×
27.02.2020
220.018.0655

Результат интеллектуальной деятельности: Способ гидравлического разрыва пласта

Вид РИД

Изобретение

№ охранного документа
0002715115
Дата охранного документа
25.02.2020
Аннотация: Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при проведении гидравлического разрыва продуктивного пласта (ГРП) с использованием расклинивающего наполнителя в скважинах со слабосцементированной призабойной зоной при наличии близлежащих обводнённых пропластков. Способ гидравлического разрыва пласта включает закачку в пласт жидкости с добавлением расклинивающего наполнителя - полидициклопентадиена (ПДЦПД). Перед проведением гидроразрыва в скважине определяют текущую нефтенасыщенность пласта, в зоне с максимальной нефтенасыщенностью проводят избирательную перфорацию пласта, определяют расстояние от интервала перфорации до обводнённого пропластка. При расстоянии от нижнего интервала перфорации до нижнего обводнённого пропластка, равном 3 м и менее, перед закачкой жидкости с ПДЦПД последовательно закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля с утяжеленным проппантом, массой, равной 1/5 части от общей массы закачки расклинивающего наполнителя, и сшитый гель в объёме, равном 3/5 части от общего объёма сшитого геля, закачку жидкости с ПДЦПД осуществляют по массе ПДЦПД, равной 3/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют товарную нефть с плотностью меньше, чем плотность ПДЦПД, а по завершении крепления трещины разрыва закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля со смолопокрытым проппантом по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55-60 °С. При расстоянии от верхнего интервала перфорации до верхнего обводнённого пропластка, равном 3 м и менее, перед закачкой жидкости с ПДЦПД последовательно закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля с облегчённым проппантом, массой, равной 1/5 части от общей массы закачки расклинивающего наполнителя, и сшитый гель в объёме, равном 3/5 части от общего объёма сшитого геля, закачку жидкости с ПДЦПД осуществляют по массе ПДЦПД, равной 3/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют техническую воду с плотностью больше, чем плотность ПДЦПД, а по завершении крепления трещины разрыва закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля со смолопокрытым проппантом по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55-60 °С. При расстоянии от нижнего и/или от верхнего интервалов перфорации до соответствующих обводнённых пропластков, равном более 3 м, перед закачкой жидкости с ПДЦПД закачивают линейный гель в объёме, равном 4/5 части от общего объёма линейного геля, закачку жидкости с ПДЦПД осуществляют по массе, равной 4/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют техническую воду с плотностью, равной плотности ПДЦПД, а по завершении крепления трещины разрыва закачивают линейный гель в объёме, равном 1/5 части от общего объёма линейного геля со смолопокрытым проппантом, по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55-60 °С. Способ обеспечивает повышение нефтеотдачи пласта после выполнения ГРП, снижение риска неконтролируемого развития трещины ГРП по высоте, повышение надёжности крепления трещины разрыва ПДЦПД, повышение эффективности ГРП в слабосцементированных породах продуктивного пласта. 3 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при проведении гидравлического разрыва продуктивного пласта (ГРП) с использованием расклинивающего наполнителя в скважинах со слабосцементированной призабойной зоной при наличии близлежащих обводнённых пропластков.

Известен способ гидравлического разрыва пласта в скважине (патент RU № 2485306 МПК Е21В 43/26, опубл. 20.06.2013 в бюл. № 17), включающий перфорацию стенок скважины в интервале пласта каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны труб с пакером, посадку пакера над кровлей перфорированного продуктивного пласта, закачку в подпакерную зону гелированной жидкости разрыва для проведения ГРП, создание в подпакерной зоне давления ГРП и продавку в образовавшуюся трещину пласта гелированной жидкости разрыва с крепителем трещин. Перед проведением ГРП колонну труб заполняют технологической жидкостью, определяют общий объем гелированной жидкости разрыва по аналитическому выражению. Затем производят ГРП. При этом сначала закачивают гелированную жидкость разрыва без добавления крепителя для создания трещины. Затем закачивают оставшийся объем гелированной жидкости разрыва с крепителем трещин. В качестве крепителя трещин применяют сверхлегкий проппант фракции 20/40 меш, постепенно увеличивая концентрацию проппанта в жидкости разрыва от 200 кг/м3 до 1000 кг/м3. В качестве гелированной жидкости разрыва применяют линейный гель с одновременным добавлением боратного сшивателя и деструктора. Боратный сшиватель вводят в линейный гель с концентрацией от 2,0 до 4,0 л/м3, достаточной для полной сшивки гелированной жидкости разрыва у зоны перфорации скважины. Деструктор вводят с постепенным повышением концентрации на 0,15 кг/м3, начиная с концентрации 1,0 кг/м3. После завершения закачки гелированной жидкости разрыва с крепителем трещин в колонну труб производят их продавку в пласт технологической жидкостью. Производят выдержку в течение времени, необходимого для спада давления закачки на 70–80 % от давления продавки в пласт гелированной жидкости разрыва с крепителем трещин, распакеровывают пакер, извлекают его и колонну труб на поверхность.

Также известен способ гидравлического разрыва пласта в скважине (патент RU № 2522366, МПК Е21В 43/267, опубл. 10.07.2014 в бюл. № 19), включающий перфорацию в интервале пласта, спуск колонны труб с пакером, посадку пакера, закачку в подпакерную зону гелированной жидкости разрыва, заполнение колонны технологической жидкостью, определение общего объема гелированной жидкости разрыва, создание в подпакерной зоне давления гидроразрыва пласта и продавку в образовавшуюся трещину пласта гелированной жидкости разрыва с проппантом, выдержку в течение времени, необходимого для спада давления на 70 %, распакеровку и извлечение пакера с колонной труб из скважины. После определения общего объема гелированной жидкости разрыва закачивают в скважину по колонне труб гелированную жидкость разрыва - линейный гель - до образования трещин разрыва в пласте, оставшийся объем гелированной жидкости разрыва после образования трещин разрыва в пласте разделяют на две части: сшитый гель и линейный гель, циклически производят поочередную закачку сначала линейного, а затем сшитого геля с добавлением проппанта в 3–5 циклов. Причем линейный гель закачивают равными порциями с расходом 4–6 м3/мин и концентрацией проппанта 400 кг/м3, а сшитый гель закачивают со ступенчатым увеличением объема закачки от 3 до 7 м3 с расходом 1–2 м3/мин и концентрацией проппанта 1200 кг/м3. При этом в последние порции линейного и сшитого гелей с проппантом добавляют стекловолокно в количестве 1,5 % от веса проппанта в каждой из последних порций линейного и сшитого гелей.

Недостатками способов являются:

- высокая стоимость проведения операции ГРП связанная с необходимостью применения дорогостоящей химии для приготовления жидкости разрыва;

- технологическая сложность осуществления ГРП связанная с необходимостью чередовать стадии закачки сшитого и линейного гелей с одновременным изменением расхода закачки;

- высокий риск неконтролируемого развития трещины ГРП по высоте и получения

обводнения скважины при наличии выше или нижележащего водонасыщенного пласта.

Наиболее близким по технической сущности является способ гидравлического разрыва пласта (патент RU № 2386025, МПК Е21В 43/267, опубл. 10.04.2010 в бюл. № 10), включающий закачку в пласт жидкости с добавлением в жидкость расклинивающего наполнителя – полидициклопентадиена (ПДЦПД). Способ обеспечивает более низкое трение при закачивании наполнителя в скважину при сохранении хорошей проницаемости трещины.

Недостатками способа являются:

- низкая надёжность реализации способа, обусловленная низким качеством крепления ПДЦПД, обусловленная тем, что закачка ПДЦПД производится без учета плотности жидкости носителя, что приводит к неравномерному заполнению трещины разрыва ПДЦПД и частичному смыканию трещины разрыва;

- высокий риск неконтролируемого развития трещины ГРП по высоте (вверх, вниз) и получение обводнения скважины после ГРП при наличии обводнённых пропластков выше и/или ниже продуктивного пласта;

- низкая нефтеотдача продуктивного пласта после выполнения ГРП, вследствие того, что не учитывается текущая нефтенасыщенность обрабатываемого пласта;

- низкая эффективность способа, обусловленная коротким эффектом нефтеотдачи (до одного месяца) от проведения ГРП в слабосцементированных породах продуктивного пласта, так как закачанный в процессе ГРП ПДЦПД при последующем освоении или эксплуатации скважины постепенно выносится из призабойной зоны скважины и трещина гидроразрыва в призабойной зоне скважины «схлопывается».

Техническими задачами изобретения являются повышение надёжности крепления трещины разрыва, снижение риска неконтролируемого развития трещины ГРП по высоте, снижение обводненности продукции скважины, повышение нефтеотдачи после выполнения ГРП, а также повышение эффективности реализации способа в слабосцементированных породах продуктивного пласта.

Технические задачи решаются способом гидравлического разрыва пласта, включающим закачку в пласт жидкости с добавлением расклинивающего наполнителя – полидициклопентадиена (ПДЦПД).

Новым является то, что перед проведением гидроразрыва в скважине определяют текущую нефтенасыщенность пласта, в зоне с максимальной нефтенасыщенностью проводят избирательную перфорацию пласта, определяют расстояние от интервала перфорации до обводнённого пропластка: при расстоянии от нижнего интервала перфорации до нижнего обводнённого пропластка, равном 3 м и менее, перед закачкой жидкости с ПДЦПД последовательно закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля с утяжеленным проппантом массой, равной 1/5 части от общей массы закачки расклинивающего наполнителя и сшитый гель в объёме, равном 3/5 части от общего объёма сшитого геля, закачку жидкости с ПДЦПД осуществляют по массе ПДЦПД, равной 3/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют товарную нефть с плотностью меньше, чем плотность ПДЦПД, а по завершении крепления трещины разрыва закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля со смолопокрытым проппантом по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55–60 °С, при расстоянии от верхнего интервала перфорации до верхнего обводнённого пропластка, равном 3 м и менее перед закачкой жидкости с ПДЦПД последовательно закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля с облегчённым проппантом массой, равной 1/5 части от общей массы закачки расклинивающего наполнителя и сшитый гель в объёме, равном 3/5 части от общего объёма сшитого геля, закачку жидкости с ПДЦПД осуществляют по массе ПДЦПД, равной 3/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют техническую воду с плотностью больше, чем плотность ПДЦПД, а по завершении крепления трещины разрыва закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля со смолопокрытым проппантом по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55–60 °С; при расстоянии от нижнего и/или от верхнего интервалов перфорации до соответствующих обводнённых пропластков, равном более 3 м, перед закачкой жидкости с ПДЦПД закачивают линейный гель в объёме, равном 4/5 части от общего объёма линейного геля, закачку жидкости с ПДЦПД осуществляют по массе, равной 4/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют техническую воду с плотностью, равной плотности ПДЦПД, а по завершении крепления трещины разрыва закачивают линейный гель в объёме, равном 1/5 части от общего объёма линейного геля со смолопокрытым проппантом по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55–60 °С.

На фиг. 1 показан пример реализации процесса ГРП в продуктивном пласте по предлагаемому способу при наличии в разрезе обводнённого пропластка ниже интервала перфорации.

На фиг. 2 показан пример реализации процесса ГРП в продуктивном пласте по предлагаемому способу при наличии в разрезе обводненного пропластка выше интервала перфорации.

На фиг. 3 показан пример реализации процесса ГРП в продуктивном пласте по предлагаемому способу при наличии в разрезе обводненного пропластка ниже и/или выше интервала перфорации.

Известно, что на развитие трещины ГРП по высоте, в первую очередь оказывает влияние скорость осаждения частиц расклинивающего наполнителя в жидкости, которая пропорциональна разности плотностей несущей жидкости и расклинивающего наполнителя.

В связи с этим основной задачей несущей жидкости является обеспечение эффективного переноса расклинивающего наполнителя вдоль трещины ГРП.

При наличии обводнённых пропластков контроль значения плотностей несущих жидкостей и расклинивающего наполнителя играет важную роль в успехе операции ГРП путем регулирования развития трещины по высоте. Исследование нефтенасыщенности и интервалов от перфорации до обводненных пропластков позволяет осуществлять процесс регулирования технологическим процессом, обеспечивающим повышение надёжности крепления трещины разрыва, снижение риска неконтролируемого развития трещины ГРП по высоте и обводненности продукции скважины, что в итоге обеспечивает повышение нефтеотдачи пласта в слабосцементированных породах продуктивного пласта.

При проведении ГРП по предлагаемому способу, в качестве жидкости можно применять техническую воду или товарную нефть, так как плотность материала ПДЦПД составляет 1000 кг/м3. Поэтому частицы ПДЦПД будут обладать нейтральной плавучестью в жидкости с плотностью 1000 кг/м3, всплывать в технической воде с плотностью выше 1000 кг/см3 или тонуть в товарной нефти с плотностью ниже 1000 кг/см3.

Предложенный способ гидравлического разрыва пласта осуществляют следующим образом.

Перед проведением ГРП в скважине 1 (фиг. 1) производят геофизические исследования скважины (ГИС) (на фиг. 1–3 не показано) методом импульсного нейтро-нейтронного каротажа и определяют текущую нефтенасыщенность продуктивного пласта 2 (фиг. 1), например толщиной Н = 12 м, размещение обводненных пропластков. Далее, по результатам ГИС, в зоне с максимальной нефтенасыщенностью продуктивного пласта 2 проводят избирательную перфорацию 3, например с плотностью 25 перфорационных отверстий на один метр высоты продуктивного пласта 2 и диаметром входных отверстий 12 мм. Перфорацию проводят любым известным способом, например, как описано в патенте RU № 2358100, МПК Е21В 43/26, опубл. 10.06.2009 в бюл. № 16.

Определяют расстояние интервалов от нижней границы перфорации до нижнего обводненного пропластка и от верхнего интервала перфорации до верхнего обводненного пропластка. Кратно повышается нефтеотдача продуктивного пласта после выполнения ГРП, так как перед проведением ГРП производят ГИС по результатам которых проводят избирательную перфорацию в интервале с максимальным нефтенасыщением продуктивного пласта 2 с исключением обводнения продукции скважины.

Далее в скважину спускают колонну насосно-компрессорных труб (НКТ) 4 с пакером 5. Пакер 5 в скважине 1 устанавливают таким образом, чтобы нижний конец 6 колонны НКТ 4 находился на уровне верхних отверстий перфорации 3.

В качестве НКТ 4 применяют, например трубы с условным диаметром 89 мм, группы прочности "К" или "Е", изготавливаемых по ГОСТ 633-80.

С целью защиты стенок скважины от воздействия высоких давлений в качестве пакера применяют пакер любой известной конструкции, например проходной пакер с якорем с механической поворотной установкой ПРО-ЯМ2-ЯГ1(Ф) или ПРО-ЯМ3-ЯГ2(Ф) (на 100 МПа) производства научно-производственной фирмы «Пакер» (г. Октябрьский, Республика Башкортостан, Российская Федерация).

При реализации способа используют жидкости и расклинивающие наполнители:

- любой известный состав сшитого геля (например, см. главу 3 монографии С.А. Рябоконя «Технологические жидкости для заканчивания и ремонта скважин (ОАО НПО «Бурение», 2006. С.153). Сшитый гель плотностью 1100 кг/м3 готовят любым известным способом, например, как описано в заявке RU № 2008136865, МПК С09К 8/512, опубл. 20.03.2010 в бюл. № 8);

- любой известный состав линейного геля, например линейный гель на водной основе марки «Химеко – В» производства «Химкеко-Ганг» РГУ нефти и газа имени И.М. Губкина (Российская Федерация, г. Москва). Линейный гель плотностью 1010 кг/м3 готовят любым известным способом, например, как описано в патенте RU № 2381252, МПК С09К 8/68, опубл. 20.02.2010 в бюл. № 4;

- товарную нефть по ГОСТ 31378-2009. Нефть. Общие технические условия, плотностью 860 кг/м3;

- техническую воду по ГОСТ 17.1.1.04-80 «Вода техническая»;

- проппант по ГОСТ Р 51761-2013 Проппанты алюмосиликатные. Технические условия (с Поправкой), например фракции 20/40 меш;

- ПДЦПД применяют согласно известным патентам. Патент RU № 2465286 «Материал, содержащий полидициклопентадиен и способ его получения (варианты) опубл. № 27.10.2012 в бюл. № 30, а также известен патент RU № 2402572 «Способ получения полидициклопентадиена и материалов на его основе» опубл. 27.10.2010 в бюл. № 30.

С помощью ГИС или по плану проведения работ определяют расстояние h (фиг. 1) от нижнего интервала перфорации 3 до нижнего 7 обводнённого пропластка.

1. Если расстояние h от нижнего интервала перфорации 3 до нижнего 7 обводнённого пропластка составляет 3 м и менее, то для образования трещины разрыва 8 закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля с утяжеленным проппантом 9 по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя.

После образования трещины разрыва 8 её сначала развивают закачкой сшитого геля в объёме 3/5 части от общего объёма сшитого геля, а затем крепят закачкой несущей жидкости с ПДЦПД 10 по массе равной 3/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют товарную нефть с плотностью меньше, чем плотность ПДЦПД 10.

После завершения крепления трещины разрыва закачкой товарной нефти с ПДЦПД 10 производят крепление призабойной зоны 11 скважины 1 закачкой сшитого геля в объёме, равном 1/5 части от общего объёма сшитого геля со смолопокрытым проппантом 12 по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя. Смолопокрытый проппант 12 нагревают на устье скважины до температуры 55–60 °С перед закачкой.

1.1 Исходные данные:

Расстояние от нижнего интервала перфорации 3 до нижнего 7 обводнённого пропластка равно h = 2,5 м.

Общая масса закачки расклинивающего наполнителя 10 000 кг.

Общий объём закачки сшитого геля – 10 м3.

Объем закачки товарной нефти – 6 м3.

Масса утяжеленного проппанта равна 1/5 части от общей массы закачки расклинивающего наполнителя, т.е. равна 1/5·10 000 кг = 2 000 кг. Плотность утяжелённого проппанта равна 3000 кг/м3.

Объём закачки сшитого геля, несущего утяжеленный проппант, по объёму равен 1/5 части от общего объёма сшитого геля, т.е. 1/5·10 м3 = 2 м3. Плотность сшитого геля равна 1100 кг/м3.

1.4 Объём закачки сшитого геля для развития трещины разрыва в объёме 3/5 части от общего объёма сшитого геля: 3/5·10 м3 = 6 м3.

Масса ПДЦПД равна 3/5 части от общей массы закачки расклинивающего наполнителя, т.е. равна 3/5·10 000 кг = 6 000 кг. Плотность ПДЦПД равна 1000 кг/м3.

Объём закачки товарной нефти равен 6 м3. Плотность товарной нефти равна 860 кг/м3.

Масса смолопокрытого проппанта равна 1/5 части от общей массы закачки расклинивающего наполнителя, т.е. равна 1/5·10 000 кг = 2 000 кг. Плотность смолопокрытого проппанта равна 2900 кг/м3.

Объём закачки сшитого геля, несущего смолопокрытый проппант, по объёму равен 1/5 части от общего объёма сшитого геля, т.е. равен 1/5·10 м3 = 2 м3.

Таким образом сначала по колонне НКТ 4 через интервалы перфорации 3 в продуктивный пласт 2 закачивают сшитый гель в объёме 2 м3 с добавлением 2000 кг утяжеленного, например бисером стеклянным, проппанта, плотностью 3000 кг/м3. Сшитый гель, несущий утяжеленный проппант 9, имеет плотность 1100 кг/м3. Таким образом, утяжеленный проппант 9 в начавшейся образовываться трещине разрыва 8, утопает в сшитом геле вследствие разности плотностей (3000 кг/м3 > 1100 кг/м3 ), и образует плотную набивку из утяжеленного проппанта 9, что исключает её дальнейшее развитие вниз и прорыв в нижний 7 обводнённый пропласток.

Далее, не прерывая процесса закачки, закачивают сшитый гель в объеме 6 м3 без проппанта, что приводит к развитию трещины разрыва 8 вверх, т.е. в верхнюю часть продуктивного пласта 2 ввиду образования внизу трещин разрыва 8 плотной набивки из утяжеленного проппанта 9.

Затем производят крепление развившейся трещины разрыва 8. Для этого по колонне НКТ 4 через интервалы перфорации 3 в трещину разрыва 8 продолжают закачивать товарную нефть в объёме 6 м3 с добавлением 6000 кг ПДЦПД  плотностью 1000 кг/м3. Товарная нефть, несущая ПДЦПД 10, имеет плотность 860 кг/м3. Таким образом ПДЦПД 10, вследствие разности плотностей (товарная нефть имеет плотность меньшую, чем плотность ПДЦПД), т.е. 860 кг/м3 < 1000 кг/м3 снизу-вверх равномерно заполняет трещину разрыва 8, что исключает её дальнейшее развитие вниз и прорыва в нижний 7 обводнённый пропласток.

Далее не прерывая закачку по колонне НКТ 4 через интервалы перфорации 3 в трещину разрыва 8 продуктивного пласта 2 закачивают сшитый гель в объёме 2 м3 с добавлением 2000 кг смолопокрытого проппанта 12, подогретого на устье скважины до 55–60 °С, например в ёмкости с помощью пароподвижной установки. В результате смолопокрытый проппант 12 крепит призабойну зону 11скважины 1.

Если расстояние h от верхнего интервала перфорации 3 (фиг. 2) до верхнего 13 обводнённого пропластка составляет 3 м и менее, то для образования трещины разрыва 8 закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля с облегчённым проппантом 14 по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя.

После образования трещины разрыва 8 её сначала развивают закачкой сшитого геля в объёме, равном 3/5 части от общего объёма сшитого геля, а затем крепят закачкой несущей жидкости с ПДЦПД 10 по массе равной 3/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве несущей жидкости применяют техническую воду, например сточную воду с плотностью большей, чем плотность проппанта ПДЦПД 10.

После окончания крепления трещины разрыва ПДЦПД 10 производят крепление призабойной зоны 11 скважины 1 закачкой сшитого геля в объёме, равном 1/5 части от общего объёма сшитого геля со смолопокрытым проппантом 12 по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя. Перед закачкой смолопокрытый проппант 12 нагревают на устье скважины до температуры 55–60 °С.

2.1 Исходные данные:

Примем расстояние от верхнего интервала перфорации 3 до верхнего обводнённого пропластка 13 равным h = 3 м.

Общая масса закачки расклинивающего наполнителя 10 000 кг.

Общий объём закачки сшитого геля – 10 м3.

Объем закачки технической воды (сточной воды) – 6 м3.

Тогда:

Масса облегчённого проппанта по массе равна 1/5 части от общей массы закачки расклинивающего наполнителя, т.е. равна 1/5·10 000 кг = 2 000 кг. Плотность облегчённого (сверхлёгкого) проппанта 1050 кг/м3.

Объём закачки сшитого геля, несущего облегчённый проппант, по объёму равен 1/5 части от общего объёма сшитого геля, т.е. 1/5·10 м3 = 2 м3. Плотность сшитого геля 1100 кг/м3.

2.4 Объём закачки сшитого геля для развития трещины разрыва равен 3/5 части от общего объёма сшитого геля: 3/5·10 м3 = 6 м3.

Масса ПДЦПД равна 3/5 части от общей массы закачки расклинивающего наполнителя 3/5·10 000 кг = 6 000 кг. Плотность ПДЦПД равна 1000 кг/м3.

Объём закачки несущей жидкости – сточной воды для закачки ПДЦПД равен 6,0 м3. Например, плотность сточной воды 1150 кг/м3.

Масса смолопрокрытого проппанта равна 1/5 части от общей массы закачки расклинивающего наполнителя, т.е. равна 1/5·10 000 кг = 2 000 кг. Плотность смолопокрытого проппанта равна 2900 кг/м3

Объём закачки сшитого геля, несущего смолопокрытый проппант равен 1/5 части от общего объёма сшитого геля: 1/5·10 м3 = 2 м3.

Таким образом, сначала по колонне НКТ 4 через интервалы перфорации 3 в продуктивный пласт 2 закачивают сшитый гель в объёме 2 м3 с добавлением 2000 кг облегчённого (сверхлёгкого) проппанта 14, плотностью 1050 кг/м3. Сшитый гель, несущий облегчённый проппант, имеет плотность 1100 кг/м3. Таким образом, облегчённый проппант 14 в начавшейся образовываться трещине разрыва 8 всплывает в сшитом геле, вследствие разности плотностей (1100 кг/м3 > 1050 кг/м3 ) и образует плотную набивку из облегчённого проппанта 14, что исключает дальнейшее развитие трещины разрыва 8 вверх и прорыв её в верхний 13 обводнённый пропласток.

Далее, не прерывая процесса закачки, закачивают сшитый гель в объеме 6 м3 без проппанта, что приводит к развитию трещины разрыва 8 вниз, т.е. в нижнюю часть продуктивного пласта 2 ввиду образования вверху трещин разрыва 8 плотной набивки из облегчённого проппанта 14.

Затем производят крепление развившейся трещины разрыва 8. Для этого по колонне НКТ 4 через интервалы перфорации 3 в трещину разрыва 8 закачивают сточную воду в объёме 6 м3 с добавлением 6000 кг ПДЦПД  плотностью 1000 кг/м3. Сточная вода, несущая ПДЦПД 10, имеет плотность 1150 кг/м3. Таким образом ПДЦПД 10, вследствие разности плотностей (сточная вода имеет плотность больше, чем плотность ПДЦПД 10, т.е. 1150 кг/м3 > 1000 кг/м3 сверху-вниз равномерно заполняет трещину разрыва 8, что исключает её дальнейшее развитие вверх и прорыв в верхний 13 обводнённый пропласток.

Не прерывая закачку по колонне НКТ 4 через интервалы перфорации 3 в трещину разрыва 8 продуктивного пласта 2 закачивают сшитый гель в объёме 2 м3 с добавлением 2000 кг смолопокрытого проппанта 12, подогретого на устье скважины до 55–60 °С, например в ёмкости с помощью пароподвижной установки. В результате смолопокрытый проппант 12 крепит призабойну зону11 скважины 1.

Если расстояния h1 от нижнего и h2 от верхнего интервалов перфорации (фиг. 3) до обводнённых пропластков 7 и 13, соответственно составляет более 3 м, то закачивают линейный гель плотностью, равной 1010 кг/м3 в объёме, равном 4/5 части от общего объёма линейного геля, с образованием и развитием трещины разрыва 8. Далее крепят трещину разрыва 8 закачкой несущей жидкости с ПДЦПД 10 по массе, равной 4/5 части от общей массы закачки расклинивающего наполнителя. В качестве несущей жидкости применяют техническую воду, например пресную воду плотностью 1000 кг/м3, равной плотности ПДЦПД (1000 кг/м3).

После окончания крепления трещины разрыва закачкой технической воды с ПДЦПД 10 производят крепление призабойной зоны 11 скважины 1 закачкой линейного геля в объёме, равном 1/5 части от общего объёма линейного геля со смолопокрытым проппантом 12 по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя. Перед закачкой смолопокрытый проппант 12 нагревают на устье скважины до температуры 55–60 °С.

3.1 Исходные данные:

Примем расстояние от нижнего интервала перфорации 3 до нижнего 7 обводнённого пропластка равным h1 = 3,2 м, а расстояние от верхнего интервала перфорации 3 до верхнего 13 обводнённого пропластка равным h2 = 4,3 м.

Общий объём закачки линейного геля – 10 м3.

Общая масса закачки расклинивающего наполнителя 10 000 кг.

Объем закачки технической воды (пресной воды) – 8 м3.

Тогда:

3.2 Объём закачки линейного геля для создания и развития трещины разрыва в объёме, равном 4/5 части от общего объёма линейного геля: 4/5 10 м3 = 8 м3.

Масса ПДЦПД равна 4/5 части от общей массы закачки расклинивающего наполнителя и равна 4/5·10 000 кг = 8 000 кг. Плотность ПДЦПД 1000 кг/м3.

Объём закачки несущей жидкости – пресной воды с ПДЦПД равен 8 м3. Плотность пресной воды 1000 кг/м3.

Масса смолопрокрытого проппанта равна 1/5 части от общей массы закачки расклинивающего наполнителя и равна 1/5·10 000 кг = 2 000 кг. Плотность смолопокрытого проппанта равна 2900 кг/м3.

Объём закачки линейного геля, несущего смолопокрытый проппант, равен 1/5 части от общего объёма линейного геля: 1/5·10 м3 = 2 м3.

Cначала по колонне НКТ 4 через интервалы перфорации 3 в продуктивный пласт 2 закачивают линейный гель плотностью 1010 кг/м3 в объеме 8 м3, что приводит к образованию и развитию трещины разрыва 8.

Затем не прерывая процесса закачки производят крепление развившейся трещины разрыва 8. Для этого по колонне НКТ 4 через интервалы перфорации 3 в трещину разрыва 8 продолжают закачивать пресную воду в объёме 8 м3 с добавлением 8000 кг ПДЦПД. Сточная вода, несущая ПДЦПД 10, имеет плотность 1000 кг/м3. Таким образом ПДЦПД 10, вследствие равной плотности с пресной водой, т.е. 1000 кг/м3 = 1000 кг/м3, равномерно от центра вверх и вниз, заполняет трещину разрыва 8, что исключает дальнейшее развитие трещины вниз с целью прорыва в нижний 7 обводнённый пропласток и вверх с целью прорыва в верхний 13 обводнённый пропласток.

Далее, не прерывая закачку по колонне НКТ 4 через интервалы перфорации 3, в трещину разрыва 8 продуктивного пласта 2 закачивают линейный гель в объёме 2 м3 с добавлением 2000 кг смолопокрытого проппанта 10, подогретого на устье скважины до 55–60 °С, например в ёмкости с помощью пароподвижной установки. В результате смолопокрытый проппант 12 крепит призабойну зону11 скважины 1.

Смолопокрытые проппанты это проппанты покрытые полимерной смолой. После проведения ГРП в призабойной зоне 11 скважины 1 смолопокрытый проппант 12 полимеризуется и, слипаясь, создаёт монолитный каркас в призабойной зоне скважины со слабосцементированными породами, предохраняя их от разрушения и сохраненяя около 40 % по объему сквозных каналов, сквозь которые нефть поступает в скважину без захвата проппанта.

Кратно снижается риск неконтролируемого развития трещины ГРП по высоте, как вниз за счёт закачки утяжелённого проппанта, так и вверх за счёт закачки облечённого проппанта, образующих соответственно снизу и сверху плотные набивки, что препятствует развитию трещины разрыва в обводнённые пропластки при дальнейшем развитии трещины гидроразрыва.

Повышается надёжность реализации способа, обусловленная качественным креплением ПДЦПД трещины гидроразрыва. Это достигается тем, что при закачке ПДЦПД учитывают плотность ПДЦПД и плотность жидкости носителя в зависимости от направления развития трещины, что способствует равномерному заполнению трещины разрыва ПДЦПД и исключению смыкания трещины разрыва.

Повышается эффективность реализации способа в слабосцементированных породах, что связано с увеличением продолжительности нефтеотдачи, т.е. дебит скважин остаётся стабильным на протяжении не менее 6 мес после освоения и ввода скважины в эксплуатацию. Это обусловлено тем, что закачанный в конце процесса ГРП подогретый смолопокрытый проппант образует прочные связи между зернами проппанта и не выносится из призабойной зоны скважины при последующем освоении или эксплуатации скважины, а это исключает осыпание и разрушение породы продуктивного пласта после проведения ГРП.

Способ гидравлического разрыва пласта обеспечивает повышение нефтеотдачи пласта после выполнения ГРП, снижение риска неконтролируемого развития трещины ГРП по высоте, повышение надёжности крепления трещины разрыва ПДЦПД, повышение эффективности ГРП в слабосцементированных породах продуктивного пласта.

Способ гидравлического разрыва пласта, включающий закачку в пласт жидкости с добавлением расклинивающего наполнителя - полидициклопентадиена (ПДЦПД), отличающийся тем, что перед проведением гидроразрыва в скважине определяют текущую нефтенасыщенность пласта, в зоне с максимальной нефтенасыщенностью проводят избирательную перфорацию пласта, определяют расстояние от интервала перфорации до обводнённого пропластка: при расстоянии от нижнего интервала перфорации до нижнего обводнённого пропластка, равном 3 м и менее, перед закачкой жидкости с ПДЦПД последовательно закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля с утяжеленным проппантом, массой, равной 1/5 части от общей массы закачки расклинивающего наполнителя, и сшитый гель в объёме, равном 3/5 части от общего объёма сшитого геля, закачку жидкости с ПДЦПД осуществляют по массе ПДЦПД, равной 3/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют товарную нефть с плотностью меньше, чем плотность ПДЦПД, а по завершении крепления трещины разрыва закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля со смолопокрытым проппантом, по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55-60 °С; при расстоянии от верхнего интервала перфорации до верхнего обводнённого пропластка, равном 3 м и менее, перед закачкой жидкости с ПДЦПД последовательно закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля с облегчённым проппантом, массой, равной 1/5 части от общей массы закачки расклинивающего наполнителя, и сшитый гель в объёме, равном 3/5 части от общего объёма сшитого геля, закачку жидкости с ПДЦПД осуществляют по массе ПДЦПД, равной 3/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют техническую воду с плотностью больше, чем плотность ПДЦПД, а по завершении крепления трещины разрыва закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля со смолопокрытым проппантом, по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55-60 °С; при расстоянии от нижнего и/или от верхнего интервалов перфорации до соответствующих обводнённых пропластков, равном более 3 м, перед закачкой жидкости с ПДЦПД закачивают линейный гель в объёме, равном 4/5 части от общего объёма линейного геля, закачку жидкости с ПДЦПД осуществляют по массе, равной 4/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют техническую воду с плотностью, равной плотности ПДЦПД, а по завершении крепления трещины разрыва закачивают линейный гель в объёме, равном 1/5 части от общего объёма линейного геля со смолопокрытым проппантом, по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55-60 °С.
Способ гидравлического разрыва пласта
Способ гидравлического разрыва пласта
Способ гидравлического разрыва пласта
Источник поступления информации: Роспатент

Showing 121-130 of 170 items.
27.06.2020
№220.018.2c04

Универсальное устройство для отворота или заворота устьевой арматуры

Изобретение относится к нефтедобывающей промышленности, в частности к устьевому оборудованию скважин, обеспечивающему герметичное соединение устройства и устьевой арматуры разного типоразмера, нестандартного (заниженного) расположения устьевой арматуры, в частности при возникновении излива...
Тип: Изобретение
Номер охранного документа: 0002724699
Дата охранного документа: 25.06.2020
27.06.2020
№220.018.2c55

Превентор со сменным кольцом и способ его установки на опорном фланце устьевой арматуры

Изобретение относится к устройствам, используемым в превенторах, предназначенных для герметизации устья нефтяных и газовых скважин с различными типами опорных фланцевых устьевых арматур, в том числе скважин сверхвязкой нефти (СВН) с наклонным устьем и двухрядной колонной труб. Техническими...
Тип: Изобретение
Номер охранного документа: 0002724695
Дата охранного документа: 25.06.2020
29.06.2020
№220.018.2c90

Усилитель траверсы привода глубинного штангового насоса

Изобретение относится к нефтегазодобывающей промышленности, а именно к предохранительным устройствам устьевых приводов глубинных штанговых насосов. Устройство включает П-образный симметричный корпус, выполненный с возможностью плотной симметричной установки снизу на траверсу привода с...
Тип: Изобретение
Номер охранного документа: 0002724809
Дата охранного документа: 25.06.2020
03.07.2020
№220.018.2e1d

Распределитель потока жидкости в системах поддержания пластового давления

Изобретение относится к нефтегазодобывающей промышленности, а именно для закачки воды в нефтеносные пласты для поддержания в них оптимальной величины давления. Распределитель потока жидкости в системах поддержания пластового давления включает корпус с патрубком для подачи рабочей жидкости и...
Тип: Изобретение
Номер охранного документа: 0002725206
Дата охранного документа: 30.06.2020
04.07.2020
№220.018.2ed5

Способ разработки залежи битуминозной нефти тепловыми методами

Изобретение относится к нефтедобывающей промышленности. Технический результат – возможность работы на больших площадях с высоким давлением закачки излишков горячей воды в нагнетательные скважины с высокой проницаемостью, очистка фильтров без остановки и разбора линии нагнетания для каждой из...
Тип: Изобретение
Номер охранного документа: 0002725406
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2f10

Устройство для монтажа и демонтажа фланца устьевой арматуры

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройству для монтажа и демонтажа вращением устьевых герметизирующих устройств. Устройство для монтажа и демонтажа фланца устьевой арматуры включает монтажную цилиндрическую пластину с осевым отверстием в виде...
Тип: Изобретение
Номер охранного документа: 0002725392
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2f17

Компрессор к станку-качалке для отвода газа из затрубного пространства нефтяной скважины

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для отбора газа из затрубного пространства скважины, оборудованной штанговым глубинным насосом. Компрессор к станку-качалке содержит прикрепленные к балансиру станка-качалки и его опоре шарниры цилиндра и штока...
Тип: Изобретение
Номер охранного документа: 0002725396
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2f18

Термическая оболочка

Изобретение относится к устройствам обогрева или охлаждения, в том числе технологических объектов промышленных производств, закрываемых оболочкой и прогреваемых или охлаждаемых посредством воздействия газообразного и/или жидкого термоносителя, ввод и вывод которого осуществляется через...
Тип: Изобретение
Номер охранного документа: 0002725298
Дата охранного документа: 30.06.2020
09.07.2020
№220.018.30a5

Всасывающий клапан глубинного насоса

Изобретение относится к нефтегазодобывающей промышленности, в частности к обратным клапанам глубинных скважинных насосов. Всасывающий клапан включает присоединенный снизу к цилиндру корпус, в клапанной полости которого над седлом с проходным отверстием и ниже верхнего ограничителя с отверстиями...
Тип: Изобретение
Номер охранного документа: 0002725909
Дата охранного документа: 07.07.2020
10.07.2020
№220.018.30f7

Система отопления зданий при помощи рекуперации тепла из горячей нефти

Изобретение относится к системам отопления зданий горячей водой при рекуперации тепла из горячей нефти. Система отопления зданий при помощи рекуперации тепла из горячей нефти включает теплообменные средства для переноса тепла от горячей воды из трубопровода теплопереноса к жидкости, протекающей...
Тип: Изобретение
Номер охранного документа: 0002726016
Дата охранного документа: 08.07.2020
Showing 121-130 of 292 items.
20.03.2016
№216.014.c762

Способ герметизации эксплуатационной колонны

Изобретение относится к нефтедобывающей промышленности, в частности к способам герметизации эксплуатационной колонны в вертикальном, наклонном или горизонтальном стволе добывающей скважины. Технический результат заключается в повышении надежности и эффективности герметизации эксплуатационной...
Тип: Изобретение
Номер охранного документа: 0002578136
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.c95b

Способ изоляции притока вод в необсаженном горизонтальном участке ствола добывающей скважины

Изобретение относится к области нефтегазодобывающей промышленности и найдет применение при изоляции водопритоков в горизонтальном или наклонном участках стволов добывающих скважин. Способ изоляции притока вод в необсаженном горизонтальном участке ствола добывающей скважины включает извлечение...
Тип: Изобретение
Номер охранного документа: 0002578095
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.db22

Способ кислотной обработки карбонатного пласта

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности обработки, увеличение нефтеотдачи, повышение надежности реализации способа. Способ кислотной обработки карбонатного пласта включает выделение интервалов обработки вскрытого скважиной с...
Тип: Изобретение
Номер охранного документа: 0002579042
Дата охранного документа: 27.03.2016
20.04.2016
№216.015.354c

Способ укрепления призабойной зоны скважины

Изобретение относится к нефтедобывающей промышленности, в частности к способам укрепления призабойной зоны скважины и предотвращения выноса породы. Способ укрепления призабойной зоны скважины включает спуск в призабойную зоны скважины колонны насосно-компрессорных труб - НКТ, последовательную...
Тип: Изобретение
Номер охранного документа: 0002581861
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.391e

Способ теплового воздействия на призабойную зону пласта с высоковязкой нефтью и устройство для его осуществления

Группа изобретений относится к нефтяной промышленности. Технический результат - обеспечение возможности отбора высоковязкой нефти с большим содержанием парафиновых и асфальто-смолистых веществ в высоковязкой нефти, снижение тепловых потерь. Способ теплового воздействия на призабойную зону...
Тип: Изобретение
Номер охранного документа: 0002582363
Дата охранного документа: 27.04.2016
10.08.2016
№216.015.5365

Способ подачи реагента и обработки скважины с высоковязкой нефтью

Изобретение относится к нефтедобывающей промышленности и предназначено для ликвидации и предотвращения образования асфальтено-смолопарафиновых отложений (АСПО) в нефтегазодобывающих скважинах. Способ включает спуск в скважину колонны насосно-компрессорных труб - НКТ с винтовым насосом с...
Тип: Изобретение
Номер охранного документа: 0002593850
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5904

Способ теплового воздействия на призабойную зону пласта с высоковязкой нефтью и устройство для его осуществления

Группа изобретений относится к нефтяной промышленности и предназначена для теплового воздействия на призабойную зону пласта с высоковязкой нефтью, в том числе для снижения выпадения асфальтосмолопарафиновых веществ при отборе разогретой высоковязкой нефти и разрушения эмульсии. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002588119
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.6c61

Способ гидравлического разрыва пласта

Изобретение относится к способам гидравлического разрыва пласта. Способ включает вскрытие пласта вертикальной скважиной, спуск в скважину колонны труб до интервала пласта и проведение гидравлического разрыва пласта - ГРП закачкой жидкости разрыва по колонне труб. При этом на устье скважины...
Тип: Изобретение
Номер охранного документа: 0002592582
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6cc6

Способ эксплуатации добывающей высоковязкую нефть скважины

Изобретение относится к нефтяной промышленности. Техническим результатом изобретения является повышение эффективности эксплуатации добывающей высоковязкую нефть скважины, повышение качества очистки внутрискважинного оборудования от АСПО, снижение нагрузок на колонну штанг штангового насоса....
Тип: Изобретение
Номер охранного документа: 0002597304
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6da3

Способ разработки залежи высоковязкой нефти и битума

Изобретение относится к нефтегазодобывающей промышленности и предназначено для разработки залежи высоковязкой нефти и битума путем нагревания. Технический результат - повышение эффективности прогревания залежи, увеличение охвата залежи прогреванием, повышение объемов отбора нефти и битума,...
Тип: Изобретение
Номер охранного документа: 0002597303
Дата охранного документа: 10.09.2016
+ добавить свой РИД