×
28.02.2020
220.018.06b4

Результат интеллектуальной деятельности: Универсальная гелиотермоэлектростанция

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплоэлектроэнергетике и может быть использовано для утилизации тепловой энергии природных источников, а именно для прямой трансформации солнечной энергии в электрическую в различных условиях. Гелиотермоэлектростанция содержит прямоугольную плоскость, собранную из прямоугольных секций, каждая из которых представляет собой фототеплотрубнотермоэлектрический преобразователь, покрытый гидроизоляционной пленкой, внутри которой помещены фотоэлемент, присоединенный своей тыльной стороной к теплотрубному теплообменнику, выполненному в форме прямоугольного корпуса, крышка и днище которого покрыты изнутри решеткой, выполненной из полос капиллярного материала, частично заполненного рабочей жидкостью, в полости корпуса решетки крышки и днища соединены между собой вертикальными фитилями, также частично заполненными рабочей жидкостью и покрытыми цилиндрическим кожухами с треугольными прорезями, выполненными на их верхних и нижних торцах и прикрепленными к крышке и днищу корпуса. Изобретение обеспечивает эффективности универсальной гелиотермоэлектростанции 7 ил.

Предлагаемое изобретение относится к теплоэлектроэнергетике и может быть использовано для утилизации тепловой энергии природных источников, а именно, для прямой трансформации солнечной энергии в электрическую в различных условиях.

Известна теплотрубная гелиотермоэлектростанция, включающая поддон с отверстием в днище, закрытый сверху крышкой, выполненной из материала с высокой тепловодностью и покрытой фотоэлементами, внутренняя сторона которой покрыта решеткой, выполненной из полос пористого материала, при этом отверстие поддона соединено с верхним торцом вертикальной трубы, нижний торец которой заглушен, выполненной из материала с высокой тепловодностью, погруженной в грунт на глубину Н, в центре которой помещена подъемная труба, заполненная вышеупомянутым пористым материалом, верхний и нижний торцы подъемной трубы отступают от нижнего торца вертикальной трубы и внутренней поверхности крышки поддона на расстояние ∆, образуя щели, пространство которых также заполнено пористым материалом, соприкасающимся с нижним торцом внизу и решеткой верхней крышки вверху, причем стенка вертикальной трубы выполнена с вертикальными гофрами, внутри каждого гофра размещены вертикальные пазы длиной L, в каждый из которых вставлен вертикальный термоэлектрический преобразователь, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2, спаянные на концах между собой таким образом, что их спаи согнуты под углом 900 а сами проволочные отрезки расположены параллельно друг другу, образуя П–образные ряды, нижние крайние проволочные отрезки каждой пары П–образных рядов термоэлектрических преобразователей, соединены между собой перемычками, сверху каждая пара П–образных рядов, соединены между собой через электрические конденсаторы, первый и последний из которых и фотоэлементы соединены с выходными коллекторами, накопительным блоком и потребителем [Патент РФ №2630363, МПК E 04 C2/26, 2017].

Основными недостатками известной теплотрубной гелиотермоэлектростанции являются ее жесткая привязка к определенному участку местности, что резко ограничивает диапазон ее использования и снижает эффективность.

Более близким к предлагаемому изобретению является походная гелиотермоэлектростанция, включающая ковер (плоскость), собранный из прямоугольных секций, каждая из которых представляет собой фототермоэлектрический преобразователь, покрытый гидроизоляционной пленкой, внутри которой помещены фотоэлемент, присоединенный своей тыльной стороной к наружной стороне корпуса термоэлектрического преобразователя, выполненного из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2, спаянные на концах между собой таким образом, что их спаи согнуты под углом 900 и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя параллельно ей, не касаясь ее, а сами парные проволочные отрезки расположены параллельно друг другу, образуя П–образные ряды, крайние проволочные отрезки крайних П–образных рядов термоэлектрических преобразователей и фотоэлементы через свои клеммы в каждом вертикальном ряду фототермоэлектрических преобразователей ковра соединены между собой последовательно через электрические конденсаторы, перемычки с выходными коллекторами, выходные клеммы которых, в свою очередь, соединены с накопительным блоком [Патент РФ №2622425, МПК E 04 C2/26, 2017].

Основным недостатком известной походной гелиотермоэлектростанции является невозможность использования тепла, выделяющегося из фотоэлементов при генерации электричества, что снижает ее эффективность.

Техническим результатом предлагаемого изобретения являются повышение эффективности универсальной гелиотермоэлектростанции.

Технический результат достигается универсальной гелиотермоэлектростанцией, содержащей прямоугольную плоскость, собранную из прямоугольных секций, каждая из которых представляет собой фототеплотрубнотермоэлектрический преобразователь, покрытый гидроизоляционной пленкой, внутри которой помещены фотоэлемент, соединенный перемычками с коллекторами одноименных зарядов и присоединенный своей тыльной стороной к теплотрубному теплообменнику, выполненному в форме прямоугольного корпуса, крышка и днище которого покрыты изнутри решеткой, выполненной из полос капиллярного материала, частично заполненного рабочей жидкостью, в полости корпуса решетки крышки и днища соединены между собой вертикальными фитилями, также частично заполненными рабочей жидкостью и покрытыми цилиндрическим кожухами с треугольными прорезями на их верхних и нижних торцах и прикрепленными к крышке и днищу корпуса, причем внутренняя поверхность крышки и днища корпуса теплотрубного теплообменника, покрытые решеткой, составляют зоны испарения и конденсации, соответственно, а фитили образуют зону транспорта, к наружной стороне днища теплотрубного теплообменника примыкают плоские термоэлектрические преобразователи, к внешней стороне которых прижаты радиаторы, перемычки с коллекторами одноименных зарядов плоских термоэлектрических преобразователей и фотоэлементов, в свою очередь, соединены с накопительным блоком.

На фиг. 1–7 представлена универсальная гелиотермоэлектростанция (УГТЭС): на фиг. 1, 2 – общий вид и разрез УГТЭС; на фиг. 3,4 – фототеплотрубнотермоэлектрический преобразователь (ФТТТЭП) и его разрез; на фиг. 5–7 – основные узлы ФТТТЭП.

Предлагаемая универсальная гелиотермоэлектростанция (УГТЭС) содержит плоскость 1, собранную из прямоугольных секций, каждая из которых представляет собой фототеплотрубнотермоэлектрический преобразователь (ФТТТЭП) 2, покрытый гидроизоляционной пленкой 3, внутри которой помещены фотоэлемент 4, соединенный перемычками 5 с коллекторами одноименных зарядов 6, 7 и присоединенный своей тыльной стороной к теплотрубному теплообменнику (ТТТО) 8, выполненному в форме прямоугольного корпуса 9, крышка и днище которого покрыты изнутри решеткой 10, выполненной из полос капиллярного материала, частично заполненного рабочей жидкостью, в полости корпуса 9 решетки 10 крышки и днища соединены между собой вертикальными фитилями 11, также частично заполненными рабочей жидкостью и покрытыми цилиндрическим кожухами 12 с треугольными прорезями на их верхних и нижних торцах и прикрепленными к крышке и днищу корпуса 9, причем внутренняя поверхность крышки и днища корпуса 9, покрытые решеткой 10, составляют зоны испарения и конденсации 13 и 14, соответственно, а фитили 11 образуют зону транспорта 15, к наружной стороне днища ТТТО 8 примыкают плоские термоэлектрические преобразователи (ПТЭП) 16 (например, элементы Пелтье), к внешней стороне которых прижаты радиаторы 17, перемычки 5 с коллекторами одноименных зарядов 6, 7 термоэлектрических преобразователей 16 и фотоэлементов 4, в свою очередь, соединены с накопительным блоком (на фиг. 1–7 не показан).

В основу работы предлагаемой УГТЭС положено свойство фотоэлементов 4 при воздействии на них солнечных лучей преобразовывать воспринятую солнечную энергию в электрическую и тепловую энергии [А. с. СССР №1603152, МПК F24 J2/32, 1990]. При этом использование ТТТО 8 для охлаждения фотоэлементов 4 позволяет многократно увеличить скорость процесс теплообмена по сравнению со скоростью аналогичного процесса с использованием обычных теплообменниках, что обусловлено высокими значениями коэффициента теплопередачи в процессах испарения и конденсации. [А. Н. Плановский, П. И. Николаев. Процессы и аппараты химической и нефтехимической технологии. – М.: Химия, 1987, с. 146; В. В. Харитонов и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. – Минск: Выш. школа, 1988, с.106; Тепловые трубы и теплообменники: от науки к практике. Сборник научн. трудов. М.: – 1990, с. 22]. Так как при нагреве верхних поверхностей ПТЭП 16 происходит конденсация пара рабочей жидкости в ТТТО 8 и охлаждение наружных поверхностей радиаторами 17, то на них устанавливаются разные температуры, в результате чего в ТЭП 16 появляется термоэлектричество [С.Г. Калашников. Электричество. – М: «Наука», 1970, с. 502–506]. При этом, треххслойная компоновка ФТТТЭП 2 (сверху – фотоэлемент 4, посредине – ТТТО 8, снизу – ПТЭП 16 позволяет одновременно производить съем тепла с фотоэлементов 4 с высокой скоростью и нагревать ПТЭП 16 при требуемой для них температуре также с высокой скоростью, генерируя дополнительное количество электричества.

УГТЭС работает следующим образом. Количество ФТТТЭП 2, входящих в плоскость 1, определяется в зависимости от наружных условий места установки УГТЭС (космическое или воздушное пространство, поверхность земли, воды, температуры, вида наружного грунта, снежного или ледяного покрытия) и требуемой мощности. Сборку УГТЭС осуществляют перед ее размещением, после чего плоскость 1 ориентируют на месте установки по солнечному освещению и соединяют с потребителем (на фиг.1–7 не показан). Местом установки УГТЭС могут быть: космическое или воздушное пространство, наружная поверхность грунта, снежная, ледяная или водная поверхности (на фиг. 1–7 не показаны). При этом, в зависимости от места установки в ТТТО 8 используется различные виды рабочей жидкости, а именно, в районах жаркого климата можно использовать в качестве рабочей жидкости обычную воду, в умеренных и холодных районах – водные растворы диэтиленгликоля, в воздушном и космическом пространстве – жидкий аммиак или водные растворы аммиака.

После установки УГТЭС наружная поверхность фотоэлементов 4 ФТТТЭП 2 нагревается солнечными лучами, генерируя электричество, а нижняя поверхность фотоэлементов 4 охлаждается в результате контакта с крышкой ТТТО 8 и нагревает ее, отдавая тепло, выделившееся в результате генерации электричества. При нагреве крышки корпуса 9 происходит испарение рабочей жидкости в ячейках решетки 10, находящейся в фитилях 11 и капиллярном материале решетки 10, которые транспортирует рабочую жидкость в зону испарения 13 (внутреннюю поверхность крышки корпуса 9, находящаяся в ячейках решетки 10) через треугольные прорези цилиндрических кожухов 12, в результате чего образуется пар. При этом покрытие решеткой 10, выполненной из полос капиллярного материала и образующей ячейки на внутренней поверхности крышки корпуса 9 предотвращает образование паровой пленки на ней и таким образом, интенсифицирует процесс испарения. Образовавшийся пар заполняет паровое пространство полости ТТТО 8 и конденсируется в зоне конденсации 14, а именно, в ячейках решетки 10 на внутренней поверхности днища корпуса 9, покрытой решеткой 10, что также уменьшает толщину пленки конденсата на ней и, таким образом, интенсифицирует процесс конденсации. Образовавшийся конденсат поглощается капиллярным материалом полос решетки 10, соединенной с фитилями 11 зоны транспорта 15 через треугольные прорези на нижних кромках цилиндрических кожухов 12, транспортируется фитилями 11 к крышке корпуса 9 и через треугольные прорези кожухов 12 распределяется решеткой 10 по внутренней поверхности крышки корпуса 9, после чего цикл повторяется. При этом процесс теплообмена с горячей и холодной средами протекает со скоростью многократно превышающей скорость аналогичного процесса в обычных теплообменниках, обусловленной высокими значениями коэффициента теплопередачи в процессах испарения и конденсации. Одновременно, тепло конденсации рабочей жидкости передается через днище корпуса 9 ТТТО 8 передается ПТЭП 16, нагревая их, за счет чего происходит равномерный нагрев их внутренней поверхности. Так как наружная поверхность ПТЭП 16 снабжена радиаторми 17, а снаружи температура среды значительно ниже и равна tС создается значительная разность температур между температурой наружной поверхности ТЭП 16 tП и температурой среды (tП– tС), в результате чего между ними происходит процесс теплообмена. Создаваемая разность температур между зонами нагрева и охлаждения в ПТЭП 16 вызывает в них эмиссию электронов и возникновение в них термоэлектричества. Полученное электричество в фотоэлементах 4 и термоэлектричество ПТЭП 16 через перемычки 5 и коллекторы одноименных зарядов 6, 7 (расположение перемычек 5 и коллекторов 6, 7 на фиг. 1–7 показано условно) поступает в накопительный блок и потребителю (на фиг.1–7 не показаны).

При этом, хотя в зимнее время верхняя поверхность ФТТТЭП 2 нагревается солнечными лучами меньше, чем в летнее время, в этот период нижняя поверхность ПТЭП 16 охлаждается значительно больше, чем в летнее за счет более низкой температуры поверхности грунта (снега, льда, воды) и поэтому величина разности температур (tП– tС) и генерируемого термоэлектричества в ПТЭП 16 может быть также значительной.

Величина разности электрического потенциала на токовыводах коллекторов одноименных зарядов фототеплотрубнотермоэлектрического преобразователя, сила электрического тока зависят от продолжительности и интенсивности солнечного облучения, температуры и других характеристик наружной среды, характеристик и количества фотоэлементов, рабочей жидкости в теплотрубном теплообменнике, характеристик и количества плоских термоэлектрческих преобразователей и радиаторов. Полученный электрический ток можно использовать для обслуживания различных технических устройств, а также обогрева и освещения временных жилых и производственных помещений.

Таким образом, предлагаемая универсальная гелиотермоэлектростанция обеспечивает, как в летнее, так и в зимнее время, на земле, в воздушном ил космическом пространстве утилизацию солнечной энергии, тепла и холода окружающей среды (воздушного или космического пространства, грунта, снега, льда, воды) с получением электрической энергии, которую можно использовать для обслуживания различных технических устройств, обогрева и освещения временных жилых и производственных помещений без затраты топлива, загрязнения окружающей среды, создания шумового эффекта и выделения теплового излучения, что, в конечном счете, повышает эффективность работы электростанции.

Универсальная гелиотермоэлектростанция, содержащая плоскость, собранную из прямоугольных секций, покрытых гидроизоляционной пленкой, каждая из которых состоит из фототермоэлектрического преобразователя, соединенного перемычками с коллекторами одноименных зарядов и накопительным блоком, внутри которого помещены фотоэлемент и термоэлектрический преобразователь, снабженного тепловой трубой и радиаторами, отличающаяся тем, что каждая прямоугольная секция представляет собой фототеплотрубнотермоэлектрический преобразователь, внутри которого между фотоэлементом и плоским термоэлектрическим преобразователем, помещен теплотрубный теплообменник, выполненный в форме прямоугольной плоскости, крышка и днище корпуса которой покрыты изнутри решеткой, выполненной из полос капиллярного материала, частично заполненного рабочей жидкостью, в полости корпуса решетки крышки и днища соединены между собой вертикальными фитилями, также частично заполненными рабочей жидкостью и покрытыми цилиндрическим кожухами с треугольными прорезями, выполненными на их верхних и нижних торцах и прикрепленными к крышке и днищу корпуса.
Универсальная гелиотермоэлектростанция
Универсальная гелиотермоэлектростанция
Источник поступления информации: Роспатент

Showing 141-150 of 320 items.
07.09.2018
№218.016.83ed

Быстродействующее устройство формирования уникальной последовательности, используемой при обезличивании персональных данных

Изобретение относится к области вычислительной техники. Техническим результатом является повышение уровня безопасности информационной системы персональных данных. Раскрыто быстродействующее устройство формирования уникальной последовательности для каждого субъекта информационной системы...
Тип: Изобретение
Номер охранного документа: 0002665899
Дата охранного документа: 04.09.2018
07.09.2018
№218.016.847b

Способ автоматизированного оповещения водителей транспортных средств на особо опасных участках дороги

Изобретение относится к технике управления дорожными транспортными средствами и касается обеспечения безопасности движения транспортных средств. Способ автоматизированного оповещения водителей транспортных средств на особо опасных участках дороги в том, что по краям дороги перпендикулярно...
Тип: Изобретение
Номер охранного документа: 0002666103
Дата охранного документа: 05.09.2018
07.09.2018
№218.016.84de

Способ автоматизированного определения и контроля местоположения транспортного средства на дорожном полотне с двусторонним однополосным движением

Изобретение относится к технике управления дорожно-транспортным движением и касается определения местоположения транспортных средств на дорожном полотне с двусторонним однополосным движением. Для определения местоположения всех транспортных средств, въезжающих в зону контролируемого участка...
Тип: Изобретение
Номер охранного документа: 0002666087
Дата охранного документа: 05.09.2018
03.10.2018
№218.016.8d2f

Система лучистого отопления здания

Изобретение относится к отопительным системам здания. Система лучистого отопления здания с несущими стенами и внутренними перегородками включает камеру подогрева воздуха, сборные каналы, горизонтальные подающие каналы, горизонтальные распределительные каналы, вертикальные воздуховоды,...
Тип: Изобретение
Номер охранного документа: 0002668239
Дата охранного документа: 27.09.2018
13.10.2018
№218.016.9113

Безвентиляторная градирня

Изобретение относится к теплоэнергетике и может быть использовано при воздушном охлаждении оборотной воды в градирнях ТЭЦ, АЭС и промышленных предприятий. Везвентиляторная градирня содержит вертикальную башню с водопароулавливателем, воздухозаборными окнами, резервуар для сбора охлажденной...
Тип: Изобретение
Номер охранного документа: 0002669430
Дата охранного документа: 11.10.2018
21.10.2018
№218.016.949c

Способ получения карбоксилатов олова (ii)

Изобретение относится к простому способу получения карбоксилатов олова (II) путем взаимодействия металла с окислителем в присутствии стимулирующей добавки йода в бисерной мельнице вертикального типа в уайт-спирите со стеклянным бисером в качестве перетирающего агента в массовом соотношении с...
Тип: Изобретение
Номер охранного документа: 0002670199
Дата охранного документа: 19.10.2018
01.11.2018
№218.016.98dc

Способ получения карбоксилатов олова (ii)

Изобретение относится к способу получения карбоксилатов олова (II) путем взаимодействия металла, его диоксида и карбоновой кислоты в присутствии органического растворителя и стимулирующей добавки йода в бисерной мельнице вертикального типа со стеклянным бисером в качестве перетирающего агента,...
Тип: Изобретение
Номер охранного документа: 0002671197
Дата охранного документа: 30.10.2018
03.11.2018
№218.016.99f9

Продувочная свеча

Изобретение относится к газовой промышленности и предназначено для продувки газопроводов. Технической задачей предлагаемого изобретения является снижение шумового воздействия на окружающую среду при продувке газопроводов посредством продувочной свечи за счет выполнения кривизны криволинейных...
Тип: Изобретение
Номер охранного документа: 0002671541
Дата охранного документа: 01.11.2018
21.11.2018
№218.016.9ebe

Способ определения параметров динамического догружения в растянутых железобетонных элементах конструктивных систем

Предлагаемое изобретение относится к области строительства, в частности к испытаниям растянутых элементов конструкций железобетонных стержневых систем. Способ предусматривает устройство в среднем поперечном сечении испытываемого элемента пазов глубиной и шириной до 0,1 h высоты сечения. В зоне...
Тип: Изобретение
Номер охранного документа: 0002672771
Дата охранного документа: 19.11.2018
21.11.2018
№218.016.9ec8

Звукоизолирующее окно

Изобретение относится к строительству, а именно к конструкции звукоизолирующего окна, используемого в различных зданиях и сооружениях. Технический результат по обеспечению комфортных условий внутри здания или сооружения с сохранением звукоизолирующих параметров окна достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002672735
Дата охранного документа: 19.11.2018
Showing 141-150 of 221 items.
04.07.2018
№218.016.6a8d

Термоэлектрическое оребрение для трубопровода

Изобретение относится к теплоэлектроэнергетике и может быть использовано для получения электрической энергии в процессе транспортирования в трубах различных теплоносителей. Термоэлектрическое оребрение содержит участок трубопровода, на котором расположены по всей его длине продольные ребра,...
Тип: Изобретение
Номер охранного документа: 0002659508
Дата охранного документа: 02.07.2018
28.08.2018
№218.016.7fcc

Вытяжное устройство для оголовка купола

Изобретение относится к области вентиляции и может быть использовано для естественной и искусственной вентиляции различных зданий, например культовых сооружений. Вытяжное устройство для оголовка купола содержит оголовок, помещенный вверху купола, состоящий из вертикального ограждения с...
Тип: Изобретение
Номер охранного документа: 0002664950
Дата охранного документа: 23.08.2018
03.10.2018
№218.016.8d2f

Система лучистого отопления здания

Изобретение относится к отопительным системам здания. Система лучистого отопления здания с несущими стенами и внутренними перегородками включает камеру подогрева воздуха, сборные каналы, горизонтальные подающие каналы, горизонтальные распределительные каналы, вертикальные воздуховоды,...
Тип: Изобретение
Номер охранного документа: 0002668239
Дата охранного документа: 27.09.2018
11.10.2018
№218.016.9000

Ингибитор коррозии нефтяных труб и способ его получения

Изобретение относится к защите нефтяных труб от кислотной коррозии и может применяться при добыче нефти или природного газа. Ингибитор коррозии получен экстракцией никотина и сопутствующих веществ из отходов табака водным раствором бензойной кислоты и состоит из соли никотина и бензойной...
Тип: Изобретение
Номер охранного документа: 0002669137
Дата охранного документа: 08.10.2018
13.10.2018
№218.016.9113

Безвентиляторная градирня

Изобретение относится к теплоэнергетике и может быть использовано при воздушном охлаждении оборотной воды в градирнях ТЭЦ, АЭС и промышленных предприятий. Везвентиляторная градирня содержит вертикальную башню с водопароулавливателем, воздухозаборными окнами, резервуар для сбора охлажденной...
Тип: Изобретение
Номер охранного документа: 0002669430
Дата охранного документа: 11.10.2018
26.10.2018
№218.016.9630

Кольцевой капиллярный конденсатор

Изобретение относится к энергомашиностроению, а именно к теплообменной аппаратуре, и может быть использовано для конденсации отработанного пара без использования хладоагента. Технический результат - повышение надежности и эффективности работы кольцевого капиллярного конденсатора. Кольцевой...
Тип: Изобретение
Номер охранного документа: 0002670728
Дата охранного документа: 24.10.2018
01.11.2018
№218.016.9843

Секционный капиллярный конденсатор

Изобретение относится к энергомашиностроению, а именно к теплообменной аппаратуре, и может быть использовано для конденсации отработанного пара без использования хладоагента. Технический результат - повышение надежности и эффективности работы секционного капиллярного конденсатора. Секционный...
Тип: Изобретение
Номер охранного документа: 0002671288
Дата охранного документа: 30.10.2018
03.11.2018
№218.016.99f9

Продувочная свеча

Изобретение относится к газовой промышленности и предназначено для продувки газопроводов. Технической задачей предлагаемого изобретения является снижение шумового воздействия на окружающую среду при продувке газопроводов посредством продувочной свечи за счет выполнения кривизны криволинейных...
Тип: Изобретение
Номер охранного документа: 0002671541
Дата охранного документа: 01.11.2018
14.11.2018
№218.016.9d40

Вихревой теплообменный элемент

Изобретение относится к теплотехнике и может быть использовано в теплообменниках, применяемых в различных отраслях техники, в частности в регенеративных теплообменниках газотурбинных установок реакторостроения. В вихревом теплообменном элементе, содержащем соосно расположенные одна в другой...
Тип: Изобретение
Номер охранного документа: 0002672229
Дата охранного документа: 12.11.2018
21.11.2018
№218.016.9ec8

Звукоизолирующее окно

Изобретение относится к строительству, а именно к конструкции звукоизолирующего окна, используемого в различных зданиях и сооружениях. Технический результат по обеспечению комфортных условий внутри здания или сооружения с сохранением звукоизолирующих параметров окна достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002672735
Дата охранного документа: 19.11.2018
+ добавить свой РИД