×
23.02.2020
220.018.0598

Результат интеллектуальной деятельности: Способ повышения интенсивности люминесценции оксидных диэлектриков

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в фотонике, лазерной технике и оптоэлектронике при изготовлении лазерных фотоприемников, оптически активных слоёв фотолюминесцентных, катодолюминесцентных и электролюминесцентных устройств, амперометрических биосенсоров, хемилюминесцентных сенсоров, золь-гелевых стекол. Нанопорошок ZrO подвергают холодному одноосному прессованию при давлении 900–1100 кг⋅с/см. Полученные компакты термообрабатывают в вакууме при температуре более 1100°С в присутствии графитовой стружки, полностью окружающей компакты. Затем компакты повторно обрабатывают на воздухе при температуре более 700°С в течение 1 ч. Технический результат – увеличение количества кислородных вакансий в матрице диоксида циркония, что приводит к увеличению интенсивности люминесценции диоксида циркония в полосе 480 нм. 4 ил.

Изобретение относится к люминесцентным материалам и их применению в электронике и может быть использовано в фотонике, лазерной технике, оптоэлектронике. Оно может применяться при разработке лазерных фотоприемников, оптически активных слоев фотолюминесцентных, катодолюминесцентных и электролюминесцентных устройств, амперометрических биосенсоров, хемилюминесцентных сенсоров, золь-гелевых стекол, легированных функциональными наночастицами (полупроводниковыми или металлическими).

Известны способы повышения интенсивности люминесценции:

- патент RU 2628781 (Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской Академии наук «Люминесцентное вещество»);

- патент RU 2108598 (Кемеровский государственный университет «Рабочее вещество для термолюминесцентного дозиметра ионизирующих излучений»).

Общим недостатком данных методов является то, что в них для повышения интенсивности люминесценции используются легирующие примеси. Известно, что в формировании полосы люминесценции ZrO2 при 480 нм принимают участие кислородные вакансии. Поэтому введение примесей в матрицу диоксида циркония, как в указанных аналогах, не приведет к увеличению интенсивности люминесценции полосы при 480 нм.

Также известно люминесцентное вещество [патент RU 2024570 (Бурятский институт естественных наук СО РАН «Люминесцентное вещество»)], в котором шихту из оксидов K2O; ВаО; Y2O3; Nd2O3; MoO3 гомогенизируют и отжигают в две стадии: при
550 – 570°С 35 – 40 ч и 720 – 750°С 70 – 80 ч.

Недостатком данного способа является низкая температура термообработки, при которой не образуются кислородные вакансии за счет термохимического окрашивания. В результате такой обработки интенсивность свечения ZrO2 не изменится.

Из литературы известен способ создания профилированного монокристалла сапфира с примесью углерода, выращенный методом Степанова [М.С. Аксельрод, В.С. Кортов, И.И. Мильман, Е.А. Горелова, А.А. Борисов, Л.М. Затуловский, Д.Я. Кравецкий, И.Е. Березина, Н.К. Лебедев «Профилированные легированные углеродом монокристаллы окиси алюминия для термолюминесцентных дозиметрических детекторов»].

Данный способ основан на выращивании кристаллов в присутствии графита. В результате такой обработки наблюдается образование карбида циркония на поверхности компактов, что вызывает почернение компактов и уменьшение интенсивности люминесценции. Указанный способ не предусматривает какой-либо повторной обработки монокристаллов с целью устранения данного почернения.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому следует считать способ повышения интенсивности люминесценции диоксида циркония на основе термообработки микрокристаллических компактов, полученных путем холодного одноосного прессования, на воздухе в муфельной печи при 400°С в течение 1 часа [S.V. Nikiforov, V.S.Kortov, M.G.Kazantseva, K.A.Petrovykh. Luminescent properties of monoclinic zirconium oxide. Journal of Luminescence 166 (2015) 111–116]. При реализации указанного способа интенсивность люминесценции возрастает только за счет увеличения размера зерна. Недостатком данного способа является отсутствие условий для формирования кислородных вакансий, что не позволяет достичь существенного повышения интенсивности люминесценции.

Проблемой, которую решает изобретение, является низкая интенсивность люминесценции диоксида циркония в полосе 480 нм.

Сущность заявляемого способа повышения интенсивности люминесценции оксидных диэлектриков заключается в том, что нанопорошок ZrO2 путем холодного одноосного прессования при давлении 900–1100 кг⋅с/см2 формируют в компакты с последующей их термообработкой, отличающейся тем, что термообработку осуществляют в вакууме при температуре более 1100°С в присутствии графита в виде графитовой стружки, полностью окружающей компакты, с последующей повторной обработкой компактов на воздухе при температуре более 700°С в течение 1 часа.

Для реализации заявляемого способа нанопорошок диоксида циркония формируется методом холодного одноосного прессования при давлении 900-1100 кг⋅с/см2 в компакты. Выбор таких значений обусловлен тем, что при больших давлениях происходит расслаивание компактов, а при меньших они становятся хрупкими. В обоих случаях ухудшаются их прочностные характеристики, что может привести к неконтролируемому изменению интерсивности люминесценции. Далее компакты подвергаются высокотемпературной обработке в присутствии углерода в виде графитовой стружки массой 1 г, полностью окружающей компакты в алюминиевых тиглях (фиг. 1) в электровакуумной печи при температуре свыше 1100°C. Полное окружение компакта графитовой стружкой позволяет достичь лучшей воспроизводимости интенсивности люминесценции компактов, полученных как в одном, так и в разных технологических циклах термообработки по сравнению с отжигом в графитовых тиглях за счет более равномерного распределения кислородных вакансий по объему компакта. Среднее квадратичное отклонение светосуммы термолюминесценции компактов, отожженных в графитовой стружке, в 4 раза меньше, чем у компактов, отожженных в графитовых тиглях (фиг. 2). Выбор температуры свыше 1100°С объясняется тем, что при такой температуре наблюдается интенсивная диффузия атомов кислорода. За счет чрезвычайно низкого парциального давления кислорода и наличия графита в печи атомы решеточного кислорода диффундируют в окружающую атмосферу с образованием СО и созданием дефицита кислорода в анионной подрешетке диоксида циркония (кислородные вакансии).

Присутствие графита при отжиге обусловливало восстановление поверхности диоксида циркония до карбида циркония. Химическая реакция образования карбида представлена ниже в формуле (1):

ZrO2+3С → ZrC+2СО. (1)

Образование карбида циркония обуславливает потемнение компактов. Это потемнение приводит к уменьшению интенсивности люминесценции диоксида циркония (фиг. 3). Интенсивность люминесценции после термообработки в присутствии графита (кривая 2) значительно ниже интенсивности люминесценции компактов до термообработки (кривая 1).

С целью устранения карбида циркония с поверхности компактов после термообработки в вакууме ZrO2 отжигался на воздухе при температуре 900°C в муфельной печи в течение 1 часа. Соответствующая химическая реакция приведена ниже в формуле (2):

ZrC+O2 → ZrO2+C (2)

При температурах выше 700°C карбид циркония взаимодействует с кислородом с образованием ZrO2. В результате этого происходит восстановление углерода. В обработанных таким образом компактах, представляющих собой керамику, содержание карбида циркония значительно снижается. Из фиг.4 видно, что интенсивность люминесценции обработанного таким образом диоксида циркония (кривая 2) значительно увеличивается в сравнении с не обработанным ZrO2 (кривая 1).

Технический результат – увеличение количества кислородных вакансий в матрице диоксида циркония в результате термохимического окрашивания в восстановительных условиях, что приводит к увеличению интенсивности люминесценции диоксида циркония в полосе 480 нм.

Способ повышения интенсивности люминесценции оксидных диэлектриков, включающий холодное одноосное прессование нанопорошка ZrO при давлении 900–1100 кгс/см с получением компактов с последующей их термообработкой, отличающийся тем, что термообработку осуществляют в вакууме при температуре более 1100°С в присутствии графита в виде графитовой стружки, полностью окружающей компакты, с последующей повторной обработкой компактов на воздухе при температуре более 700°С в течение 1 часа.
Способ повышения интенсивности люминесценции оксидных диэлектриков
Способ повышения интенсивности люминесценции оксидных диэлектриков
Источник поступления информации: Роспатент

Showing 71-80 of 207 items.
10.05.2018
№218.016.4657

Универсальный термоэнергетический генератор. варианты

Изобретение относится к области энергетик и может быть использовано в качестве автономных источников энергопитания. Заявлен термоэнергетический генератор, который содержит батарею термоэнергетических модулей, горячие электроды которых подключены к источнику тепловой энергии, а холодные...
Тип: Изобретение
Номер охранного документа: 0002650439
Дата охранного документа: 13.04.2018
10.05.2018
№218.016.4664

Твердый экстрагент с высокой динамической обменной емкостью для извлечения скандия и способ его получения

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов. Предлагается твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий стиролдивинилбензольную матрицу с ди-(2-этилгексил)фосфорной...
Тип: Изобретение
Номер охранного документа: 0002650410
Дата охранного документа: 13.04.2018
10.05.2018
№218.016.46c0

Способ получения нанокристаллического магнитотвердого материала из сплава системы (nd, ho)-(fe, co)-b

Изобретение относится к производству аморфных и нанокристаллических металлических сплавов путем сверхбыстрой закалки расплавов. Способ получения нанокристаллического магнитотвердого материала из сплава системы (Nd, Ho)-(Fe, Со)-В включает плавление сплава в тигле и выдавливание расплава через...
Тип: Изобретение
Номер охранного документа: 0002650652
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.487a

Гелиодистиллятор

Изобретение может быть использовано для опреснения морских, минерализованных и загрязненных вод. Гелиодистиллятор содержит корпус с прозрачным покрытием 1 и дном 2, размещенный на плавающей платформе 3, конденсатор 8, зачерненные жгуты 5 из гидрофильного материала, прикрепленные внутри корпуса...
Тип: Изобретение
Номер охранного документа: 0002651025
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4882

Солнечный опреснитель

Изобретение относится к дистилляции морских, загрязненных или минерализованных вод посредством солнечной энергии. Солнечный опреснитель содержит заполненную жидкостью емкость 1 с оптически прозрачной крышкой 2, теплоприемник 3, выполненный в виде полого металлического стержня, погруженного в...
Тип: Изобретение
Номер охранного документа: 0002651003
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4928

Способ переработки жидких отходов производства диоксида титана

Изобретение может быть использовано в химической, металлургической, электронной промышленности. Для переработки жидких отходов производства диоксида титана проводят экстракцию скандия из гидролизной серной кислоты (ГСК) на экстрагенте, состоящем из смеси ди(2-этилгексил)фосфорной кислоты...
Тип: Изобретение
Номер охранного документа: 0002651019
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4bff

Способ получения безобжигового зольного гравия

Изобретение относится к технологиям переработки кислых зол ТЭС в заполнитель для бетонов конструкционного назначения. Способ получения безобжигового зольного гравия на основе кислой золы, негашеной извести и щелочного активизатора твердения включает измельчение, дозирование, перемешивание...
Тип: Изобретение
Номер охранного документа: 0002651863
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4f4c

Глушитель звука выстрела, изготовленный по технологии селективного лазерного сплавления металлов

Изобретение относится к области вооружения, а именно к глушителям. Глушитель звука выстрела содержит рабочую часть с перегородками, ячеистое тело и корпус. Корпус выполнен в монолитном исполнении всех своих частей и элементов. Глушитель содержит ребристую структуру заданной шероховатости...
Тип: Изобретение
Номер охранного документа: 0002652767
Дата охранного документа: 28.04.2018
18.05.2018
№218.016.51c9

Способ подготовки к контролю качества монолитного бетона в сборно-монолитных стенах с элементами несъемной железобетонной опалубки

Изобретение относится к области контроля качества монолитного бетона в сборно-монолитных строительных конструкциях и может быть использовано в промышленном и гражданском строительстве. Способ подготовки к контролю качества монолитного бетона в сборно-монолитных стенах с элементами несъемной...
Тип: Изобретение
Номер охранного документа: 0002653211
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.56a7

Способ повышения электрической и механической прочности вакуумно-плотных окон ввода/вывода свч-излучений (варианты)

Изобретение относится к электронной и ускорительной технике для повышения электрической и механической прочности вакуумно-плотных окон ввода и/или вывода энергии СВЧ-излучения в волноводные ускоряющие структуры и может быть использовано при создании/эксплуатации мощных современных ускорителей...
Тип: Изобретение
Номер охранного документа: 0002654582
Дата охранного документа: 22.05.2018
Showing 1-10 of 10 items.
20.11.2013
№216.012.826d

Способ рафинирования сплавов на основе тантала

Изобретение относится к металлургии, в частности к рафинированию тантала. Способ рафинирования сплавов на основе тантала включает вакуумный электронно-лучевой переплав в горизонтальном кристаллизаторе помещенной в него шихты с выделением возгонов ее металлических примесей на конденсирующей их...
Тип: Изобретение
Номер охранного документа: 0002499065
Дата охранного документа: 20.11.2013
27.12.2013
№216.012.9256

Нагревательный блок и способ его изготовления

Изобретение относится к области электротехники, а именно к производству монолитных металлокерамических нагревательных элементов электрического, в частности резистивного, нагрева. Нагревательный блок содержит трубу из огнеупорного материала, резистивный металлокерамический нагреватель,...
Тип: Изобретение
Номер охранного документа: 0002503155
Дата охранного документа: 27.12.2013
20.08.2014
№216.012.ec0b

Способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия

Изобретение относится к измерению высоких доз поглощенного излучения. Сущность изобретения заключается в том, что способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия включает термообработку, при этом после считывания высокодозной...
Тип: Изобретение
Номер охранного документа: 0002526235
Дата охранного документа: 20.08.2014
20.11.2014
№216.013.07c2

Способ изготовления коррозионностойкого электрода

Изобретение относится к способу изготовления коррозионностойкого электрода, включающему изготовление биметаллической основы электрода, содержащей титановый корпус с медным сердечником внутри. Далее подготовку наружной поверхности титанового корпуса и нанесение на нее активирующего покрытия....
Тип: Изобретение
Номер охранного документа: 0002533387
Дата охранного документа: 20.11.2014
27.12.2014
№216.013.13f8

Способ получения пористого проницаемого керамического изделия

Способ включает плазменное напыление частиц однородного по крупности керамического материала на основе оксида алюминия на удаляемую оправку. Напыление ведут путем формирования монослоев за счет соударения напыляемых частиц керамического материала с поверхностью оправки под углом менее 45°,...
Тип: Изобретение
Номер охранного документа: 0002536536
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1b54

Грави-магнито-сейсмический комплекс (варианты)

Группа изобретений относится к области геофизики и может быть использована при разноцелевых полевых исследованиях. Сущность: каждый из комплексов включает датчики (1-1 - 1-3) ускорения свободного падения по трем компонентам, датчики (2-1 - 2-3) магнитного поля по трем компонентам, датчики...
Тип: Изобретение
Номер охранного документа: 0002538424
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b98

Способ изготовления катодной обкладки танталового объемно-пористого конденсатора

Изобретение относится к способу изготовления катодной обкладки, представляющей собой танталовую плоскую пластину или танталовый корпус конденсатора, с оксидированным рутениевым покрытием для танталового объемно-пористого конденсатора. Способ включает в себя подготовку поверхности катодной...
Тип: Изобретение
Номер охранного документа: 0002538492
Дата охранного документа: 10.01.2015
04.04.2018
№218.016.3671

Материал датчика для эпр дозиметрии ионизирующих излучений

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и...
Тип: Изобретение
Номер охранного документа: 0002646549
Дата охранного документа: 05.03.2018
14.03.2019
№219.016.df88

Способ получения газоплотного твердооксидного трубчатого электролита для несущей основы тотэ

Изобретение относится к получению газоплотного твердооксидного трубчатого электролита с ионной проводимостью, который может быть использован при изготовлении различных электрохимических устройств, например твердооксидных топливных элементов (ТОТЭ), электролизеров и т.п. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002681771
Дата охранного документа: 12.03.2019
19.04.2019
№219.017.3207

Способ изготовления многофункционального коррозионно-стойкого электрода

Изобретение относится к изготовлению коррозионно-стойких электродов, применяемых для выделения металлов из промышленных растворов методом электроэкстракции, при нанесении гальванических покрытий драгоценными и цветными металлами, электрохимическом производстве хлора и кислорода, при...
Тип: Изобретение
Номер охранного документа: 0002456379
Дата охранного документа: 20.07.2012
+ добавить свой РИД