×
23.02.2020
220.018.0545

Результат интеллектуальной деятельности: Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора

Вид РИД

Изобретение

№ охранного документа
0002714921
Дата охранного документа
21.02.2020
Аннотация: Изобретение относится к области электротехники и может быть использовано в системе электропитания автономных объектов. Техническим результатом является улучшение массогабаритных и энергетических показателей при упрощении технической реализации способа, что обеспечивает повышение энергоэффективности процесса стабилизации его напряжения, повышение технологичности его реализации. Способ заключается в том, что переменное напряжение МЭГ выпрямляют с изменяемой частотой вращения его вала и при изменении частоты вращения вала от ƒ до ƒ регулируют его в направлении стабилизации на заданном уровне, формируют нерегулируемое основное выпрямленное напряжение U и дополнительное выпрямленное напряжение ΔU, эти два напряжения суммируют в соответствии с выражением U=U±ΔU, а стабилизацию этого результирующего выпрямленного напряжения U осуществляют путем регулирования дополнительного выпрямленного напряжения ΔU по уровню и по знаку в диапазоне ±ΔU=(+)ΔU÷0÷(-)ΔU, причем в диапазоне изменения частоты от ƒ до напряжение ΔU суммируют с основным напряжением U, а в диапазоне от до ƒ вычитают из него. Сущность способа поясняется структурно-функциональной схемой (ВМЭГ). 2 ил.

Изобретение относится к области электротехники, а именно - к области электрических генераторов с переменной частотой вращения вала и может быть использовано при построении вентильных генераторов (ВГ) для систем электропитания автономных объектов, например, для летательных аппаратов, где требуются бесконтактность и минимально возможная масса и габариты.

Известны регулируемые по напряжению бесконтактные генераторы комбинированного возбуждения, включающие в себя два индуктора - нерегулируемый индуктор на постоянных магнитах и регулируемый индуктор с электромагнитным возбуждением, который реализуется на основе конструкции типа сексин - см. стр. 180, рис. 6.16 в Электрооборудование летательных аппаратов: учебник для вузов. В двух томах / под ред. С.А. Грузкова. - М.: Изд.-о МЭИ. - Том 1. Системы электроснабжения летательных аппаратов. - 2005. - 508 с. При подключении к выходу такого генератора выпрямительного блока он превращается в «бесконтактный вентильный генератор (БВГ)». Регулирование возбуждения для стабилизации выходного напряжения БВГ осуществляется с помощью электронного блока регулирования тока возбуждения регулируемого индуктора. Такие БВГ обеспечивают стабилизацию выходного напряжения при изменении частоты вращения вала генератора и нагрузки в заданных диапазонах.

Недостатком данного решения являются технологические сложности реализации конструкции второго индуктора типа сексин, которые возрастают с ростом мощности и частоты вращения вала.

Наиболее близким по технической сущности к предложенному изобретению является БВГ с возбуждением только от постоянных магнитов. Они выполняются в виде последовательно соединенных бесконтактной фазной электрической машины (ЭМ) и управляемого вентильного блока (УВБ), который может выполняться, например, на тиристорах (см. стр. 279 в [2]: Комлев И.В. Регулируемый магнитоэлектрический вентильный генератор Труды н/т-й конф. «Электрификация летательных аппаратов», посвященная 125-летию академика В.С. Кулебакина. Москва, 1 ноября 2016 г. ИД Академии Жуковского, 2016. - 322 с.) Способ стабилизации напряжения вентильного магнитоэлектрического генератора (МЭГ) заключается в том, что переменное напряжение МЭГ с изменяемой частотой вращения его вала выпрямляют, при изменении частоты вращения вала от ƒmin до ƒmax, регулируют его в направлении стабилизации на заданном уровне. Стабилизация напряжения осуществляется путем фазового управления 18 тиристорами, на которых выполняется выполнения выпрямительный мост. Управление (УВБ) для стабилизации напряжения осуществляется фазовым способом с помощью блока управления (БУ).

Недостатком этого решения является повышенная сложность УВБ и недостаточно высокая его помехоустойчивость. Кроме того, входной коэффициент мощности УВБ сильно уменьшается с ростом угла регулирования тиристоров, что при стабилизации выходного напряжения БВГ в режиме максимальной частоты вращения вала приводит к увеличению проектно необходимой габаритной мощности ЭМ, то есть к ухудшению ее массогабаритных и энергетических показателей.

Технической задачей изобретения является улучшение массогабаритных и энергетических показателей при упрощении технической реализации способа.

Технический результат способа заключается в повышении энергоэффективности процесса стабилизации его напряжения (при переменной частоте вращения вала) и технологичности практической его реализации.

Это достигается тем, что при известном способе стабилизации выходного напряжения вентильного магнитоэлектрического генератора (МЭГ), состоящем в том, что переменное напряжение МЭГ с изменяемой частотой вращения его вала выпрямляют, при изменении частоты вращения вала от ƒmin до ƒmax регулируют его в направлении стабилизации на заданном уровне, формируют нерегулируемое основное выпрямленное напряжение Ud0 и дополнительное выпрямленное напряжение ΔUd0, эти два напряжения суммируют в соответствии с выражением: Ud0Σ=Ud0±ΔUd0, а стабилизацию этого результирующего выпрямленного напряжения Ud0Σ осуществляют путем регулирования дополнительного выпрямленного напряжения ΔUd0 по уровню и по знаку в диапазоне: ±Ud0=(+)ΔUd0max÷0÷(-)ΔUd0max, причем в диапазоне изменения частоты от ƒmin до напряжение ΔUd0 суммируют с основным напряжением Ud0, а в диапазоне от до ƒmax вычитают из него.

Изобретение поясняется чертежами где на фиг. 1 показана структурно-функциональная схема вентильного магнитоэлектрического генератора (ВМЭГ), реализующая способ стабилизации, на фиг. 2 приведена скоростная характеристика ВМЭГ, поясняющая зависимость его выходного напряжения от частоты вращения вала для двух диапазонов ее изменения: от 6000 об/мин до 9000 об/мин и от 6000 об/мин до 12000 об/мин.

Стабилизированный по выходному напряжению вентильный магнитоэлектрический генератор (ВМЭГ) содержит: синхронный генератор 1 с возбуждением от постоянных магнитов, своим выходом подключенный ко входам выпрямительного блока 2, а также последовательно включенное в цепь постоянного тока этого блока 2 выход реверсивного вольтодобавочного канала (РВДК). Силовая часть РВДК включает в себя высокочастотный инвертор напряжения (ВЧИН) 3, выполненный на транзисторах 3.1, 3.2 с делителем напряжения 3 на конденсаторах 3.3, 3.4, которые своими выводами 3.5, 3.6, подключены к выходным выводам 2.1, 2.2 выпрямительного блока 2, между которыми включен также накопительный конденсатор 2.3; согласующий трансформатор напряжения 4 (установленный на выходе инвертора 3) с первичной 4.1 и двумя вторичными обмотками 4.2, 4.3, причем последние с двумя полностью управляемыми ключами с односторонней проводимостью 5, 6 образуют реверсивный вольтодобавочный выпрямитель (РВДВ) по нулевой схеме. Точка соединения силовых выводов ключей 5, 6 через дроссель 7 подключена к одному выходному выводу 8 ВМЭГ, а второй его выходной вывод 9 объединен с выходным выводом выпрямительного блока 2.2. Между выходными выводами 8, 9 ВМЭГ включен конденсатор 10, который совместно с дросселем 7 образует сглаживающий Г образный LC фильтр. Нагрузку 11 подключают к выходным выводам 8, 9 ВМЭГ. Управление инвертором напряжения 3 осуществляется блоком управления (БУ) 12, выходы которого через драйверы 13 подключены к управляющим входам ключей инвертора напряжения 3. Для стабилизации напряжения ВМЭГ при возмущающих воздействиях по нагрузке используется контур отрицательной обратной связи (КООС) по напряжению 14. При реализации драйверов 13 и КООС 14 используются стандартные решения. Электропитание узлов 12, 13, 14 осуществляется блоком питания внутренних нужд (БПВН) 15.

Для пояснения принципа работы реверсивного вольтодобавочного канала (РВДК) воспользуемся зависимостью выходного напряжения ВМЭГ от частоты вращения приводного вала ЭМ, представленной на фиг. 2. На ней в качестве примера показаны два возможных диапазона изменения частоты вращения вала: 1-й диапазон - от nmin=6000 об/мин до nmax=9000 об/мин и 2-й диапазон - от nmin=6000 об/мин до nmax=12000 об/мин. Линии 0-k1 и 0-k2 на фиг. 2 отражают скоростные характеристики (в относительных единицах) для двух диапазонов изменения частоты вращения вала U*МЭГ=ƒ(n); а линии 0-g1 и 0-g2 - скоростные характеристики регулируемой части ВМЭГ - U*РГ=ƒ(n). Стабилизация выходного напряжения ВМЭГ характеризуется линиями h-02 и h-c соответственно. Для 1-го диапазона изменения частоты отрезки h-01 и 01-02 определяют 1-ю и 2-ю зоны стабилизации напряжения: в 1-й зоне (h-02) реализуется режим вольтодобавки (ВД), а во 2-й зоне (01-02) - режим вольтовычитания (ВВ). Аналогичный комментарий распространяется и на 2-й диапазон изменения частоты.

Процесс регулирования рассмотрим только для 1-го диапазона. За номинальную частоту вращения вала здесь принимается значение: Функциональная задача РВДК заключается в следующем: в 1-й зоне изменения частоты вращения nmin<nном к напряжению Ud0 основного канала (напряжение на накопительном конденсаторе 2.3) должно добавляться напряжение вольтодобавочного (стабилизирующего) канала ΔUd0, которое с ростом частоты вращения вала n должно автоматически уменьшаться по уровню от (+)ΔUd0max при nmin до 0 при nном (отрезок n1-h на фиг. 2.), а во 2-й зоне при nmax>n>nном из основного напряжения Ud0 дополнительное напряжение должно вычитаться и с ростом частоты вращения вала n автоматически увеличиваться по уровню от 0 при nном до (-)ΔUd0max при nmax (отрезок 02-k1 на фиг. 2). Это означает, что при переходе из 1-ой зоны (ВД) во 2-ю зону (ВВ) логика работы регулятора ширины импульсов (РШИ) должна изменяться на обратную. Из этого следует, что датчик напряжения МЭГ должен обладать V-образной характеристикой, на фиг. 2 определяемой изогнутой линией . В 1-й зоне транзисторы 3.1, 3.2 ВЧИН включают попеременно с задержкой на угол регулирования α, а транзисторы 5.1, 6.1 должны быть включены постоянно, т.е. РВДК здесь работает в выпрямительном режиме. Во 2-й зоне транзисторы 3.1, 3.2 выключают, а ВЧИН работает в выпрямительном режиме. Здесь транзисторы 5.1, 6.1 РВДК должны работать попеременно, но на интервалах, определяемых углом регулирования α, они должны находиться во включенном состоянии, т.е. на этих интервалах мощность МЭГ передается в нагрузку непосредственно. Это означает, что РВДК работает здесь в обращенном, т.е. в инверторном режиме. При этом обратный поток энергии идет на подзаряд накопительного конденсатора 2.3. В результате напряжение на нем возрастает, диоды выпрямительного моста 2 запираются, и отбор мощности от МЭГ 1 прекращается до того момента, когда конденсатор 2.3 разрядится на нагрузку 11, и напряжение на нем станет меньше, чем напряжение на выходе выпрямителя 2. Далее процесс подзаряда и разряда конденсатора 2.3 будет повторяться. Вышеописанные процессы работы РВДК обеспечивают стабилизацию выходного напряжения ВМЭГ.

Использование изобретения обеспечивает повышение КПД и уменьшение общей массы МЭГ и РВДК за счет преобразования не полной мощности МЭГ, а лишь его части. Численная оценка результата определяется диапазоном изменения частоты вращения вала МЭГ. Например, при кратности изменения частоты вращения вала Kn=nmax/nmin=1/5 максимальная мощность РВДК (в крайних точках частотного диапазона - nmin и nmax) составляет 20% от выходной номинальной мощности ВМЭГ, а при Kn=2 уже 30%. Мощность электронного блока уменьшается в 5 раз в первом случае и в 3 раза - во втором.

Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора (МЭГ), заключающийся в том, что переменное напряжение МЭГ выпрямляют с изменяемой частотой вращения его вала и при изменении частоты вращения вала от ƒ до ƒ регулируют его в направлении стабилизации на заданном уровне, отличающийся тем, что формируют нерегулируемое основное выпрямленное напряжение U и дополнительное выпрямленное напряжение ΔU, эти два напряжения суммируют в соответствии с выражением U=U±ΔU, а стабилизацию этого результирующего выпрямленного напряжения U осуществляют путем регулирования дополнительного выпрямленного напряжения ΔU по уровню и по знаку в диапазоне ±ΔU=(+)ΔU÷0÷(-)ΔU, причем в диапазоне изменения частоты от ƒ до напряжение ΔU суммируют с основным напряжением U, а в диапазоне от до ƒ вычитают из него.
Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора
Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора
Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора
Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора
Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора
Источник поступления информации: Роспатент

Showing 201-208 of 208 items.
06.06.2023
№223.018.7834

Способ бесперебойного электропитания потребителей

Использование: в области электроэнергетики, при реализации электроснабжения объектов с автоматизированными системами управления. Технический результат - повышение эффективности защиты потребителей от кибератак с сохранением высокого качества их защиты от повреждений в сети электроснабжения....
Тип: Изобретение
Номер охранного документа: 0002739373
Дата охранного документа: 23.12.2020
06.06.2023
№223.018.7864

Осветительное устройство с отражателем-радиатором излучающего диода

Изобретение относится к охлаждающим устройствам, характеризующимся пассивными теплорассеивающими элементами, специально предназначенным для световых устройств или систем, и может быть использовано для обеспечения теплового режима работы излучающих диодов и формирования диаграммы направленности...
Тип: Изобретение
Номер охранного документа: 0002773008
Дата охранного документа: 30.05.2022
06.06.2023
№223.018.788f

Преобразователь постоянного напряжения в квазисинусоидальное трёхфазное напряжение повышенной мощности

Изобретение относится к области силовой преобразовательной техники и может быть использовано в системах электроснабжения и электропривода промышленных установок и транспортных средств. Технический результат заключается в повышении КПД и расширении области его применения при повышенных значениях...
Тип: Изобретение
Номер охранного документа: 0002762829
Дата охранного документа: 23.12.2021
06.06.2023
№223.018.7937

Способ синхронизации по времени устройств рза с использованием параметров аварийного режима

Использование: в области электроэнергетики для реализации бесперебойного электроснабжения потребителей. Технический результат - повышение надежности электроснабжения потребителей. В способе синхронизации по времени устройств РЗА с использованием параметров аварийного режима, заключающемся в...
Тип: Изобретение
Номер охранного документа: 0002740360
Дата охранного документа: 13.01.2021
16.06.2023
№223.018.7a84

Режекторный волноводный свч-фильтр

Изобретение относится к технике СВЧ. Фильтр содержит волноводную линию в виде волновода с прямоугольным поперечным сечением, элементы связи и дополнительные n-1 элементы связи, каждый из которых выполнен в виде отверстия в общей стенке волновода волноводной линии и прямоугольного волноводного...
Тип: Изобретение
Номер охранного документа: 0002739969
Дата охранного документа: 30.12.2020
16.06.2023
№223.018.7a8b

Способ измерения собственной добротности диэлектрического резонатора

Изобретение относится к метрологии. Способ измерения собственной добротности открытого диэлектрического резонатора заключается в измерении собственной добротности объемного металлического резонатора в виде параллелепипеда с прямоугольным поперечным сечением, электромагнитно связанного с...
Тип: Изобретение
Номер охранного документа: 0002739937
Дата охранного документа: 29.12.2020
16.06.2023
№223.018.7d12

Рабочее колесо насоса-турбины со структурой бугорков горбатого кита

Изобретение относится к рабочему колесу насоса-турбины со структурой бугорков горбатого кита. Колесо содержит один ряд бугорков 2 продолговатой эллипсовидной формы, которые наложены на входную кромку 3 и одновременно на рабочую сторону 4 лопасти 1. Тыльная сторона 6 лопасти 1 выполнена гладкой....
Тип: Изобретение
Номер охранного документа: 0002741190
Дата охранного документа: 22.01.2021
19.06.2023
№223.018.8218

Автоматическая термовесовая установка для исследования кинетики сушки железорудных окатышей в потоке газа-теплоносителя

Изобретение относится к устройствам для сушки твердых материалов или предметов в состоянии покоя в стационарных камерах и направлено на повышение точности контроля массы железорудных окатышей в процессе сушки в потоке газа-теплоносителя. Автоматическая термовесовая установка для исследования...
Тип: Изобретение
Номер охранного документа: 0002797195
Дата охранного документа: 31.05.2023
Showing 11-14 of 14 items.
18.12.2019
№219.017.ee12

Стабилизированный по напряжению генератор на основе асинхронной машины с короткозамкнутой роторной обмоткой

Стабилизированный по напряжению генератор на основе асинхронной машины с короткозамкнутой роторной обмоткой относится к области электротехники и может быть использован при построении машинно-электронных генерирующих систем постоянного (МЭГС-1) или переменного (МЭГС-2) тока при переменной...
Тип: Изобретение
Номер охранного документа: 0002709101
Дата охранного документа: 16.12.2019
06.02.2020
№220.017.feda

Бесконтактный стабилизированный по напряжению генератор переменного тока с комбинированным возбуждением

Изобретение относится к области электротехники и может быть использовано при построении генераторов переменного и постоянного тока для систем электропитания автономных объектов, прежде всего, для летательных аппаратов, где требуются минимально возможная масса, габариты и бесконтактность, а...
Тип: Изобретение
Номер охранного документа: 0002713470
Дата охранного документа: 05.02.2020
21.07.2020
№220.018.34d3

Стабилизированный по напряжению вентильный магнитоэлектрический генератор

Изобретение относится к электротехнике. Технический результат заключается в повышении КПД и улучшении удельного его показателя. Стабилизированный по напряжению вентильный магнитоэлектрический генератор (ВМЭГ) содержит синхронную машину с возбуждением от постоянных магнитов 1, выпрямительный...
Тип: Изобретение
Номер охранного документа: 0002726950
Дата охранного документа: 17.07.2020
06.06.2023
№223.018.788f

Преобразователь постоянного напряжения в квазисинусоидальное трёхфазное напряжение повышенной мощности

Изобретение относится к области силовой преобразовательной техники и может быть использовано в системах электроснабжения и электропривода промышленных установок и транспортных средств. Технический результат заключается в повышении КПД и расширении области его применения при повышенных значениях...
Тип: Изобретение
Номер охранного документа: 0002762829
Дата охранного документа: 23.12.2021
+ добавить свой РИД