×
27.02.2020
220.018.0642

МОБИЛЬНОЕ УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПРИМЕСЕЙ В ВОДЕ И ВОДНЫХ РАСТВОРАХ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002715079
Дата охранного документа
25.02.2020
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для экспресс-анализа элементного состава воды и водных растворов на основе метода эмиссионного спектрального анализа. Сущность изобретения заключается в том, что мобильное устройство для определения примесей в воде и водных растворах содержит электродуговую плазменную горелку, корпус, расположенную внутри него вентиляционную систему, спектрометр, отражающую и фокусирующую систему, консоль, регулируемую платформу для крепления спектрометра, а также отражающей и фокусирующей системы, при этом горелка парожидкостная с функцией возбуждения дугового разряда во встроенном электродном узле при давлении плазмообразующей среды, превышающем атмосферное давление, снабжена заправочной емкостью для плазмообразующей жидкости, причем плазменная струя, являющаяся источником анализируемого излучения, формируется за пределами выходного сопла плазменной горелки. Технический результат: повышение чувствительности, а также расширение функциональных возможностей. 3 з.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к устройствам для экспресс-анализа элементного состава воды и водных растворов на основе эмиссионного спектрального анализа путем сравнения спектрограмм эталонных и исследуемых образцов воды и растворов. Оно обеспечивает высокую точность (вплоть до 1 ppm) результатов вне лабораторных условий, в частности, непосредственно в точках взятия проб для контроля изменений элементного состава в пробах воды при организации системного мониторинга загрязнений водных объектов -рек, озер, водохранилищ, систем централизованного водоснабжения. Также изобретение может быть применено для контроля качества воды в сфере высокотехнологичного производства, включая фармацевтическую, пищевую, химическую промышленность и микроэлектронику.

Известен спектрометр «ПАПУАС-4ДИ» для определения сверхнизких концентраций в сплавах с применением системы автоматической регистрации спектров, при этом возбуждение спектра осуществляется генератором дуги постоянного тока [1] - аналог. Недостатком является невозможность применения аналога вне лабораторных условий и для анализа жидкостей.

Известен другой аналог, в основе которого лежит использование электрического разряда в жидкости, в рамках которого разряд инициируется в области диафрагменного отверстия, выполненного в виде конструкции электролитической ячейки, и осуществляется регистрация возникающих при этом эмиссионных спектров [2]. Разряд инициируют в присутствии токопроводящего элемента, размещенного в электролите в области разряда вблизи диафрагменного отверстия, обеспечивают квазинепрерывный режим поддержания разряда, перед инициированием разряда проводят поляризацию токопроводящего элемента током меньшей величины и регистрируют эмиссионный спектр в начальный момент установления квазинепрерывного режима разряда. Особенностью метода, представленного в качестве этого аналога, является обязательное наличие в жидкости достаточно большой концентрации ионов. При их отсутствии разряд не возникает, поэтому указанный метод может использоваться только для жидкостей, являющихся электролитами, что является существенным недостатком, т.к. снижает возможность применения этого метода, например, для определения состава примесей в питьевой воде. При формировании разряда в жидкости в соответствии с рассматриваемым методом вблизи токопроводящего элемента формируется повышенная концентрация заряженных частиц, ионов, и в излучении формируемого разряда наиболее заметным будет характеристическое излучение именно этих заряженных частиц. Вместе с тем в составе исследуемой жидкости могут присутствовать молекулы и частицы, не имеющие заряда, но интенсивность их характеристического излучения в полученной спектрограмме будет существенно ниже, что искажает картину диагностики элементного состава и понижает чувствительность метода к концентрациям элементов, являющихся составными частями нейтральных соединений анализируемого раствора. Локализация разряда ограничивает объем анализируемого вещества. Цветовая гамма и прозрачность анализируемых жидкостей также существенно искажают спектрограммы и снижает чувствительность этого метода.

Известен способ, в основе которого лежит возбуждение плазмы лазерным излучением с фокусировкой этого излучения на анализируемом веществе, с получением лазерной плазмы с последующей регистрацией спектра излучения и анализом элементного состава вещества [3]. Возбуждение лазерной плазмы осуществляют электронным пучком, при этом используют ускоритель с энергией 100-200 кэВ, длительностью импульса 5 не. Включение лазера, ускорителя и спектроанализатора синхронизировано с помощью специальной системы синхронизации. Способ предполагает формирование вспышки плазмы длительностью не более 15 не, при этом энергия, которую получают элементы анализируемого вещества для возбуждения, весьма незначительна для формирования полноценного возбуждения элементов, присутствующих в анализируемом веществе и являющихся составными частями молекул и структур анализируемого вещества. По этой причине в анализируемом спектре излучения не могут быть визуально и полноценно представлены все линии характеристического излучения, свойственные элементам анализируемого вещества. В способе можно использовать только спектрометры с синхронным накоплением аналитических сигналов, а контролируемая область анализируемого вещества ограничена малым сечением электронного пучка. К недостаткам этого способа следует отнести и то, что при условии неоднородности анализируемого вещества локальный контроль примесей может быть необъективен, а соответствующее устройство не может быть мобильным.

В другом способе анализа элементного состава веществ [4] применяют одноэлектродный высокочастотный плазменный разряд в режиме чередующихся импульсов. При этом в соответствии с направлением газа вдоль, перпендикулярно или навстречу плазмообразующему электроду применяются различные конструкции плазмообразующих устройств. Регистрацию спектров ведут в направлении, зависящем от типа применяемого спектрометра: перпендикулярном указанному сформированному разряду для щелевого спектрометра и параллельно - для диафрагменного спектрометра. Существенным недостатком способа является необходимость наличия газа-носителя, элементы которого под воздействием одноэлектродного плазменного разряда в режиме чередующихся импульсов формируют плазменный разряд, в который вводится исследуемая проба вещества. Газ-носитель имеет собственное излучение, сопровождающееся существенным фоновым излучением, связанным с неконтролируемым поведением элементов газа-носителя и его собственных примесей под воздействием внешнего поля. Такое фоновое излучение препятствует определению полезного сигнала от примесей и элементов исследуемого вещества и существенно снижает чувствительность метода. Уровень фонового излучения плазмы газа-носителя может существенно колебаться в зависимости от изменяющихся внешних условий, связанных с нестабильностью состава газа-носителя, что неизбежно отражается на условиях возбуждения элементов и примесей исследуемого вещества, что также приведет к снижению чувствительности метода и снижению воспроизводимости результатов спектрального анализа микропримесей в исследуемом веществе. Кроме этого, возможности контроля элементного состава, представленного по методу этого аналога, лимитированы наличием самого газа-носителя, хранящегося в баллонах и специальных емкостях, что снижает возможность применения этого метода вне лабораторных условий и препятствует созданию мобильных автономных тест-систем.

В качестве прототипа выбран «Способ определения элементного состава капельных жидкостей» [5] для экспресс-анализа. В способе для возбуждения плазмы применяют дуговой плазменный разряд при атмосферном давлении в присутствии пара или мелкодисперсных капель анализируемой жидкости, которую подают в плазменную горелку для формирования плазменной струи. Напротив плазменной струи размещают либо спектрометр, либо отражающую и фокусирующую оптическую систему для отражения образованного плазмой излучения и его фокусирования на объектив спектрометра. Спектрометр размещают таким образом, чтобы регистрация спектра осуществлялась в зоне максимальной интенсивности излучения плазмы, но без ущерба для его работоспособности. Обработку сигналов спектрограммы осуществляют путем сравнения полученной спектрограммы с эталонной спектрограммой или каким-либо другим способом, включая математическую обработку как цифрового, так и аналогового сигналов спектрограммы. При этом излучение плазмы при анализе элементного состава воды и водных растворов может быть разделено на фоновый и полезный сигналы, причем уровень полезного сигнала близок к 95%.

К недостаткам прототипа следует отнести возбуждение дугового разряда при атмосферном давлении, в то время как в большинстве доступных серийно выпускаемых плазменных электродуговых горелках, наиболее пригодных для мобильного устройства спектрального экспресс-анализа жидкостей, дуга возбуждается внутри коаксиального плазменного узла при повышенном на 2-5 атм. давлении (по сравнению с атмосферным), обусловленном интенсивным парообразованием плазмообразующей жидкости, например, воды в этом узле, с последующим формированием плазменной струи как источника излучения за пределами выходного сопла горелки.

Задачей изобретения является создание мобильного устройства (мобильной тест-системы) для экспресс-диагностики воды и водных растворов на основе сравнения плазменных спектрограмм анализируемых жидкостей, в том числе и используемых в качестве плазмообразующей среды в горелке, со спектрограммой того или иного эталонного раствора или «сверхчистой» воды при одинаковых условиях регистрации спектров, в частности, непосредственно в географической точке местности, в которой осуществляется взятие пробы (при условии наличия источника электропитания в виде генератора или бытовой электросети переменного тока), при этом устройство должно обеспечивать формирование электронного отчета и соответствующей документации с фиксацией момента времени и координат точки взятия и анализа пробы.

Техническим результатом предлагаемого изобретения является обеспечение:

- регистрируемых значений концентрации щелочных элементов примесей в исследуемом водном растворе с чувствительностью на уровне 1 ppm;

- возможности контроля элементов водорастворимых соединений щелочных и щелочно-земельных металлов в анализируемом водном растворе в диапазоне 200-800 нм;

- регистрации спектра излучения плазменной струи в диапазоне 200-800 нм;

- фокусирования излучения в объектив спектрометра;

- заправки плазменной горелки эталонной пробой воды;

- заправки плазменной горелки тестовой пробой воды;

- сохранение эталонной и тестовой спектрограмм в электронном отчетном документе;

- сравнения тестовой и эталонной спектрограмм;

- длительности регистрации спектрограммы в диапазоне 190-815 нм за один цикл сканирования на предварительно подготовленной тест-системе не более 15 минут, за один цикл сканирования на предварительно подготовленной тест-системе не более 15 минут;

- потребляемой мощности не более 5 кВт от бытовой электросети или электрогенератора.

Указанный технический результат достигается тем, что мобильное устройство (фиг. 1) для определения примеси в воде и водных растворах включает в себя электродуговую плазменную горелку (1), генерирующую на выходе из сопла (2) плазменную струю, корпус (3), расположенную внутри него вентиляционную систему,, спектрометр (4), отражающую и фокусирующую систему, консоль (6), регулируемую платформу (5) для крепления спектрометра, а также отражающей и фокусирующей системы (8), которая фокусирует излучение плазменной струи на объектив (7) спектрометра. Устройство обеспечивает регистрацию спектров водорастворимых соединений щелочных и щелочно-земельных металлов с чувствительностью не менее 1 ppm в диапазоне 190-815 нм, длительность регистрации спектрограмм в диапазоне 190-815 нм за один цикл сканирования составляет не более 15 мин, и обеспечивает сохранение спектрограмм в электронном отчетном документе. Устройство может быть снабжено блоком подключения к автономному электрогенератору переменного тока с напряжением 220 В мощностью до 5 кВт для питания электросистем устройства.

Для обеспечения мобильности корпус устройства может быть снабжен ручками для переноски, петлями и другими устройствами для закрепления на транспортном средстве или автомобильном прицепе. Возможно также закрепление на нижней части бескамерных колесах небольшого диаметра для перемещения по ровной поверхности. Также устройство может быть снабжено теплозащитным кожухом для перевозки в холодное время года. Возможна установка встроенного термометра для контроля температуры внутри устройства.

Устройство функционирует следующим образом.

Горелку устройства приводят в исходное состояние путем промывания деионизованной водой с удельным сопротивлением 18 МОм до состояния, при котором удельное сопротивление деионизованной воды на выходе сопла горелки (воды после использования для промывки) не менее 2 МОм. Возможно использование дистиллированной воды с удельным сопротивлением 0,007 МОм. В этом случае удельное сопротивление использованной для промывки воды не должно изменяться. После этого горелку продувают атмосферным воздухом для удаления влаги на внутренних поверхностях. Далее заправляют горелку эталонной пробой воды объемом не менее 60 мл и не более 120 мл.

Подают электропитание на вход блока подключения к электросети. Включают устройство. Включают горелку, запуская процесс генерации плазмы с помощью нажатия кнопки на пусковом устройстве горелки. Для стабилизации плазменной струи ожидают не менее 1 минуты.

Последовательно размещают горелку в трех фиксированных положениях относительно объектива спектрометра с помощью регулируемой платформы. С помощью спектрометра определяют положение горелки, при котором в объектив спектрометра попадет максимальный полезный сигнал излучения. Фиксируют горелку в данном положении. При необходимости усиления полезного сигнала излучения применяют отражающую и фокусирующую систему.

Затем производят спектральный анализ излучения плазменной струи. Получают эталонную спектрограмму. Контролируют эталонную спектрограмму на предмет отсутствия посторонних примесей. Сохраняют эталонную спектрограмму в памяти. Выключают горелку. Отключают электропитание устройства.

Эталонную пробу воды сливают из горелки. Однократно промывают горелку анализируемой жидкостью (водой или водным раствором). Продувают горелку атмосферным воздухом для удаления влаги на внутренних поверхностях.

Наполняют резервуар горелки анализируемой пробой воды или водного раствора объемом не менее 60 мл и не более 120 мл. Подают электропитание на вход блока подключения к электросети. Запускают процесс генерации плазмы с помощью нажатия кнопки на пусковом устройстве горелки. Для стабилизации плазменной струи ожидают не менее 1 минуты.

Регистрацию спектрограммы анализируемой пробы осуществляют в условиях, по возможности идентичных условиям регистрации спектрограммы эталонной пробы, включая положение горелки относительно объектива и (при использовании) отражающей и фокусирующей системы. Производят спектральный анализ излучения плазменной струи. Получают анализируемую спектрограмму.

После регистрации спектрограммы анализируемой пробы производят сравнение анализируемой спектрограммы с эталонной. Сравнение может быть визуальным (для контроля идентичности) или с использованием математических методов и компьютерных программ.

Осуществление изобретения

Изобретение реализовано в виде опытного образца так называемой мобильной тест-системы (МТС) массой не более 100 кг и габаритами 2,5×2,5×1,5 м, осуществляющей достижение указанного технического результата. На фиг. 2 и 3 представлены полученные спектрограммы для деионизованной воды и водного раствора NaCl концентрацией 1 ppm.

Источники информации

1. Спектрометр ПАПУАС-4ДИ. http://www.sp-pribor.ru/index.php/products/p4

2. Патент РФ 23268845

3. Патент РФ 2270994

4. Патент РФ 2252412

5. Патент РФ 2655629


МОБИЛЬНОЕ УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПРИМЕСЕЙ В ВОДЕ И ВОДНЫХ РАСТВОРАХ
МОБИЛЬНОЕ УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПРИМЕСЕЙ В ВОДЕ И ВОДНЫХ РАСТВОРАХ
МОБИЛЬНОЕ УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПРИМЕСЕЙ В ВОДЕ И ВОДНЫХ РАСТВОРАХ
МОБИЛЬНОЕ УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПРИМЕСЕЙ В ВОДЕ И ВОДНЫХ РАСТВОРАХ
Источник поступления информации: Роспатент

Showing 1-10 of 15 items.
10.06.2013
№216.012.4802

Способ получения углеродосодержащих наночастиц

Изобретение может быть использовано в плазмохимии и фармакологии. С помощью парожидкостного плазмотрона формируют плазменную струю из спирта или его водного раствора. Плазменную струю вводят в объем воды, погружая сопло плазмотрона перпендикулярно поверхности воды на глубину 10-20 мм....
Тип: Изобретение
Номер охранного документа: 0002484014
Дата охранного документа: 10.06.2013
20.02.2014
№216.012.a3dd

Малошумный асинхронный двигатель

Изобретение относится к области электротехники и может быть использовано в любой промышленности и на транспорте, а также при создании объектов, к которым предъявляются высокие требования относительно уровня шумов и вибраций. Техническим результатом является снижение уровня акустических шумов и...
Тип: Изобретение
Номер охранного документа: 0002507664
Дата охранного документа: 20.02.2014
10.09.2014
№216.012.f394

Совмещенная обмотка асинхронной машины для 2р=2, z=18

Изобретение относится к области электротехники и электротехнической промышленности и позволяет изготавливать энергоэффективные электрические машины, в частности высокомоментные малошумные асинхронные двигатели с повышенными эксплуатационными характеристиками. Предлагаемая совмещенная обмотка...
Тип: Изобретение
Номер охранного документа: 0002528179
Дата охранного документа: 10.09.2014
10.01.2015
№216.013.1ab6

Совмещенная обмотка асинронной машины для 2p=4, z=36

Изобретение относится к электротехнической промышленности и позволяет изготавливать энергоэффективные электрические машины, в частности высокомоментные малошумные асинхронные двигатели с повышенными эксплуатационными характеристиками. Совмещенная обмотка асинхронной машины с числом пар полюсов...
Тип: Изобретение
Номер охранного документа: 0002538266
Дата охранного документа: 10.01.2015
10.09.2015
№216.013.79e6

Обмотка двухполюсной трехфазной электромашины для z=18

Изобретение относится к области электротехники и может быть использовано при производстве погружных скважинных насосов, электротранспорта, в частности гибридных, и электромобилей. Технический результат заключается в реализации двухполюсной трехфазной энергоэффективной малошумной электрической...
Тип: Изобретение
Номер охранного документа: 0002562795
Дата охранного документа: 10.09.2015
20.11.2015
№216.013.90a6

Совмещенная обмотка электромашины для 2p=12, z=36

Изобретение относится к электротехнической промышленности и позволяет изготавливать энергоэффективные электрические машины, в частности автомобильные синхронные генераторы. Технический результат - повышение эксплуатационных характеристик электромашины. Совмещенная обмотка электромашины с числом...
Тип: Изобретение
Номер охранного документа: 0002568646
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90c0

Малошумный энергоэффективный электропривод

Изобретение относится к электротехнике, в частности к электроприводу транспортных средств. Техническим результатом является повышение энергоэффективности и надежности привода, снижение уровня акустического шума. Малошумный энергоэффективный электропривод включает машину электрическую...
Тип: Изобретение
Номер охранного документа: 0002568672
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92dc

Способ охлаждения электропривода транспортного средства

Изобретение относится к электротранспортному машиностроению и может быть использовано, в частности, при изготовлении электромобилей. Для охлаждения электропривода транспортного средства используют термодатчики и регулирующие устройства, способствующие понижению и стабилизации рабочих температур...
Тип: Изобретение
Номер охранного документа: 0002569214
Дата охранного документа: 20.11.2015
13.01.2017
№217.015.71e1

Парожидкостной плазмотрон

Изобретение относится к парожидкостному плазмотрону. На металлическом трубчатом корпусе закреплен резервуар для рабочей жидкости, заполненный влаговпитывающим материалом. Сопло-конфузор удерживается на передней части трубчатого корпуса съемным колпачком с помощью резьбового соединения. Внутри...
Тип: Изобретение
Номер охранного документа: 0002596570
Дата охранного документа: 10.09.2016
09.06.2018
№218.016.5ba7

Способ определения элементного состава капельных жидкостей

Изобретение относится к способам анализа элементного состава веществ. Способ определения элементного состава капельных жидкостей включает: возбуждение плазменного разряда, доставку в зону разряда частиц анализируемой жидкости, регистрацию и обработку спектров излучения анализируемой жидкости,...
Тип: Изобретение
Номер охранного документа: 0002655629
Дата охранного документа: 29.05.2018
+ добавить свой РИД