройство содержит: входной дифференциальный каскад, общая истоковая цепь...
Тип: Изобретение
Номер охранного документа: 0002595927
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.50b8

Биполярно-полевой операционный усилитель

Изобретение относится к области радиоэлектроники, а именно к прецизионным устройствам усиления сигналов. Технический результат - повышение коэффициента усиления дифференциального сигнала в разомкнутом состоянии ОУ до уровня 90÷100 дБ. Биполярно-полевой операционный усилитель содержит первый (1)...
Тип: Изобретение
Номер охранного документа: 0002595926
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.50ee

Быстродействующий операционный усилитель на основе "перегнутого" каскода

Изобретение относится к области радиоэлектроники в качестве быстродействующего устройства усиления сигналов. Технический результат заключается в обеспечении более высоких уровней выходного тока «перегнутого каскода», это повышает быстродействие ОУ в режиме большого сигнала, уменьшает время...
Тип: Изобретение
Номер охранного документа: 0002595923
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.64cc

Биполярно-полевой операционный усилитель

Изобретение относится к области радиоэлектроники. Технический результат - повышение коэффициента усиления разомкнутого операционного усилителя. Биполярно-полевой операционный усилитель содержит входной дифференциальный каскад, общая истоковая цепь которого связана с первой шиной источника...
Тип: Изобретение
Номер охранного документа: 0002589323
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.65ae

Биполярно-полевой операционный усилитель на основе "перегнутого" каскода

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат: уменьшение статического тока, потребляемого ОУ от источников питания (без нагрузки), и уменьшение напряжения смещения нуля. Биполярно-полевой...
Тип: Изобретение
Номер охранного документа: 0002592429
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6622

Биполярно-полевой операционный усилитель на основе "перегнутого" каскода

Изобретение относится к области радиоэлектроники, в частности усиления сигналов. Технический результат - уменьшение статического тока, потребляемого ОУ при отключенной нагрузке. Биполярно-полевой операционный усилитель на основе «перегнутого» каскода содержит входной дифференциальный каскад,...
Тип: Изобретение
Номер охранного документа: 0002592455
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.8bc2

Дифференциальный усилитель двуполярных токов

Изобретение относится к области радиотехники. Технический результат: создание энергоэкономичного устройства для усиления разности двух входных токов и подавления их синфазной составляющей. Для этого предложен дифференциальный усилитель двуполярных токов, который содержит первый и второй входы,...
Тип: Изобретение
Номер охранного документа: 0002604683
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8bfd

Rs-триггер

Изобретение относится к области вычислительной техники, автоматики, связи и может использоваться в специализированных цифровых структурах, системах автоматического управления и передачи цифровой информации. Технический результат: заключается в повышении быстродействия систем обработки...
Тип: Изобретение
Номер охранного документа: 0002604682
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8c5d

Биполярно-полевой операционный усилитель на основе "перегнутого" каскода

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат - уменьшение напряжения смещения нуля. Биполярно-полевой операционный усилитель содержит входной дифференциальный каскад, общая истоковая цепь...
Тип: Изобретение
Номер охранного документа: 0002604684
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.b3bb

Дифференциальный операционный усилитель с малым напряжением питания

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Техническим результатом является расширение диапазона изменения выходного напряжения устройства до уровней, близких к напряжениям на положительной и...
Тип: Изобретение
Номер охранного документа: 0002613842
Дата охранного документа: 21.03.2017
+ добавить свой РИД