×
29.02.2020
220.018.072a

Результат интеллектуальной деятельности: Способ переработки ильменитового концентрата

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при переработке природного титансодержащего сырья с получением диоксида титана анатазной модификации. Способ переработки ильменитового концентрата включает его вскрытие с помощью сульфатизирующего реагента с последующим отделением соединений титана от соединений железа. Вскрытие проводят в твердой фазе путем обжига концентрата с избытком сульфата аммония в качестве сульфатизирующего реагента при 360-400°С в течение 4,0-4,5 ч. Образовавшийся продукт выщелачивают водой при соотношении Т:Ж=1:5,0-5,5 с получением раствора, содержащего сульфаты железа и титана. Отделяют нерастворившийся остаток. Проводят термический гидролиз полученного раствора при 80-90°С в течение 1,5-2,0 ч. Получают диоксид титана в виде мелкокристаллического осадка модификации анатаз, который отстаивают в течение 2-3 ч, отделяют от раствора фильтрованием и сушат. После извлечения диоксида титана раствор используют для получения железного купороса. Изобретение позволяет увеличить эффективность переработки ильменитового концентрата при одновременном повышении экологической безопасности и снижении вредного воздействия на организм человека за счет уменьшения количества стадий, проведения вскрытия в твердой фазе, исключения использования серной кислоты. 3 з.п. ф-лы, 3 пр.

Изобретение относится к переработке природного титансодержащего сырья, преимущественно ильменитового концентрата, с получением диоксида титана анатазной модификации, который находит применение в лакокрасочной и целлюлозно-бумажной отраслях промышленности, в производстве пластмасс и резинотехнических изделий, в косметической и фармацевтической промышленности.

Известен способ получения технического диоксида титана, включающий разложение ильменитового концентрата концентрированной серной кислотой (концентрация H2SO4 более 92%), растворение твердых продуктов сульфатизации, восстановление катионов железа (III) в растворе металлическим титаном, очистку растворов от шлама отстаиванием с последующей контрольной фильтрацией, кристаллизацию избыточного сульфата железа (II) в виде железного купороса и очистку растворов от него, гидролиз и прокалку гидролизата (SU 986859, опубл. 1983.01.07). К недостаткам известного способа можно отнести высокие затраты, связанные с использованием «свежей» серной кислоты, расход которой на производство двуокиси титана составляет 4000-4500 кг/т целевого продукта, и необходимостью утилизации большого количества экологически небезопасных отходов.

Известен также сульфатный способ получения диоксида титана, содержащего 99,67 мас. % TiO2 и примеси в количестве: Fe - 0,07%, S<0,02% (RU 2315123, опубл. 2008.01.20), включающий переработку титансодержащего материала, преимущественно ильменита, выщелачиванием в автоклаве раствором, содержащим 400-700 г/л серной кислоты, в присутствии металлического железа в качестве восстановителя при температуре 95-120°C с получением щелока от выщелачивания, осаждение из щелока сульфата железа, экстракцию титанилсульфата растворителем, гидролиз экстрагированного титанилсульфата с последующим обжигом полученной на стадии гидролиза твердой фазы при температуре 1000°C с образованием конечного продукта в виде диоксида титана. При этом, по меньшей мере, часть рафината со стадии экстракции растворителем используют, по меньшей мере, в качестве части выщелачивающего раствора на начальной стадии выщелачивания. Известный способ не позволяет обеспечить достаточно высокую степень извлечения титана (степень его извлечения после второй стадии выщелачивания составляет 72-87%), при этом причиной заметных потерь диоксида титана является использование разбавленных растворов, которое обуславливает значительные объемы материальных потоков. Вдобавок наличие большого количества кислых стоков делает известный способ экологически небезопасным. Проведение экстракции и реэкстракции при высокой температуре, обжиг гидроксида титана при 1000°С также дают заметный вклад в увеличение его опасности для здоровья человека и окружающей среды и, кроме того, повышают его энергоемкость и обусловливают снижение эффективности.

В качестве прототипа выбран способ переработки титансодержащего материала в виде сфенового, перовскитового либо ильменитового концентрата с крупностью частиц не более 40 мкм (RU 2571904, 2015.12.27), включающий выщелачивание серной кислотой с концентрацией 600-800 г/л в присутствии восстановителя в виде железной стружки при температуре 130°С в течение 5 часов с получением суспензии, которую фильтруют с отделением твердого остатка от сернокислого раствора выщелачивания, содержащего соединения титана и железа. После этого проводят экстракционную обработку упомянутого раствора смесью, содержащей 90 об. % высокомолекулярного алифатического спирта и 10 об. % третичного амина, при температуре 20°С и отношении объемов органической и водной фазы O:B=4-6:1 на 3 противоточных ступенях с переводом 55-65 мас. % серной кислоты в органическую фазу, а соединений титана, железа и остаточного количества серной кислоты - в водную фазу. Проводят водную реэкстракцию органической фазы с получением раствора серной кислоты. Водную фазу обрабатывают постоянным электрическим током при плотности тока 0,02-0,10 А/см2 до обеспечения содержания Ti2O3 не более 5 г/л и подвергают термическому гидролизу в режиме кипения с добавлением в раствор титановых зародышей в количестве 1% по отношению TiO2 в растворе в течение 6 часов с образованием осадка гидроксида титана, который промывают водой и подвергают обжигу при 870-900°C с получением диоксида титана. Степень извлечения титана из ильменитового концентрата составила 88,1% TiO2.

Известный способ является сложным, что обусловлено его многостадийностью (выщелачивание, экстракция и реэкстракция серной кислоты, многократная фильтрация, выпаривание и кристаллизация, электролиз рафината, гидролиз, промывка и обжиг, а также нейтрализация и регенерация). Кроме того, использование концентрированной серной кислоты, содержащей 600-800 г/л H2SO4, причем нагретой до температуры 130°С, не только усложняет способ, но и делает его небезопасным для окружающей среды и здоровья рабочего персонала. Удаление избытка кислоты, которое необходимо перед стадией гидролиза сульфата титана, экстракция при отношении O:B=(4-6):1 и реэкстракция приводят к образованию больших количеств разбавленной серной кислоты, подлежащих нейтрализации и утилизации, к ее утечке в окружающую среду и неизбежным потерям, снижающим эффективность способа.

Задачей изобретения является создание экологически безопасного, при этом достаточно простого и эффективного способа переработки ильменита.

Технический результат способа заключается в увеличении эффективности способа при одновременном повышении его экологической безопасности и снижении вредного воздействия на организм человека за счет уменьшения количества стадий, осуществления без использования серной кислоты и проведения процесса вскрытия в твердой фазе.

Указанный технический результат достигают способом переработки ильменитового концентрата с получением диоксида титана, включающим его вскрытие с помощью сульфатизирующего реагента с последующим отделением соединений титана от соединений железа, в котором, в отличие от известного способа, вскрытие проводят в твердой фазе путем обжига концентрата с избытком сульфата аммония в качестве сульфатизирующего реагента при температуре 360-400° в течение 4,0-4,5 часов, образовавшийся продукт выщелачивают водой при соотношении Т:Ж=1:5,0-5,5 с получением раствора, содержащего сульфаты железа и титана, отделяют от него не растворившийся остаток, после чего путем термического гидролиза полученного раствора при температуре 80-90°С в течение 1,5-2,0 часов получают диоксид титана анатазной модификации в виде осадка, который отделяют от раствора известным методом.

Преимущественно термический гидролиз проводят в присутствии восстановителя, обеспечивающего переход трехвалентного железа в двухвалентное.

Из раствора, оставшегося после отделения диоксида титана, известным методом получают железный купорос.

Выделяющийся в газовую фазу аммиак улавливают и в виде сульфата аммония возвращают в оборот.

Способ осуществляют следующим образом.

Ильменитовый концентрат после измельчения смешивают с избытком сульфата аммония (NH4)2SO4. Полученную шихту со скоростью 2,5 град/мин нагревают до температуры в интервале 360-400°С и выдерживают при достигнутой температуре в течение 4,0-4,5 часов.

Установлено, что взаимодействие основных компонентов ильменитового концентрата с сульфатом аммония (NH4)2SO4 при обжиге в указанном интервале температур может быть представлено уравнениями (1-3):

Выделяющийся в газовую фазу аммиак может быть уловлен с помощью сатуратора и в виде сульфата аммония возвращен в оборот.

Полученный после обжига продукт в виде однородного сыпучего порошка серо-зеленоватого цвета, который, по данным рентгенофазового анализа, преимущественно содержит смесь двойного сульфата аммония и железа NH4Fe(SO4)2 и двойного сульфата аммония и титанила (NH4)2TiO(SO4)2, выщелачивают водой при соотношении Т:Ж=1:5,0-5,5 при непрерывном перемешивании в течение 30-40 минут. При этом образовавшийся в результате разложения сульфата аммония бисульфат аммония:

(NH4)2SO4→NH4HSO4+NH3

обеспечивает значение рН раствора выщелачивания, равное 2.

В этих условиях в раствор переходят сульфаты титана и железа. Затем полученную смесь фильтруют с отделением не растворившегося остатка, который, по данным рентгенофазового анализа, содержит незначительное количество не прореагировавшего ильменита, кварц и смесь оксидов и гидроксидов железа Fe2O3 и FeOOH.

Раствор выщелачивания подвергают термическому гидролизу путем нагревания до температуры 80-90°С и выдержки при достигнутой температуре в течение 1,5-2,0 часов. При нагревании происходит гидролиз сульфата титана с выделением в осадок мелкокристаллического диоксида титана модификации анатаз, который после отстаивания в течение 2-3 часов отделяют от раствора фильтрованием и высушивают.

Из оставшегося раствора известным методом может быть получен железный купорос.

В преимущественном варианте осуществления способа термический гидролиз проводят в присутствии восстановителя, который обеспечивает перевод трехвалентного железа в двухвалентное, что способствует повышению чистоты целевого продукта и белизны получаемого титанового пигмента за счет снижения содержания в нем железа с 3,2 до 1,6%, в пересчете на элемент.

В качестве восстановителя в раствор вводят расчетные количества щавелевой кислоты либо раствора сернистокислого натрия с добавлением серной кислоты, необходимой для создания рН=2.

Примеры конкретного осуществления способа

Пример 1

5 г ильменитового концентрата, содержащего 44,0% TiO2, 30,8% FeO и 14,3% Fe2O3, смешивали с 24,5 г сульфата аммония (NH4)2SO4, нагревали полученную шихту со скоростью 2,5 град/мин до температуры 360°С и выдерживали при этой температуре в течение 4 ч. Получили 22 г продукта в виде однородного сыпучего порошка серо-зеленоватого цвета, содержащего смесь двойного сульфата аммония и железа NH4Fe(SO4)2 и двойного сульфата аммония и титанила (NH4)2TiO(SO4)2.

К продукту, полученному в результате вскрытия ильменитового концентрата, приливали воду при соотношении Т:Ж=1:5 (на 22 г продукта 110 мл воды) и тщательно перемешивали в течение 30 мин. Затем полученную смесь фильтровали с получением раствора выщелачивания, рН которого равен 2, и нерастворимого осадка, по данным рентгенофазового анализа, включающего незначительное количество не прореагировавшего ильменита, кварц и смесь оксидов и гидроксидов железа Fe2O3 и FeOOH.

По данным атомно-абсорбционного анализа, концентрация титана в растворе составила 11,28 г/л, железа - 13,52 г/л. Выход титана и железа в раствор при водном выщелачивании составил соответственно 94,0 и 85,0%. Раствор выщелачивания объемом 0,11 л подвергали термическому гидролизу путем нагревания до температуры 90°C с выдержкой при достигнутой температуре в течение 1,5 ч. При нагревании раствор мутнел, постепенно образовывался белый мелкокристаллический осадок. После охлаждения и отстаивания в течение 3 часов смесь фильтровали. Масса отфильтрованного и высушенного осадка, который представляет собой диоксид титана анатазной модификации, составила 1,98 г. Степень извлечения титана из ильменитового концентрата составила 90%, чистота полученного Ti2 - 84,9%. Содержание примеси железа в расчете на Fe2O3 - 9,2%.9 (в пересчете на элемент - 3,2%).

В этом примере гидролиз сульфата титана осуществляли без добавления в раствор восстановителя. В результате осадок диоксида титана имел коричневатый оттенок из-за сорбированных частиц соединений трехвалентного железа.

Пример 2

Ильменитовый концентрат обрабатывали сульфатом аммония при температуре 400°С в течение 4,5 часов. Дальнейший процесс осуществляли аналогично примеру 1, за исключением стадии термического гидролиза, который проводили в присутствии восстановителя для перевода Fe(III) в Fe(II). К 0,11 л раствора, содержащего 11,28 г/л титана и 13,52 г/л железа в пересчете на элемент, добавляли восстановитель - 3 г щавелевой кислоты. Раствор нагревали до температуры 80°С и выдерживали при этой температуре в течение 2 ч. При нагревании раствор мутнел и постепенно образовывался белый мелкокристаллический осадок. После охлаждения и отстаивания в течение 2 ч реакционную смесь фильтровали. Масса отфильтрованного и высушенного осадка, который представляет собой диоксид титана анатазной модификации, составила 1,97 г. Степень извлечения титана из ильменитового концентрата - 89,5%. Чистота полученного TiO2 - 96,9%, цвет белый. Содержание примеси железа в расчете на элемент - 2,3%.

Пример 3

Процесс осуществляли аналогично примеру 2, но вместо щавелевой кислоты к 0,11 л раствора, содержащего 11,28 г/л титана и 13,52 г/л железа, добавляли 3 г сернистокислого натрия и 1 мл серной кислоты для подкисления раствора до рН=2. В результате после фильтрации и высушивания получен осадок диоксида титана анатазной модификации массой 1,97 г. Степень извлечения титана из ильменитового концентрата составила 89,5%. Чистота полученного TiO2 - 98,2%, цвет белый. Содержание примеси железа в расчете на элемент - 1,6%.

Источник поступления информации: Роспатент

Showing 71-80 of 125 items.
03.03.2019
№219.016.d237

Сорбционный материал для селективного извлечения радионуклидов стронция из сложных по ионному составу растворов и способ извлечения радионуклидов стронция с его помощью

Группа изобретений относится к сорбционным материалам и способам сорбционного извлечения радионуклидов стронция из многокомпонентных растворов и может найти применение для очистки сложных по ионному составу растворов и водных сред. Сорбционный материал для селективного извлечения радионуклидов...
Тип: Изобретение
Номер охранного документа: 0002680964
Дата охранного документа: 01.03.2019
03.03.2019
№219.016.d289

Способ получения гидрофобных материалов

Изобретение относится к способам получения материалов с гидрофобными свойствами и может быть использовано в производстве строительных материалов и для получения гидрофобных сорбентов на основе природных алюмосиликатов для очистки жидких сред. Способ предусматривает термообработку исходного...
Тип: Изобретение
Номер охранного документа: 0002681017
Дата охранного документа: 01.03.2019
14.03.2019
№219.016.df31

Способ изготовления объёмных композиционных панелей

Изобретение относится к серийному изготовлению объемных крупногабаритных композиционных панелей и может быть использовано в производстве панелей с многоуровневой поверхностью с выступающими и утопленными площадками различной формы и с различным рельефом поверхности, предназначенных для...
Тип: Изобретение
Номер охранного документа: 0002681814
Дата охранного документа: 12.03.2019
08.04.2019
№219.016.fe65

Способ изготовления слоистых стеклометаллокомпозитов

Изобретение относится к способу получения слоистого стеклометаллокомпозита. Способ включает формирование стеклометаллопакета путем укладки чередующихся пластин из алюминия или его сплава, предварительно выдержанных в течение 5-10 минут в расплаве стекла с температурой стеклования 450-550°С,...
Тип: Изобретение
Номер охранного документа: 0002684255
Дата охранного документа: 04.04.2019
16.05.2019
№219.017.520d

Способ очистки нефтесодержащих вод и устройство для его осуществления

Группа изобретений относится к очистке нефтесодержащих вод и может найти применение для очистки сточных вод промышленных предприятий, деятельность которых связана с использованием нефтесодержащих жидкостей, нефтебаз, АЗС, нефтедобывающих платформ, а также судовых льяльных вод. Способ очистки...
Тип: Изобретение
Номер охранного документа: 0002687461
Дата охранного документа: 13.05.2019
18.05.2019
№219.017.53c9

Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства

Изобретение относится к медицине, в частности к рентгенологии, и может быть использовано в качестве рентгеноконтрастного средства при рентгенологических исследованиях различных органов. Способ включает осаждение магнетита FeO из раствора, содержащего соли железа (II) и железа (III),...
Тип: Изобретение
Номер охранного документа: 0002687748
Дата охранного документа: 16.05.2019
20.05.2019
№219.017.5c3e

Способ получения сорбционного материала для сбора нефти и нефтепродуктов

Изобретение относится к материалам для сорбции нефтепродуктов и может быть использовано для ликвидации аварийных разливов нефти и нефтепродуктов на водной поверхности природных и искусственных водоемов, для очистки сточных вод. Способ включает изготовление полипропиленового волокна методом...
Тип: Изобретение
Номер охранного документа: 0002687913
Дата охранного документа: 16.05.2019
04.06.2019
№219.017.72af

Способ получения композитного материала, обладающего фотокаталитическими свойствами

Изобретение касается функциональных полимерных композиционных материалов, содержащих частицы металлов и/или оксидов металлов, и более конкретно, относится к способам получения гибридных композитных материалов, содержащих диоксид титана в полимерной матрице и обладающих выраженными...
Тип: Изобретение
Номер охранного документа: 0002690378
Дата охранного документа: 03.06.2019
08.06.2019
№219.017.75ac

Способ получения борсодержащего биоактивного стекла

Изобретение относится к медицине, а именно к способу получения борсодержащего биоактивного стекла, которое может быть использовано в травматологии, ортопедии, челюстно-лицевой хирургии для создания на имплантатах биоактивного покрытия. Способ включает в себя смешение олеата кальция, олеата...
Тип: Изобретение
Номер охранного документа: 0002690854
Дата охранного документа: 06.06.2019
19.06.2019
№219.017.83cc

Металлооксидный электрод для потенциометрических измерений и способ его изготовления

Изобретение относится к металлооксидному электроду для потенциометрических измерений, содержащему титановую основу с покрытием из оксидов титана, сформированным методом плазменно-электролитического оксидирования. Электрод характеризуется тем, что внешний слой покрытия толщиной 1 мкм...
Тип: Изобретение
Номер охранного документа: 0002691661
Дата охранного документа: 17.06.2019
Showing 31-32 of 32 items.
17.06.2023
№223.018.7dc0

Способ лечения аденокарциномы эрлиха методом лучевой терапии

Изобретение относится к области медицины, а именно онкологии и лучевой терапии, и может быть использовано для лечения аденокарциномы Эрлиха методом лучевой терапии. Проводят локальное облучение новообразований тормозным излучением мощностью 6 МэВ суммарной очаговой дозой 20 Гр с предварительным...
Тип: Изобретение
Номер охранного документа: 0002781902
Дата охранного документа: 19.10.2022
17.06.2023
№223.018.80d7

Способ получения биостекла, легированного диоксидом циркония

Изобретение относится к способам получения биоактивного стекла, которое используется в медицине, в частности в травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии для восстановления функциональной целостности костной ткани. Предложен способ получения...
Тип: Изобретение
Номер охранного документа: 0002765471
Дата охранного документа: 31.01.2022
+ добавить свой РИД