×
27.02.2020
220.018.0655

Результат интеллектуальной деятельности: Способ гидравлического разрыва пласта

Вид РИД

Изобретение

№ охранного документа
0002715115
Дата охранного документа
25.02.2020
Аннотация: Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при проведении гидравлического разрыва продуктивного пласта (ГРП) с использованием расклинивающего наполнителя в скважинах со слабосцементированной призабойной зоной при наличии близлежащих обводнённых пропластков. Способ гидравлического разрыва пласта включает закачку в пласт жидкости с добавлением расклинивающего наполнителя - полидициклопентадиена (ПДЦПД). Перед проведением гидроразрыва в скважине определяют текущую нефтенасыщенность пласта, в зоне с максимальной нефтенасыщенностью проводят избирательную перфорацию пласта, определяют расстояние от интервала перфорации до обводнённого пропластка. При расстоянии от нижнего интервала перфорации до нижнего обводнённого пропластка, равном 3 м и менее, перед закачкой жидкости с ПДЦПД последовательно закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля с утяжеленным проппантом, массой, равной 1/5 части от общей массы закачки расклинивающего наполнителя, и сшитый гель в объёме, равном 3/5 части от общего объёма сшитого геля, закачку жидкости с ПДЦПД осуществляют по массе ПДЦПД, равной 3/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют товарную нефть с плотностью меньше, чем плотность ПДЦПД, а по завершении крепления трещины разрыва закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля со смолопокрытым проппантом по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55-60 °С. При расстоянии от верхнего интервала перфорации до верхнего обводнённого пропластка, равном 3 м и менее, перед закачкой жидкости с ПДЦПД последовательно закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля с облегчённым проппантом, массой, равной 1/5 части от общей массы закачки расклинивающего наполнителя, и сшитый гель в объёме, равном 3/5 части от общего объёма сшитого геля, закачку жидкости с ПДЦПД осуществляют по массе ПДЦПД, равной 3/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют техническую воду с плотностью больше, чем плотность ПДЦПД, а по завершении крепления трещины разрыва закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля со смолопокрытым проппантом по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55-60 °С. При расстоянии от нижнего и/или от верхнего интервалов перфорации до соответствующих обводнённых пропластков, равном более 3 м, перед закачкой жидкости с ПДЦПД закачивают линейный гель в объёме, равном 4/5 части от общего объёма линейного геля, закачку жидкости с ПДЦПД осуществляют по массе, равной 4/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют техническую воду с плотностью, равной плотности ПДЦПД, а по завершении крепления трещины разрыва закачивают линейный гель в объёме, равном 1/5 части от общего объёма линейного геля со смолопокрытым проппантом, по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55-60 °С. Способ обеспечивает повышение нефтеотдачи пласта после выполнения ГРП, снижение риска неконтролируемого развития трещины ГРП по высоте, повышение надёжности крепления трещины разрыва ПДЦПД, повышение эффективности ГРП в слабосцементированных породах продуктивного пласта. 3 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при проведении гидравлического разрыва продуктивного пласта (ГРП) с использованием расклинивающего наполнителя в скважинах со слабосцементированной призабойной зоной при наличии близлежащих обводнённых пропластков.

Известен способ гидравлического разрыва пласта в скважине (патент RU № 2485306 МПК Е21В 43/26, опубл. 20.06.2013 в бюл. № 17), включающий перфорацию стенок скважины в интервале пласта каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны труб с пакером, посадку пакера над кровлей перфорированного продуктивного пласта, закачку в подпакерную зону гелированной жидкости разрыва для проведения ГРП, создание в подпакерной зоне давления ГРП и продавку в образовавшуюся трещину пласта гелированной жидкости разрыва с крепителем трещин. Перед проведением ГРП колонну труб заполняют технологической жидкостью, определяют общий объем гелированной жидкости разрыва по аналитическому выражению. Затем производят ГРП. При этом сначала закачивают гелированную жидкость разрыва без добавления крепителя для создания трещины. Затем закачивают оставшийся объем гелированной жидкости разрыва с крепителем трещин. В качестве крепителя трещин применяют сверхлегкий проппант фракции 20/40 меш, постепенно увеличивая концентрацию проппанта в жидкости разрыва от 200 кг/м3 до 1000 кг/м3. В качестве гелированной жидкости разрыва применяют линейный гель с одновременным добавлением боратного сшивателя и деструктора. Боратный сшиватель вводят в линейный гель с концентрацией от 2,0 до 4,0 л/м3, достаточной для полной сшивки гелированной жидкости разрыва у зоны перфорации скважины. Деструктор вводят с постепенным повышением концентрации на 0,15 кг/м3, начиная с концентрации 1,0 кг/м3. После завершения закачки гелированной жидкости разрыва с крепителем трещин в колонну труб производят их продавку в пласт технологической жидкостью. Производят выдержку в течение времени, необходимого для спада давления закачки на 70–80 % от давления продавки в пласт гелированной жидкости разрыва с крепителем трещин, распакеровывают пакер, извлекают его и колонну труб на поверхность.

Также известен способ гидравлического разрыва пласта в скважине (патент RU № 2522366, МПК Е21В 43/267, опубл. 10.07.2014 в бюл. № 19), включающий перфорацию в интервале пласта, спуск колонны труб с пакером, посадку пакера, закачку в подпакерную зону гелированной жидкости разрыва, заполнение колонны технологической жидкостью, определение общего объема гелированной жидкости разрыва, создание в подпакерной зоне давления гидроразрыва пласта и продавку в образовавшуюся трещину пласта гелированной жидкости разрыва с проппантом, выдержку в течение времени, необходимого для спада давления на 70 %, распакеровку и извлечение пакера с колонной труб из скважины. После определения общего объема гелированной жидкости разрыва закачивают в скважину по колонне труб гелированную жидкость разрыва - линейный гель - до образования трещин разрыва в пласте, оставшийся объем гелированной жидкости разрыва после образования трещин разрыва в пласте разделяют на две части: сшитый гель и линейный гель, циклически производят поочередную закачку сначала линейного, а затем сшитого геля с добавлением проппанта в 3–5 циклов. Причем линейный гель закачивают равными порциями с расходом 4–6 м3/мин и концентрацией проппанта 400 кг/м3, а сшитый гель закачивают со ступенчатым увеличением объема закачки от 3 до 7 м3 с расходом 1–2 м3/мин и концентрацией проппанта 1200 кг/м3. При этом в последние порции линейного и сшитого гелей с проппантом добавляют стекловолокно в количестве 1,5 % от веса проппанта в каждой из последних порций линейного и сшитого гелей.

Недостатками способов являются:

- высокая стоимость проведения операции ГРП связанная с необходимостью применения дорогостоящей химии для приготовления жидкости разрыва;

- технологическая сложность осуществления ГРП связанная с необходимостью чередовать стадии закачки сшитого и линейного гелей с одновременным изменением расхода закачки;

- высокий риск неконтролируемого развития трещины ГРП по высоте и получения

обводнения скважины при наличии выше или нижележащего водонасыщенного пласта.

Наиболее близким по технической сущности является способ гидравлического разрыва пласта (патент RU № 2386025, МПК Е21В 43/267, опубл. 10.04.2010 в бюл. № 10), включающий закачку в пласт жидкости с добавлением в жидкость расклинивающего наполнителя – полидициклопентадиена (ПДЦПД). Способ обеспечивает более низкое трение при закачивании наполнителя в скважину при сохранении хорошей проницаемости трещины.

Недостатками способа являются:

- низкая надёжность реализации способа, обусловленная низким качеством крепления ПДЦПД, обусловленная тем, что закачка ПДЦПД производится без учета плотности жидкости носителя, что приводит к неравномерному заполнению трещины разрыва ПДЦПД и частичному смыканию трещины разрыва;

- высокий риск неконтролируемого развития трещины ГРП по высоте (вверх, вниз) и получение обводнения скважины после ГРП при наличии обводнённых пропластков выше и/или ниже продуктивного пласта;

- низкая нефтеотдача продуктивного пласта после выполнения ГРП, вследствие того, что не учитывается текущая нефтенасыщенность обрабатываемого пласта;

- низкая эффективность способа, обусловленная коротким эффектом нефтеотдачи (до одного месяца) от проведения ГРП в слабосцементированных породах продуктивного пласта, так как закачанный в процессе ГРП ПДЦПД при последующем освоении или эксплуатации скважины постепенно выносится из призабойной зоны скважины и трещина гидроразрыва в призабойной зоне скважины «схлопывается».

Техническими задачами изобретения являются повышение надёжности крепления трещины разрыва, снижение риска неконтролируемого развития трещины ГРП по высоте, снижение обводненности продукции скважины, повышение нефтеотдачи после выполнения ГРП, а также повышение эффективности реализации способа в слабосцементированных породах продуктивного пласта.

Технические задачи решаются способом гидравлического разрыва пласта, включающим закачку в пласт жидкости с добавлением расклинивающего наполнителя – полидициклопентадиена (ПДЦПД).

Новым является то, что перед проведением гидроразрыва в скважине определяют текущую нефтенасыщенность пласта, в зоне с максимальной нефтенасыщенностью проводят избирательную перфорацию пласта, определяют расстояние от интервала перфорации до обводнённого пропластка: при расстоянии от нижнего интервала перфорации до нижнего обводнённого пропластка, равном 3 м и менее, перед закачкой жидкости с ПДЦПД последовательно закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля с утяжеленным проппантом массой, равной 1/5 части от общей массы закачки расклинивающего наполнителя и сшитый гель в объёме, равном 3/5 части от общего объёма сшитого геля, закачку жидкости с ПДЦПД осуществляют по массе ПДЦПД, равной 3/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют товарную нефть с плотностью меньше, чем плотность ПДЦПД, а по завершении крепления трещины разрыва закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля со смолопокрытым проппантом по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55–60 °С, при расстоянии от верхнего интервала перфорации до верхнего обводнённого пропластка, равном 3 м и менее перед закачкой жидкости с ПДЦПД последовательно закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля с облегчённым проппантом массой, равной 1/5 части от общей массы закачки расклинивающего наполнителя и сшитый гель в объёме, равном 3/5 части от общего объёма сшитого геля, закачку жидкости с ПДЦПД осуществляют по массе ПДЦПД, равной 3/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют техническую воду с плотностью больше, чем плотность ПДЦПД, а по завершении крепления трещины разрыва закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля со смолопокрытым проппантом по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55–60 °С; при расстоянии от нижнего и/или от верхнего интервалов перфорации до соответствующих обводнённых пропластков, равном более 3 м, перед закачкой жидкости с ПДЦПД закачивают линейный гель в объёме, равном 4/5 части от общего объёма линейного геля, закачку жидкости с ПДЦПД осуществляют по массе, равной 4/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют техническую воду с плотностью, равной плотности ПДЦПД, а по завершении крепления трещины разрыва закачивают линейный гель в объёме, равном 1/5 части от общего объёма линейного геля со смолопокрытым проппантом по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55–60 °С.

На фиг. 1 показан пример реализации процесса ГРП в продуктивном пласте по предлагаемому способу при наличии в разрезе обводнённого пропластка ниже интервала перфорации.

На фиг. 2 показан пример реализации процесса ГРП в продуктивном пласте по предлагаемому способу при наличии в разрезе обводненного пропластка выше интервала перфорации.

На фиг. 3 показан пример реализации процесса ГРП в продуктивном пласте по предлагаемому способу при наличии в разрезе обводненного пропластка ниже и/или выше интервала перфорации.

Известно, что на развитие трещины ГРП по высоте, в первую очередь оказывает влияние скорость осаждения частиц расклинивающего наполнителя в жидкости, которая пропорциональна разности плотностей несущей жидкости и расклинивающего наполнителя.

В связи с этим основной задачей несущей жидкости является обеспечение эффективного переноса расклинивающего наполнителя вдоль трещины ГРП.

При наличии обводнённых пропластков контроль значения плотностей несущих жидкостей и расклинивающего наполнителя играет важную роль в успехе операции ГРП путем регулирования развития трещины по высоте. Исследование нефтенасыщенности и интервалов от перфорации до обводненных пропластков позволяет осуществлять процесс регулирования технологическим процессом, обеспечивающим повышение надёжности крепления трещины разрыва, снижение риска неконтролируемого развития трещины ГРП по высоте и обводненности продукции скважины, что в итоге обеспечивает повышение нефтеотдачи пласта в слабосцементированных породах продуктивного пласта.

При проведении ГРП по предлагаемому способу, в качестве жидкости можно применять техническую воду или товарную нефть, так как плотность материала ПДЦПД составляет 1000 кг/м3. Поэтому частицы ПДЦПД будут обладать нейтральной плавучестью в жидкости с плотностью 1000 кг/м3, всплывать в технической воде с плотностью выше 1000 кг/см3 или тонуть в товарной нефти с плотностью ниже 1000 кг/см3.

Предложенный способ гидравлического разрыва пласта осуществляют следующим образом.

Перед проведением ГРП в скважине 1 (фиг. 1) производят геофизические исследования скважины (ГИС) (на фиг. 1–3 не показано) методом импульсного нейтро-нейтронного каротажа и определяют текущую нефтенасыщенность продуктивного пласта 2 (фиг. 1), например толщиной Н = 12 м, размещение обводненных пропластков. Далее, по результатам ГИС, в зоне с максимальной нефтенасыщенностью продуктивного пласта 2 проводят избирательную перфорацию 3, например с плотностью 25 перфорационных отверстий на один метр высоты продуктивного пласта 2 и диаметром входных отверстий 12 мм. Перфорацию проводят любым известным способом, например, как описано в патенте RU № 2358100, МПК Е21В 43/26, опубл. 10.06.2009 в бюл. № 16.

Определяют расстояние интервалов от нижней границы перфорации до нижнего обводненного пропластка и от верхнего интервала перфорации до верхнего обводненного пропластка. Кратно повышается нефтеотдача продуктивного пласта после выполнения ГРП, так как перед проведением ГРП производят ГИС по результатам которых проводят избирательную перфорацию в интервале с максимальным нефтенасыщением продуктивного пласта 2 с исключением обводнения продукции скважины.

Далее в скважину спускают колонну насосно-компрессорных труб (НКТ) 4 с пакером 5. Пакер 5 в скважине 1 устанавливают таким образом, чтобы нижний конец 6 колонны НКТ 4 находился на уровне верхних отверстий перфорации 3.

В качестве НКТ 4 применяют, например трубы с условным диаметром 89 мм, группы прочности "К" или "Е", изготавливаемых по ГОСТ 633-80.

С целью защиты стенок скважины от воздействия высоких давлений в качестве пакера применяют пакер любой известной конструкции, например проходной пакер с якорем с механической поворотной установкой ПРО-ЯМ2-ЯГ1(Ф) или ПРО-ЯМ3-ЯГ2(Ф) (на 100 МПа) производства научно-производственной фирмы «Пакер» (г. Октябрьский, Республика Башкортостан, Российская Федерация).

При реализации способа используют жидкости и расклинивающие наполнители:

- любой известный состав сшитого геля (например, см. главу 3 монографии С.А. Рябоконя «Технологические жидкости для заканчивания и ремонта скважин (ОАО НПО «Бурение», 2006. С.153). Сшитый гель плотностью 1100 кг/м3 готовят любым известным способом, например, как описано в заявке RU № 2008136865, МПК С09К 8/512, опубл. 20.03.2010 в бюл. № 8);

- любой известный состав линейного геля, например линейный гель на водной основе марки «Химеко – В» производства «Химкеко-Ганг» РГУ нефти и газа имени И.М. Губкина (Российская Федерация, г. Москва). Линейный гель плотностью 1010 кг/м3 готовят любым известным способом, например, как описано в патенте RU № 2381252, МПК С09К 8/68, опубл. 20.02.2010 в бюл. № 4;

- товарную нефть по ГОСТ 31378-2009. Нефть. Общие технические условия, плотностью 860 кг/м3;

- техническую воду по ГОСТ 17.1.1.04-80 «Вода техническая»;

- проппант по ГОСТ Р 51761-2013 Проппанты алюмосиликатные. Технические условия (с Поправкой), например фракции 20/40 меш;

- ПДЦПД применяют согласно известным патентам. Патент RU № 2465286 «Материал, содержащий полидициклопентадиен и способ его получения (варианты) опубл. № 27.10.2012 в бюл. № 30, а также известен патент RU № 2402572 «Способ получения полидициклопентадиена и материалов на его основе» опубл. 27.10.2010 в бюл. № 30.

С помощью ГИС или по плану проведения работ определяют расстояние h (фиг. 1) от нижнего интервала перфорации 3 до нижнего 7 обводнённого пропластка.

1. Если расстояние h от нижнего интервала перфорации 3 до нижнего 7 обводнённого пропластка составляет 3 м и менее, то для образования трещины разрыва 8 закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля с утяжеленным проппантом 9 по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя.

После образования трещины разрыва 8 её сначала развивают закачкой сшитого геля в объёме 3/5 части от общего объёма сшитого геля, а затем крепят закачкой несущей жидкости с ПДЦПД 10 по массе равной 3/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют товарную нефть с плотностью меньше, чем плотность ПДЦПД 10.

После завершения крепления трещины разрыва закачкой товарной нефти с ПДЦПД 10 производят крепление призабойной зоны 11 скважины 1 закачкой сшитого геля в объёме, равном 1/5 части от общего объёма сшитого геля со смолопокрытым проппантом 12 по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя. Смолопокрытый проппант 12 нагревают на устье скважины до температуры 55–60 °С перед закачкой.

1.1 Исходные данные:

Расстояние от нижнего интервала перфорации 3 до нижнего 7 обводнённого пропластка равно h = 2,5 м.

Общая масса закачки расклинивающего наполнителя 10 000 кг.

Общий объём закачки сшитого геля – 10 м3.

Объем закачки товарной нефти – 6 м3.

Масса утяжеленного проппанта равна 1/5 части от общей массы закачки расклинивающего наполнителя, т.е. равна 1/5·10 000 кг = 2 000 кг. Плотность утяжелённого проппанта равна 3000 кг/м3.

Объём закачки сшитого геля, несущего утяжеленный проппант, по объёму равен 1/5 части от общего объёма сшитого геля, т.е. 1/5·10 м3 = 2 м3. Плотность сшитого геля равна 1100 кг/м3.

1.4 Объём закачки сшитого геля для развития трещины разрыва в объёме 3/5 части от общего объёма сшитого геля: 3/5·10 м3 = 6 м3.

Масса ПДЦПД равна 3/5 части от общей массы закачки расклинивающего наполнителя, т.е. равна 3/5·10 000 кг = 6 000 кг. Плотность ПДЦПД равна 1000 кг/м3.

Объём закачки товарной нефти равен 6 м3. Плотность товарной нефти равна 860 кг/м3.

Масса смолопокрытого проппанта равна 1/5 части от общей массы закачки расклинивающего наполнителя, т.е. равна 1/5·10 000 кг = 2 000 кг. Плотность смолопокрытого проппанта равна 2900 кг/м3.

Объём закачки сшитого геля, несущего смолопокрытый проппант, по объёму равен 1/5 части от общего объёма сшитого геля, т.е. равен 1/5·10 м3 = 2 м3.

Таким образом сначала по колонне НКТ 4 через интервалы перфорации 3 в продуктивный пласт 2 закачивают сшитый гель в объёме 2 м3 с добавлением 2000 кг утяжеленного, например бисером стеклянным, проппанта, плотностью 3000 кг/м3. Сшитый гель, несущий утяжеленный проппант 9, имеет плотность 1100 кг/м3. Таким образом, утяжеленный проппант 9 в начавшейся образовываться трещине разрыва 8, утопает в сшитом геле вследствие разности плотностей (3000 кг/м3 > 1100 кг/м3 ), и образует плотную набивку из утяжеленного проппанта 9, что исключает её дальнейшее развитие вниз и прорыв в нижний 7 обводнённый пропласток.

Далее, не прерывая процесса закачки, закачивают сшитый гель в объеме 6 м3 без проппанта, что приводит к развитию трещины разрыва 8 вверх, т.е. в верхнюю часть продуктивного пласта 2 ввиду образования внизу трещин разрыва 8 плотной набивки из утяжеленного проппанта 9.

Затем производят крепление развившейся трещины разрыва 8. Для этого по колонне НКТ 4 через интервалы перфорации 3 в трещину разрыва 8 продолжают закачивать товарную нефть в объёме 6 м3 с добавлением 6000 кг ПДЦПД  плотностью 1000 кг/м3. Товарная нефть, несущая ПДЦПД 10, имеет плотность 860 кг/м3. Таким образом ПДЦПД 10, вследствие разности плотностей (товарная нефть имеет плотность меньшую, чем плотность ПДЦПД), т.е. 860 кг/м3 < 1000 кг/м3 снизу-вверх равномерно заполняет трещину разрыва 8, что исключает её дальнейшее развитие вниз и прорыва в нижний 7 обводнённый пропласток.

Далее не прерывая закачку по колонне НКТ 4 через интервалы перфорации 3 в трещину разрыва 8 продуктивного пласта 2 закачивают сшитый гель в объёме 2 м3 с добавлением 2000 кг смолопокрытого проппанта 12, подогретого на устье скважины до 55–60 °С, например в ёмкости с помощью пароподвижной установки. В результате смолопокрытый проппант 12 крепит призабойну зону 11скважины 1.

Если расстояние h от верхнего интервала перфорации 3 (фиг. 2) до верхнего 13 обводнённого пропластка составляет 3 м и менее, то для образования трещины разрыва 8 закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля с облегчённым проппантом 14 по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя.

После образования трещины разрыва 8 её сначала развивают закачкой сшитого геля в объёме, равном 3/5 части от общего объёма сшитого геля, а затем крепят закачкой несущей жидкости с ПДЦПД 10 по массе равной 3/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве несущей жидкости применяют техническую воду, например сточную воду с плотностью большей, чем плотность проппанта ПДЦПД 10.

После окончания крепления трещины разрыва ПДЦПД 10 производят крепление призабойной зоны 11 скважины 1 закачкой сшитого геля в объёме, равном 1/5 части от общего объёма сшитого геля со смолопокрытым проппантом 12 по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя. Перед закачкой смолопокрытый проппант 12 нагревают на устье скважины до температуры 55–60 °С.

2.1 Исходные данные:

Примем расстояние от верхнего интервала перфорации 3 до верхнего обводнённого пропластка 13 равным h = 3 м.

Общая масса закачки расклинивающего наполнителя 10 000 кг.

Общий объём закачки сшитого геля – 10 м3.

Объем закачки технической воды (сточной воды) – 6 м3.

Тогда:

Масса облегчённого проппанта по массе равна 1/5 части от общей массы закачки расклинивающего наполнителя, т.е. равна 1/5·10 000 кг = 2 000 кг. Плотность облегчённого (сверхлёгкого) проппанта 1050 кг/м3.

Объём закачки сшитого геля, несущего облегчённый проппант, по объёму равен 1/5 части от общего объёма сшитого геля, т.е. 1/5·10 м3 = 2 м3. Плотность сшитого геля 1100 кг/м3.

2.4 Объём закачки сшитого геля для развития трещины разрыва равен 3/5 части от общего объёма сшитого геля: 3/5·10 м3 = 6 м3.

Масса ПДЦПД равна 3/5 части от общей массы закачки расклинивающего наполнителя 3/5·10 000 кг = 6 000 кг. Плотность ПДЦПД равна 1000 кг/м3.

Объём закачки несущей жидкости – сточной воды для закачки ПДЦПД равен 6,0 м3. Например, плотность сточной воды 1150 кг/м3.

Масса смолопрокрытого проппанта равна 1/5 части от общей массы закачки расклинивающего наполнителя, т.е. равна 1/5·10 000 кг = 2 000 кг. Плотность смолопокрытого проппанта равна 2900 кг/м3

Объём закачки сшитого геля, несущего смолопокрытый проппант равен 1/5 части от общего объёма сшитого геля: 1/5·10 м3 = 2 м3.

Таким образом, сначала по колонне НКТ 4 через интервалы перфорации 3 в продуктивный пласт 2 закачивают сшитый гель в объёме 2 м3 с добавлением 2000 кг облегчённого (сверхлёгкого) проппанта 14, плотностью 1050 кг/м3. Сшитый гель, несущий облегчённый проппант, имеет плотность 1100 кг/м3. Таким образом, облегчённый проппант 14 в начавшейся образовываться трещине разрыва 8 всплывает в сшитом геле, вследствие разности плотностей (1100 кг/м3 > 1050 кг/м3 ) и образует плотную набивку из облегчённого проппанта 14, что исключает дальнейшее развитие трещины разрыва 8 вверх и прорыв её в верхний 13 обводнённый пропласток.

Далее, не прерывая процесса закачки, закачивают сшитый гель в объеме 6 м3 без проппанта, что приводит к развитию трещины разрыва 8 вниз, т.е. в нижнюю часть продуктивного пласта 2 ввиду образования вверху трещин разрыва 8 плотной набивки из облегчённого проппанта 14.

Затем производят крепление развившейся трещины разрыва 8. Для этого по колонне НКТ 4 через интервалы перфорации 3 в трещину разрыва 8 закачивают сточную воду в объёме 6 м3 с добавлением 6000 кг ПДЦПД  плотностью 1000 кг/м3. Сточная вода, несущая ПДЦПД 10, имеет плотность 1150 кг/м3. Таким образом ПДЦПД 10, вследствие разности плотностей (сточная вода имеет плотность больше, чем плотность ПДЦПД 10, т.е. 1150 кг/м3 > 1000 кг/м3 сверху-вниз равномерно заполняет трещину разрыва 8, что исключает её дальнейшее развитие вверх и прорыв в верхний 13 обводнённый пропласток.

Не прерывая закачку по колонне НКТ 4 через интервалы перфорации 3 в трещину разрыва 8 продуктивного пласта 2 закачивают сшитый гель в объёме 2 м3 с добавлением 2000 кг смолопокрытого проппанта 12, подогретого на устье скважины до 55–60 °С, например в ёмкости с помощью пароподвижной установки. В результате смолопокрытый проппант 12 крепит призабойну зону11 скважины 1.

Если расстояния h1 от нижнего и h2 от верхнего интервалов перфорации (фиг. 3) до обводнённых пропластков 7 и 13, соответственно составляет более 3 м, то закачивают линейный гель плотностью, равной 1010 кг/м3 в объёме, равном 4/5 части от общего объёма линейного геля, с образованием и развитием трещины разрыва 8. Далее крепят трещину разрыва 8 закачкой несущей жидкости с ПДЦПД 10 по массе, равной 4/5 части от общей массы закачки расклинивающего наполнителя. В качестве несущей жидкости применяют техническую воду, например пресную воду плотностью 1000 кг/м3, равной плотности ПДЦПД (1000 кг/м3).

После окончания крепления трещины разрыва закачкой технической воды с ПДЦПД 10 производят крепление призабойной зоны 11 скважины 1 закачкой линейного геля в объёме, равном 1/5 части от общего объёма линейного геля со смолопокрытым проппантом 12 по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя. Перед закачкой смолопокрытый проппант 12 нагревают на устье скважины до температуры 55–60 °С.

3.1 Исходные данные:

Примем расстояние от нижнего интервала перфорации 3 до нижнего 7 обводнённого пропластка равным h1 = 3,2 м, а расстояние от верхнего интервала перфорации 3 до верхнего 13 обводнённого пропластка равным h2 = 4,3 м.

Общий объём закачки линейного геля – 10 м3.

Общая масса закачки расклинивающего наполнителя 10 000 кг.

Объем закачки технической воды (пресной воды) – 8 м3.

Тогда:

3.2 Объём закачки линейного геля для создания и развития трещины разрыва в объёме, равном 4/5 части от общего объёма линейного геля: 4/5 10 м3 = 8 м3.

Масса ПДЦПД равна 4/5 части от общей массы закачки расклинивающего наполнителя и равна 4/5·10 000 кг = 8 000 кг. Плотность ПДЦПД 1000 кг/м3.

Объём закачки несущей жидкости – пресной воды с ПДЦПД равен 8 м3. Плотность пресной воды 1000 кг/м3.

Масса смолопрокрытого проппанта равна 1/5 части от общей массы закачки расклинивающего наполнителя и равна 1/5·10 000 кг = 2 000 кг. Плотность смолопокрытого проппанта равна 2900 кг/м3.

Объём закачки линейного геля, несущего смолопокрытый проппант, равен 1/5 части от общего объёма линейного геля: 1/5·10 м3 = 2 м3.

Cначала по колонне НКТ 4 через интервалы перфорации 3 в продуктивный пласт 2 закачивают линейный гель плотностью 1010 кг/м3 в объеме 8 м3, что приводит к образованию и развитию трещины разрыва 8.

Затем не прерывая процесса закачки производят крепление развившейся трещины разрыва 8. Для этого по колонне НКТ 4 через интервалы перфорации 3 в трещину разрыва 8 продолжают закачивать пресную воду в объёме 8 м3 с добавлением 8000 кг ПДЦПД. Сточная вода, несущая ПДЦПД 10, имеет плотность 1000 кг/м3. Таким образом ПДЦПД 10, вследствие равной плотности с пресной водой, т.е. 1000 кг/м3 = 1000 кг/м3, равномерно от центра вверх и вниз, заполняет трещину разрыва 8, что исключает дальнейшее развитие трещины вниз с целью прорыва в нижний 7 обводнённый пропласток и вверх с целью прорыва в верхний 13 обводнённый пропласток.

Далее, не прерывая закачку по колонне НКТ 4 через интервалы перфорации 3, в трещину разрыва 8 продуктивного пласта 2 закачивают линейный гель в объёме 2 м3 с добавлением 2000 кг смолопокрытого проппанта 10, подогретого на устье скважины до 55–60 °С, например в ёмкости с помощью пароподвижной установки. В результате смолопокрытый проппант 12 крепит призабойну зону11 скважины 1.

Смолопокрытые проппанты это проппанты покрытые полимерной смолой. После проведения ГРП в призабойной зоне 11 скважины 1 смолопокрытый проппант 12 полимеризуется и, слипаясь, создаёт монолитный каркас в призабойной зоне скважины со слабосцементированными породами, предохраняя их от разрушения и сохраненяя около 40 % по объему сквозных каналов, сквозь которые нефть поступает в скважину без захвата проппанта.

Кратно снижается риск неконтролируемого развития трещины ГРП по высоте, как вниз за счёт закачки утяжелённого проппанта, так и вверх за счёт закачки облечённого проппанта, образующих соответственно снизу и сверху плотные набивки, что препятствует развитию трещины разрыва в обводнённые пропластки при дальнейшем развитии трещины гидроразрыва.

Повышается надёжность реализации способа, обусловленная качественным креплением ПДЦПД трещины гидроразрыва. Это достигается тем, что при закачке ПДЦПД учитывают плотность ПДЦПД и плотность жидкости носителя в зависимости от направления развития трещины, что способствует равномерному заполнению трещины разрыва ПДЦПД и исключению смыкания трещины разрыва.

Повышается эффективность реализации способа в слабосцементированных породах, что связано с увеличением продолжительности нефтеотдачи, т.е. дебит скважин остаётся стабильным на протяжении не менее 6 мес после освоения и ввода скважины в эксплуатацию. Это обусловлено тем, что закачанный в конце процесса ГРП подогретый смолопокрытый проппант образует прочные связи между зернами проппанта и не выносится из призабойной зоны скважины при последующем освоении или эксплуатации скважины, а это исключает осыпание и разрушение породы продуктивного пласта после проведения ГРП.

Способ гидравлического разрыва пласта обеспечивает повышение нефтеотдачи пласта после выполнения ГРП, снижение риска неконтролируемого развития трещины ГРП по высоте, повышение надёжности крепления трещины разрыва ПДЦПД, повышение эффективности ГРП в слабосцементированных породах продуктивного пласта.

Способ гидравлического разрыва пласта, включающий закачку в пласт жидкости с добавлением расклинивающего наполнителя - полидициклопентадиена (ПДЦПД), отличающийся тем, что перед проведением гидроразрыва в скважине определяют текущую нефтенасыщенность пласта, в зоне с максимальной нефтенасыщенностью проводят избирательную перфорацию пласта, определяют расстояние от интервала перфорации до обводнённого пропластка: при расстоянии от нижнего интервала перфорации до нижнего обводнённого пропластка, равном 3 м и менее, перед закачкой жидкости с ПДЦПД последовательно закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля с утяжеленным проппантом, массой, равной 1/5 части от общей массы закачки расклинивающего наполнителя, и сшитый гель в объёме, равном 3/5 части от общего объёма сшитого геля, закачку жидкости с ПДЦПД осуществляют по массе ПДЦПД, равной 3/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют товарную нефть с плотностью меньше, чем плотность ПДЦПД, а по завершении крепления трещины разрыва закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля со смолопокрытым проппантом, по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55-60 °С; при расстоянии от верхнего интервала перфорации до верхнего обводнённого пропластка, равном 3 м и менее, перед закачкой жидкости с ПДЦПД последовательно закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля с облегчённым проппантом, массой, равной 1/5 части от общей массы закачки расклинивающего наполнителя, и сшитый гель в объёме, равном 3/5 части от общего объёма сшитого геля, закачку жидкости с ПДЦПД осуществляют по массе ПДЦПД, равной 3/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют техническую воду с плотностью больше, чем плотность ПДЦПД, а по завершении крепления трещины разрыва закачивают сшитый гель в объёме, равном 1/5 части от общего объёма сшитого геля со смолопокрытым проппантом, по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55-60 °С; при расстоянии от нижнего и/или от верхнего интервалов перфорации до соответствующих обводнённых пропластков, равном более 3 м, перед закачкой жидкости с ПДЦПД закачивают линейный гель в объёме, равном 4/5 части от общего объёма линейного геля, закачку жидкости с ПДЦПД осуществляют по массе, равной 4/5 части от общей массы закачки расклинивающего наполнителя, причём в качестве жидкости применяют техническую воду с плотностью, равной плотности ПДЦПД, а по завершении крепления трещины разрыва закачивают линейный гель в объёме, равном 1/5 части от общего объёма линейного геля со смолопокрытым проппантом, по массе, равной 1/5 части от общей массы закачки расклинивающего наполнителя, причём смолопокрытый проппант перед закачкой нагревают на устье скважины до температуры 55-60 °С.
Способ гидравлического разрыва пласта
Способ гидравлического разрыва пласта
Способ гидравлического разрыва пласта
Источник поступления информации: Роспатент

Showing 91-100 of 170 items.
16.05.2020
№220.018.1d83

Питатель для засыпки фильтрующего материала в вертикальный фильтр

Питатель для засыпки фильтрующего материала в вертикальный фильтр включает раму, на которой установлен наклонный лоток и конический бункер, диафрагму, установленную с возможностью перекрытия потока фильтрующего материала. Конический бункер установлен над наклонным лотком, изготовлен с углами,...
Тип: Изобретение
Номер охранного документа: 0002720929
Дата охранного документа: 14.05.2020
20.05.2020
№220.018.1de8

Скважинная штанговая насосная установка

Изобретение относится к техническим средствам для подъема жидкости из скважин и может быть использовано в нефтедобывающей промышленности для добычи нефти. Установка содержит силовой привод с тяговым органом, реверсивный приводной орган, соединенный с силовым приводом с возможностью вращения и...
Тип: Изобретение
Номер охранного документа: 0002721067
Дата охранного документа: 15.05.2020
20.05.2020
№220.018.1e0e

Натяжитель ремней автоматический для станков-качалок

Изобретение относится к области нефтепромыслового оборудования для механизированной добычи нефти и газа штанговыми скважинными насосными установками. Натяжитель ремней автоматический для станков-качалок включает подвижную раму, установленную на основание станка-качалки с возможностью...
Тип: Изобретение
Номер охранного документа: 0002721066
Дата охранного документа: 15.05.2020
20.05.2020
№220.018.1e32

Скважинная штанговая насосная установка

Изобретение относится к техническим средствам для подъема жидкости из скважин и может быть использовано в нефтедобывающей промышленности для добычи нефти. Установка содержит силовой привод с тяговым органом, реверсивный приводной орган, соединенный с силовым приводом с возможностью вращения и...
Тип: Изобретение
Номер охранного документа: 0002721068
Дата охранного документа: 15.05.2020
21.05.2020
№220.018.1ed3

Устройство механической очистки внутренней полости штангового глубинного насоса

Изобретение относится к нефтегазодобывающей промышленности и предназначено для использования при ремонте и сборке штангового глубинного насоса. Применимо на участке сборки ШГН для скважин одновременно-раздельной эксплуатации. Устройство механической очистки внутренней полости штангового...
Тип: Изобретение
Номер охранного документа: 0002721319
Дата охранного документа: 18.05.2020
21.05.2020
№220.018.1ee4

Устройство для магнитной дефектоскопии скважинных труб

Использование: для магнитной дефектоскопии скважинных труб. Сущность изобретения заключается в том, что устройство для магнитной дефектоскопии скважинных труб включает скважинный модуль и наземную диагностическую систему. Скважинный модуль содержит намагничивающее устройство, выполненное в виде...
Тип: Изобретение
Номер охранного документа: 0002721311
Дата охранного документа: 18.05.2020
31.05.2020
№220.018.232a

Способ определения ориентации естественной трещиноватости горной породы

Использование: для определения ориентации естественной трещиноватости горной породы. Сущность изобретения заключается в том, что осуществляют спуск в обсаженную скважину измерительного оборудования на глубину ниже исследуемого интервала, подъем оборудования с записью каротажных диаграмм...
Тип: Изобретение
Номер охранного документа: 0002722431
Дата охранного документа: 29.05.2020
03.06.2020
№220.018.23a4

Способ разработки неоднородного по проницаемости заводненного нефтяного пласта

Изобретение относится к разработке нефтяных месторождений и может найти применение при разработке нефтяной залежи с неоднородными по проницаемости заводненными терригенными и трещиноватыми карбонатными нефтяными пластами для регулирования профиля приемистости нагнетательной скважины и...
Тип: Изобретение
Номер охранного документа: 0002722488
Дата охранного документа: 01.06.2020
09.06.2020
№220.018.25ad

Устройство для контроля скорости коррозии трубопровода

Изобретение относится к нефтегазодобывающей, нефтегазохимической и химической промышленности, в частности к приборам и устройствам для контроля технического состояния трубопровода. Устройство включает отвод, установленный вертикально и сверху на основном трубопроводе, запорную задвижку,...
Тип: Изобретение
Номер охранного документа: 0002723004
Дата охранного документа: 08.06.2020
25.06.2020
№220.018.2afd

Устройство для очистки плавающего мусора с поверхности водоема

Изобретение относится к охране окружающей среды, в частности к устройствам, предназначенным для специальных целей, а именно для сбора загрязнений с поверхности открытых водоемов при проведении работ по защите природных ресурсов в местах размещения нефтеулавливающих сооружений. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002724556
Дата охранного документа: 23.06.2020
Showing 91-100 of 292 items.
10.04.2015
№216.013.4014

Способ гидравлического разрыва пласта в горизонтальном стволе скважины

Изобретение относится к нефтяной промышленности и может быть применено для гидравлического разрыва пласта в горизонтальном стволе скважины. Способ включает бурение горизонтального ствола скважины в нефтенасыщенной части продуктивного пласта с цементированием кольцевого пространства между...
Тип: Изобретение
Номер охранного документа: 0002547892
Дата охранного документа: 10.04.2015
10.05.2015
№216.013.4aa4

Способ предотвращения солеотложения на нефтепромысловом оборудовании

Изобретение относится к нефтяной промышленности и может быть использовано для предотвращения отложений солей на нефтепромысловом оборудовании. Регулировку расхода реагента осуществляют на устье скважины установкой дозировочной электронасосной, соединенной на устье скважины с капиллярным...
Тип: Изобретение
Номер охранного документа: 0002550615
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4ab5

Способ разработки нефтяной залежи системой горизонтальной и вертикальной скважин с использованием термического воздействия

(57) Изобретение относится к нефтедобывающей промышленности. Технический результат - оптимизация работы горизонтальной скважины, снижение энергетических затрат на ее эксплуатацию, увеличение ширины полезной зоны охвата влияния добывающей горизонтальной скважины, снижение доли газов в составе...
Тип: Изобретение
Номер охранного документа: 0002550632
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4ab9

Способ освоения и эксплуатации скважины с высоковязкой нефтью

Изобретение относится к нефтяной промышленности, в частности к способам для добычи высоковязкой нефти. Способ освоения и эксплуатации скважины с высоковязкой нефтью включает спуск в скважину колонны насосно-компрессорных труб (НКТ) со скважинным насосом с силовым кабелем и капиллярной трубки,...
Тип: Изобретение
Номер охранного документа: 0002550636
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4abb

Способ гидроразрыва низкопроницаемого пласта с непроницаемым прослоем и водоносным пропластком

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва низкопроницаемого пласта, содержащего прослой глины с водоносным пропластком. Способ включает спуск колонны насосно-компрессорных труб с пакером в скважину, посадку пакера, закачивание...
Тип: Изобретение
Номер охранного документа: 0002550638
Дата охранного документа: 10.05.2015
10.07.2015
№216.013.5b7d

Способ поинтервальной кислотной обработки горизонтальной скважины, эксплуатирующей карбонатный коллектор

Изобретение относится к нефтедобыче. Технический результат - интенсификация добычи нефти из горизонтальной скважины, увеличение дебита нефти в 1,5-2 раза, снижение обводненности добываемой продукции на 30-50%. В способе поинтервальной кислотной обработки горизонтальной скважины,...
Тип: Изобретение
Номер охранного документа: 0002554962
Дата охранного документа: 10.07.2015
27.07.2015
№216.013.6789

Способ поинтервального гидравлического разрыва карбонатного пласта в горизонтальном стволе скважины с подошвенной водой

Изобретение относится к способам разработки нефтяных месторождений горизонтальными скважинами с применением гидравлического разрыва пласта. Способ включает бурение горизонтального ствола скважины в продуктивном пласте с цементированием обсадной колонны, спуск в горизонтальный ствол скважины на...
Тип: Изобретение
Номер охранного документа: 0002558058
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.67a9

Способ эксплуатации горизонтальной скважины

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации горизонтальной скважины. Технический результат - повышение эффективности способа за счет обеспечения полной выработки запасов нефти из продуктивного пласта независимо от величины депрессии на продуктивный...
Тип: Изобретение
Номер охранного документа: 0002558090
Дата охранного документа: 27.07.2015
20.08.2015
№216.013.6f1e

Способ добычи высоковязкой нефти и битума

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для добычи высоковязкой нефти и битума с помощью теплового воздействия на пласт. Способ включает бурение кустовым способом верхней, средней и нижней скважин с вертикальными участками и горизонтальными стволами,...
Тип: Изобретение
Номер охранного документа: 0002560016
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f20

Способ изоляции притока вод в необсаженном горизонтальном участке ствола добывающей скважины

Изобретение относится к нефтегазодобывающей промышленности, в частности к области эксплуатации и ремонта скважин и изоляции притока пластовых вод в горизонтальные скважины. Способ изоляции притока вод в необсаженном горизонтальном участке ствола добывающей скважины включает извлечение из...
Тип: Изобретение
Номер охранного документа: 0002560018
Дата охранного документа: 20.08.2015
+ добавить свой РИД