×
23.02.2020
220.018.05ba

Результат интеллектуальной деятельности: СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к лазерной технике. В способе поперечной накачки рабочей среды лазера, включающем передачу излучения от диодных источников накачки в рабочую среду лазера с помощью оптических волокон, плотно упакованных на концевом участке с образованием излучающей площадки размером d×h, где d≤h, h - размер излучающей площадки волокон по оси распространения излучения генерации d - размер излучающей площадки волокон перпендикулярно оси распространения излучения генерации, и формирующей оптики, которая создает поле накачки лазера на пересечении пучка накачки и рабочей среды лазера, которая располагается в пространстве между формирующей оптикой и плоскостью действительного изображения излучающей площадки, причем дальнюю границу рабочей среды совмещают с этой плоскостью, формирующую оптику выполняют из двух компонентов. Первый из компонентов представляет собой аксиально-симметричную линзу, формирующую мнимое изображение излучающей площадки, причем линзу располагают на минимальном расстоянии L от излучающей площадки, определяют ее фокусное расстояние как где θ - полная расходимость излучения на выходе из оптических волокон. Второй компонент устанавливают в задней фокальной плоскости первой линзы и определяют его фокусное расстояние как где D - размер поля накачки, совпадающий с размером рабочей среды по оси распространения излучения генерации, при этом на расстоянии от задней фокальной плоскости второго компонента формирующей оптики строится действительное изображение излучающей площадки, где - расстояние от излучающей площадки до ее мнимого изображения. Технический результат заключается в уменьшении габаритов формирующей оптики при создании высокой интенсивности накачки в среде лазера. 3 з.п. ф-лы, 1 ил.

Изобретение относится к лазерной технике и может быть использовано для оптической поперечной накачки рабочей среды в лазерной кювете.

При поперечной накачке рабочей среды лазера вектора направленности излучения накачки и генерации находятся во взаимно ортогональных плоскостях, что позволяет увеличивать мощность генерации путем увеличения габаритных размеров накачиваемой рабочей среды за счет наращивания мощности накачки. Благодаря эффективному преобразованию электрической энергии в световую и узкой ширине спектра излучения для накачки рабочей среды лазера широко используются диодные источники накачки. Для достижения высоких энергетических характеристик лазера требуется решить задачу суммирования излучения от диодных источников, его передачу и формирование в рабочей среде лазера с сохранением компактности лазера.

Известен способ поперечной накачки рабочей среды лазера по патенту US 4713822 «Laser device» опублик. 15.12.1987 г., включающий передачу излучения от диодных источников накачки с помощью оптических волокон к формирующей оптике, создающей поле накачки лазера на пересечении пучка накачки и излучения генерации в рабочей среде лазера, при этом торцы волокон плотно упакованы на концевом участке в ряд и расположены в одной плоскости с образованием излучающей площадки. Излучающую площадку располагают в фокальной плоскости формирующей оптики, состоящей из одной цилиндрической линзы.

Недостатками указанного способа является использование цилиндрической линзы, приводящее к формированию поля накачки лишь по одной оси, что приводит к уменьшению интенсивности пучка накачки в активной среде лазера и не позволяет сохранить размер формируемой области накачки постоянным вдоль оси распространения излучения генерации, образуя в активной среде лазера зоны с отсутствием излучения накачки, что приводит к снижению выходных энергетических характеристик лазера. Кроме того, увеличение мощности накачки путем добавления новых рядов волокон нарушает коллимацию пучка накачки в активной среде, что приводит к уменьшению длины области накачки и не позволяет достичь высоких выходных энергетических характеристик лазера. Использование только одного типа формы излучающей площадки уменьшает экспериментальные возможности применения данного способа, а необходимость расположения активной среды вблизи формирующей оптики усложняет доступ к элементам лазера и сокращает варианты модернизации центральной части лазера.

Совокупность признаков, наиболее близкая к совокупности существенных признаков заявляемого изобретения, присуща известному способу поперечной накачки рабочей среды лазера по патенту RU №2657125 «Способ поперечной накачки рабочей среды лазера» опублик. 08.06.2018 г., включающему передачу излучения от диодных источников накачки в рабочую среду лазера с помощью оптических волокон, плотно упакованных на концевом участке с образованием излучающей площадки размером d×h, где d≤h, h - размер излучающей площадки волокон по оси распространения излучения генерации d - размер излучающей площадки волокон перпендикулярно оси распространения излучения генерации, и формирующей оптики, которая создает поле накачки лазера на пересечении пучка накачки и рабочей среды лазера, которую располагают в пространстве между формирующей оптикой и плоскостью действительного изображения излучающей площадки, причем дальнюю границу рабочей среды совмещают с этой плоскостью.

Недостатками указанного способа, принятого за прототип, является рост габаритов формирующей оптики при увеличении мощности накачки за счет увеличения размеров излучающей площадки, поскольку излучающую площадку располагают на расстоянии от передней главной плоскости формирующей оптики, где D - размер области накачки, совпадающий с размером рабочей среды по оси распространения излучения генерации. Так, при квадратной излучающей площадке со стороной h и размере рабочей среды D=h, минимальный диаметр формирующей оптики составит около 4h. Крупногабаритная оптика сложна в изготовлении, имеет высокую стоимость, а также приводит к увеличению габаритов самого лазера. Кроме того, соответствующее увеличение толщины формирующей оптики приводит к уменьшению ее заднего рабочего отрезка, что усложняет внедрение конструкторских решений, направленных на модернизацию центральной части лазерной кюветы, а также уменьшает экспериментальные возможности применения данного способа.

Задачей, на решение которой направлено заявляемое изобретение, является формирование поля накачки в рабочей среде лазера с сохранением постоянного размера вдоль оси генерации на всем протяжении рабочей среды по оси накачки и с созданием высокой интенсивности излучения, при удержании габаритов формирующей оптики, близкими к размерам излучающей площадки.

Техническим результатом настоящего изобретения является значительное уменьшение габаритов формирующей оптики при создании высокой интенсивности накачки в среде лазера, что увеличивает экспериментальные возможности применения данного способа.

Технический результат достигается тем, что в способе поперечной накачки рабочей среды лазера, включающем передачу излучения от диодных источников накачки в рабочую среду лазера с помощью оптических волокон, плотно упакованных на концевом участке с образованием излучающей площадки размером d×h, где d≤h, h -размер излучающей площадки волокон по оси распространения излучения генерации d - размер излучающей площадки волокон перпендикулярно оси распространения излучения генерации, и формирующей оптики, которая создает поле накачки лазера на пересечении пучка накачки и рабочей среды лазера, которая располагается в пространстве между формирующей оптикой и плоскостью действительного изображения излучающей площадки, причем дальнюю границу рабочей среды совмещают с этой плоскостью, новым является то, что формирующую оптику выполняют из двух компонентов, первый из которых представляет собой аксиально-симметричную линзу, формирующую мнимое изображение излучающей площадки, причем линзу располагают на минимальном расстоянии L от излучающей площадки, определяют ее фокусное расстояние как , где θ - полная расходимость излучения на выходе из оптических волокон, а второй компонент устанавливают в задней фокальной плоскости первой линзы и определяют его фокусное расстояние как где D - размер поля накачки, совпадающий с размером рабочей среды по оси распространения излучения генерации, при этом на расстоянии от задней фокальной плоскости второго компонента формирующей оптики строится действительное изображение излучающей площадки, где - расстояние от излучающей площадки до ее мнимого изображения.

Расположение первой линзы формирующей оптики вблизи от излучающей площадки позволяет удержать ее размер, сопоставимым с размером излучающей площадки, а расчет ее фокусного расстояния направлен на коллимацию крайних лучей от большей стороны излучающей площадки, что приводит к сохранению размера пучка излучения накачки на расстоянии, равном фокусному расстоянию этой линзы.

Установка второго компонента формирующей оптики, состоящего из одной или нескольких линз, в фокусе первой, также сохраняет его габариты, сопоставимыми с размером излучающей площадки, а использование двух линз во втором компоненте формирующей оптики уменьшает сферическую аберрацию и увеличивает задний фокальный отрезок данной линзовой системы. Уменьшение сферической аберрации формирующей оптики увеличивает интенсивность в формируемом поле накачки и делает его границы более резкими, что позволяет наиболее точно согласовать размеры рабочей среды с размерами поля накачки. Небольшие габариты формирующей оптики и увеличение заднего фокального отрезка данной линзовой системы увеличивает экспериментальные возможности применения данного способа.

На фиг. 1, схематически изображена реализация заявленного способа, где 1 - диодные источники накачки, 2 - оптические волокна, 3 - излучающая площадка, 4 - мнимое изображение излучающей площадки, 5, 6 - первый и второй компоненты формирующей оптики, соответственно, 7 - рабочая среда лазера. Показан ход лучей из торцов крайних волокон, поясняющий формирование поля накачки с поперечным размером D, совпадающим с размером рабочей среды лазера по оси генераций.

В заявленном способе поперечной накачки активной среды лазера излучение от диодных источников накачки 1 с помощью оптических волокон 2 передается к предварительно рассчитанной и выбранной формирующей оптике. Волокна плотно упакованы на концевом участке с расположением всех торцов волокон в одной плоскости, образующей излучающую площадку 3 размером h×d и расходимостью излучения на выходе θ. Формирующая оптика состоит из двух компонентов 5 и 6 и создает требуемое поле накачки в рабочей среде 7 лазера. Реализация заявленного способа позволяет удержать габариты формирующей оптики близкими к размеру излучающей площадки, что имеет существенное значение при увеличении мощности накачки.

На макете лабораторного газового лазера была экспериментально показана осуществимость заявленного способа. В данных экспериментах излучение от диодных источников накачки передавалось посредством кварцевых оптических волокон с диаметром светопроводящей сердцевины 400 мкм и расходимостью на выходе из волокна θ=0,4 рад. Посредством компоновки торцов волокон собрана излучающая площадка размером h=130 мм по оси распространения излучения генерации. Данный способ реализовывал поперечную накачку газовой рабочей среды размером вдоль оси генерации D=132 мм. Формирующая оптика состояла из двух компонентов. Первый компонент представлял собой кварцевую плосковыпуклую линзу, которая была установлена на расстоянии L=120 мм от излучающей площадки. Фокусное расстояние линзы рассчитано по формуле мм. Второй компонент формирующей оптики устанавливалась на расстоянии 445 мм от первой линзы и состояла из двух кварцевых плоско-выпуклых линз, состыкованных выпуклыми поверхностями друг с другом, эффективное фокусное расстояние которых было рассчитано по формуле мм. При этом на расстоянии мм от задней фокальной плоскости второго компонента формирующей оптики построилось действительное изображение излучающей площадки, размером по оси генерации D=132 мм. Рабочая среда лазера была расположена между формирующей оптикой и плоскостью действительного изображения, причем дальняя граница рабочей среды была совмещена с этой плоскостью.

Формирующая оптика создавала интенсивность излучения накачки в рабочей среде лазера равную интенсивности излучения на выходе из излучающей площадки и состояла из трех линз диаметром 200 мм, что лишь в 1,5 раза больше размера излучающей площадки. В аналоге, взятого за прототип, диаметр линз составил бы около 400 мм. При возможности более близкого расположения первой линзы формирующей оптики к излучающей площадке диаметр линз можно уменьшить до 150 мм. Таким образом, заявленный технический результат был достигнут.

Кроме того, пространство между последней линзой и рабочей средой лазера позволило установить конструкцию уплотнения окон лазерной кюветы предотвращающую разгерметизацию при давлении внутри лазерной кюветы от 10-6 атм до 10 атм, а также установить конструкцию защиты окон кюветы от их загрязнения продуктами рабочей среды лазера.

С использованием заявленного способа поперечной накачки лазера получена генерация газового лазера с КПД около 30%, что подтверждает осуществимость заявленного способа.


СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
Источник поступления информации: Роспатент

Showing 11-20 of 796 items.
20.03.2014
№216.012.acfd

Устройство для испытания изделий, содержащих взрывчатые материалы

Использование: заявляемое изобретение относится к области специального испытательного оборудования, предназначенного для испытания изделий, содержащих взрывчатые материалы (ВМ), на стойкость к воздействию ударных нагрузок на копровых стендах. Сущность изобретения: устройство для испытания...
Тип: Изобретение
Номер охранного документа: 0002510000
Дата охранного документа: 20.03.2014
10.05.2014
№216.012.c267

Ампульное облучательное устройство

Изобретение относится к ядерной технике, а более конкретно - к облучательным устройствам и тепловыделяющим сборкам для реакторных испытаний топливных образцов, а также модельных твэлов в исследовательском реакторе, и может быть использовано при разработке и обосновании конструкций твэла для...
Тип: Изобретение
Номер охранного документа: 0002515516
Дата охранного документа: 10.05.2014
20.07.2014
№216.012.de01

Способ получения диоксида урана

Изобретение относится к области неорганической химии, в частности к металлургии урана и производству соединений урана, и может быть использовано в химической и ядерных технологиях. Способ получения диоксида урана заключается в гидрировании металлического урана при температуре 200-220°С,...
Тип: Изобретение
Номер охранного документа: 0002522619
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de9a

Алмазный детектор

Изобретение относится к ядерной физике и может быть использовано для регистрации ядерных излучений, например, для регистрации спектров быстрых нейтронов в экспериментальных исследованиях и на объектах ядерной энергетики. Алмазный детектор содержит чувствительный к ядерному излучению элемент,...
Тип: Изобретение
Номер охранного документа: 0002522772
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dec4

Способ получения порошков нитрида урана

Изобретение относится к порошковой металлургии и может быть использовано для получения исходного сырья для изготовления нитридного ядерного топлива. Способ получения порошка нитрида урана включает нагрев металлического урана, который осуществляют в вакуумируемой реакционной емкости при...
Тип: Изобретение
Номер охранного документа: 0002522814
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df10

Оптоэлектронное устройство для передачи аналоговых сигналов

Изобретение относится к измерительной технике для передачи аналоговых электрических сигналов с использованием светового канала. Технический результат состоит в расширении динамического диапазона, отношения сигнал/шум волоконно-оптического канала в условиях сильных электромагнитных помех. Для...
Тип: Изобретение
Номер охранного документа: 0002522890
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df3e

Блок детектирования альфа-частиц

Изобретение относится к области ядерного приборостроения. Блок детектирования альфа-частиц содержит камеру с впускным и выпускным отверстиями для воздушного потока, на пути которого в корпусе камеры расположены друг над другом фильтр и детектор альфа-частиц, задержанных фильтром, и соединенный...
Тип: Изобретение
Номер охранного документа: 0002522936
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dfa3

Стенд для испытания образцов из хрупких и малопрочных материалов

Изобретение относится к испытательной технике, а именно к стендам для определения предела прочности хрупких и малопрочных материалов. Стенд содержит основание, опоры, нагружающее устройство, снабженное силоизмерителем, и образец в виде диска, размещенный между опорами через прокладки из...
Тип: Изобретение
Номер охранного документа: 0002523037
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e125

Имитатор тепловыделяющего элемента ядерного реактора

Изобретение относится к области теплофизических исследований и может быть использовано при изучении поведения тепловыделяющих элементов (твэлов) ядерных реакторов. Имитатор твэла содержит оболочку, в которой размещен столб таблеток натурного топлива с центральным отверстием, и расположенный с...
Тип: Изобретение
Номер охранного документа: 0002523423
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e557

Контейнер для взрывоопасных грузов

Контейнер для взрывоопасных грузов относится к контейнерным перевозкам, в частности к специальным контейнерам, предназначенным для безопасной перевозки, хранения и технического обслуживания взрывоопасных грузов в регионах с повышенной социальной напряженностью и диверсионной опасностью, а также...
Тип: Изобретение
Номер охранного документа: 0002524501
Дата охранного документа: 27.07.2014
Showing 11-20 of 23 items.
20.10.2015
№216.013.83d8

Мобильный оптический телескоп

Изобретение относится к оптическому приборостроению и лазерной технике. Мобильный оптический телескоп содержит выполненный с возможностью установки на транспортном средстве кузов-контейнер с агрегатным отсеком, в котором на платформе кузова-контейнера жестко закреплено основание со стойками,...
Тип: Изобретение
Номер охранного документа: 0002565355
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87cc

Способ автоматизированной юстировки оптической системы с помощью маркеров

Изобретение относится к области лазерной техники и может быть использовано для проведения юстировки элементов лазерных установок, в том числе при наличии оптических аберраций в тракте. Способ автоматизированной юстировки оптической системы основан на визуализации картины маркеров на выходе...
Тип: Изобретение
Номер охранного документа: 0002566367
Дата охранного документа: 27.10.2015
10.12.2015
№216.013.96b0

Генератор электромагнитных импульсов

Изобретение относится к технике генерации электромагнитных импульсов (ЭМИ) и может быть использовано в импульсной радиолокации и при испытаниях радиоэлектронной аппаратуры на воздействие импульсных полей. В генераторе электромагнитных импульсов, который включает в себя плоский фотокатод и...
Тип: Изобретение
Номер охранного документа: 0002570196
Дата охранного документа: 10.12.2015
27.12.2016
№216.013.9e1a

Генератор электромагнитных импульсов

Изобретение относится к технике генерации электромагнитных импульсов (ЭМИ) и может быть использовано в импульсной радиолокации и при испытаниях радиоэлектронной аппаратуры на воздействие импульсных полей. Устройство включает в себя фотокатод и сетчатый анод, рабочие поверхности которых...
Тип: Изобретение
Номер охранного документа: 0002572104
Дата охранного документа: 27.12.2015
20.04.2016
№216.015.2af9

Способ когерентного сложения лазерного излучения в многоканальных непрерывных лазерах

Способ когерентного сложения включает в себя разделенное на каналы лазерное излучение, направленное на соответствующие каналам фазовые модуляторы. После прохождения фазовых модуляторов все каналы выставляют параллельно друг другу, при этом волновой фронт в каждом канале делают плоским. Часть...
Тип: Изобретение
Номер охранного документа: 0002582300
Дата охранного документа: 20.04.2016
04.04.2018
№218.016.2e9e

Устройство для передачи светового излучения большой мощности

Устройство для передачи светового излучения большой мощности относится к квантовой электронике, в частности к технологическим лазерным устройствам. Устройство для передачи светового излучения большой мощности содержит заполненную теплоносителем камеру, ограниченную с торца прозрачным оптическим...
Тип: Изобретение
Номер охранного документа: 0002644448
Дата охранного документа: 12.02.2018
10.05.2018
№218.016.42ff

Способ определения характеристик движущегося объекта и устройство для его осуществления

Группа изобретений относится к технике оптической регистрации, а именно к технике лазерного зондирования и фотоэлектрической регистрации обратно отраженного излучения, преимущественно быстропротекающих процессов, и позволяет определять массовые характеристики движущихся объектов. Устройство...
Тип: Изобретение
Номер охранного документа: 0002649653
Дата охранного документа: 04.04.2018
11.06.2018
№218.016.6117

Способ поперечной накачки активной среды лазера

Изобретение относится к лазерной технике и может быть использовано для оптической поперечной накачки активной среды лазерной кюветы. Сущность изобретения: по сравнению с известным способом поперечной накачки активной среды лазера, включающим передачу излучения от диодных источников накачки с...
Тип: Изобретение
Номер охранного документа: 0002657125
Дата охранного документа: 08.06.2018
18.05.2019
№219.017.5986

Пространственно-временной модулятор света

Изобретение относится к квантовой электронике. В модуляторе света, содержащем установленную в корпусе базу из твердофазного электрооптического материала с оптически обработанной поверхностью в плоскости, перпендикулярной падающему световому излучению, база представляет собой расположенные в...
Тип: Изобретение
Номер охранного документа: 0002429512
Дата охранного документа: 20.09.2011
09.06.2019
№219.017.7a81

Генератор электромагнитных импульсов

Изобретение относится к области импульсной радиотехники. Генератор электромагнитных импульсов содержит импульсный или импульсно-периодический лазер, источник напряжения, коаксиальную линию, сетчатый параболоидный анод, фотокатод, экран фотокатода, рассеиватель лазерного излучения, размещенный...
Тип: Изобретение
Номер охранного документа: 0002388100
Дата охранного документа: 27.04.2010
+ добавить свой РИД