×
17.02.2020
220.018.0314

Результат интеллектуальной деятельности: Способ подготовки шихты для щелочно-силикатного стекла.

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в стекольной промышленности для подготовки шихт щелочно-силикатных стекол, в том числе стекловидных щелочных силикатов. Предлагается способ подготовки стекольной шихты для получения щелочно-силикатных стекол, в том числе стекловидных щелочных силикатов, включающий активацию кремнийсодержащего компонента стекольной шихты с использованием гидроксида натрия в качестве натрийсодержащего компонента с получением ССМ, имеющего химический состав, соответствующий эвтектическому в оксидной системе NaO - SiO. 7 ил.

Изобретение может быть использовано в стекольной промышленности для подготовки шихт щелочно-силикатных стекол, в том числе стекловидных щелочных силикатов.

Использование шихт, подготовленных по раскрываемому способу, позволяет интенсифицировать реакции силикато- и стеклообразования в шихте и расплаве, снизить максимальную температуру и время варки стекла, увеличить удельный съем стекломассы, уменьшить техногенную нагрузку на окружающую среду по сравнению с предшествующими изобретениями. Одним из путей интенсификации процессов стекловарения является предварительная активация тугоплавких компонентов стекольной шихты с использованием гидроксидов. Результатом активации кремнийсодержащего кристаллического сырьевого источника стекольной шихты с использованием гидроксидом натрия с получением хорошого классифицируемого синтетического сырьевого материала (ССМ)/1-6/.

Общим для технологических схем получения ССМ в представленных аналогах является полная замена натрийсодержащего компонента стекольной шихты (традиционно – кальцинированной соды) на гидроксид натрия, термообработка реакционной смеси каустика (в виде раствора или твердом виде) и кварцсодержащего сырья в интервале 325 -700 ºС в течение 1-5 минут. Получаемый рассыпчатый порошкообразный продукт по химическому составу состоит из оксидов Na2O и SiO2 в массовых долях близких щелочно-силикатному стеклу. Фазовый состав ССМ представлен аморфной и кристаллическими фазами в виде низкотемпературного кварца, мета- и ди-силиката натрия. Химический состав ССМ соответствует выбранному составу стекла.

Анализ химических составов ССМ для наиболее распространенных видов щелочно-силикатных стекол (тарного, флоат, медицинского) в части двойной оксидной системы Na2O - SiO2 показал, что область составов ССМ двухкомпонентного состава (Na2O; SiO2) лежит в области, обогащенной SiO2, масс.% (80,85 – 85,62) и «обедненной» содержанием Na2O, масс.% (19,15 - 14,38), как это можно из фазовой диаграммы (Фиг. 1). Согласно (Фиг. 1) это означает, что несмотря на интенсификацию процессов силикатообразования в ССМ до загрузки в печь, химические составы ССМ не соответствуют эвтектическим составам в системе Na2O - SiO2 со значениями эвтектических температур, ºС (1022; 846; 793), что может обусловливать более позднее возникновение жидкой фазы в шихте на основе ССМ при нагревании в печи, чем это, предположительно, возможно.

В качестве прототипа может выступать способ подготовки шихты для щелочно-силикатных стекол (Partial Selective Batching, англ.), предусматривающий разделение кремний-, натрий- и кальцийсодержащих шихтные сырьевые материалы на части (Na2CO3 + quartz) и (CaCO3 + quartz) с массовыми долями, соответствующими эвтектическим составам Na2O - SiO2 и CaO - SiO2 в системе Na2O – CaO -SiO2, с последующим смешиванием и грануляцией /7/. Однако в качестве натрийсодержащего компонента используется кальцинированная сода, активация наиболее тугоплавкого компонента стекольной шихты – кварца – по предлагаемому способу на стадии подготовки шихты не происходит; часть кварцевого песка в свободном виде (порядка 20 % от общего количества) добавляется в шихту, состоящую из двух гранулированных продуктов (Na2CO3 + quartz) и (CaCO3 + quartz), что может способствовать сегрегации шихты как ввиду разницы в размерах гранул продуктов и зерен кварцевого песка, так и насыпной плотности материалов; использование кварцевого песка в шихте в свободном виде увеличивает как время растворения кварцевых зерен в расплаве, так и общее время варки стекла.

Задачей раскрываемого изобретения является способ подготовки стекольной шихты для получения щелочно-силикатных стекол, в том числе стекловидных щелочных силикатов, включающий активацию кремнийсодержащего компонента стекольной шихты с использованием гидроксида натрия в качестве натрийсодержащего компонента, с получением ССМ, имеющим химический состав, соответствующий эвтектическому в оксидной системе Na2O - SiO2.

Поставленная задача достигается тем, что кварцсодержащий компонент стекольной шихты и гидроксид натрия, используемый в качестве натрийсодержащего компонента, делятся на исходные смеси для получения ССМ, соотношение весовых частей (в. ч.) в одной из которых выражается

(NaOHэвт:Кварцэвт.) (1)

и соответствует эвтектическому составу в оксидной системе Na2O - SiO2, а соотношение массовых частей в другой смеси выражается

((NaOHобщ.- NaOHэвт.): (Кварцобш.-Кварцэвт.)), (2)

где NaOHобщ. и Кварцобш. – весовые части общего количества гидроксида натрия и кварцсодержащего сырья для получения щелочно-силикатного стекла заданного состава. Таким образом, получаемый ССМ имеет химический состав, соответствующий эвтектическому составу, а весь кварцсодержащий материал физико-химически активирован в результате взаимодействия с NaOH.

Предлагаемое изобретение проиллюстрировано следующими графическими материалами:

Фиг. 1 с фазовой диаграммой двухкомпонентной системы Na2O - SiO2 Крачека; поле, ограниченное точками 1 и 2 соответствует области химических составов ССМ.

Фиг. 2 с фазовой диаграммой кварцевого песка ВС – 030-В, Q – низкотемпературный β- кварц.

Фиг.3 с фазовой диаграммой смеси химического состава, масс.%: Na2O – 26,1; SiO2 – 73,9 из кварцевого песка и кальцинированной соды, термообработанной при 400 ºС. Основной фазой является кристаллическая в виде низкотемпературного β- кварца (Q) и кальцинированной соды (SA).

Фиг. 4 с фазовой диаграммой продукта термообработки при 325 ºС кварцевого песка и гидроксида натрия, имеющий химический состав, масс.%: Na2O – 26,1; SiO2 – 73,9. Основными фазами является аморфная и кристаллическая в виде низкотемпературного β- кварца (Q) и метасиликата натрия (S). Отмечается присутствие соединения, характерного для Na2CO3 (SA).

Фиг. 5 со сканирующими электронно-микроскопическими изображениями шлифов частиц ССМ химического состава, масс.%: Na2O – 26,1; SiO2 – 73,9.

Фиг. 6 со сканирующим электронно-микроскопическим изображением шлифа частицы ССМ.

Фиг. 7 с фотоизображением таблетированных образцов шихт силикат-глыбы с n = 4 при термообработке – 900ºС. 1 – образец шихты на кварцевом песке и кальцинированной соде; 2 – образец шихты на гидроксиде натрия и кварцевом песке.

По данным рентгенофазового анализа было установлено, что получение ССМ, имеющего фазовый состав в виде низкотемпературного кварца и дисиликата натрия (Фиг.4), возможно из реакционной смеси при соотношении гидроксида натрия в конденсированном состоянии и кварцевого песка как 1:100 в. ч.

Полученное соотношение является нижней границей для (2), что может быть выражено (вв. ч.):

((NaOHобщ.- NaOHэвт.); (Кварцобш.- Кварцэвт.))≥ (1;100)

или

((NaOHобщ.- NaOHэвт.)/ (Кварцобш.- Кварцэвт.)) ≥ 0,01. (3)

Приведенный способ подготовки шихты поясним на примерах расчёта рецептов шихт ССМ для некоторых видов щелочно-силикатных стекол, которые не ограничивают применение раскрываемого изобретения:

Пример 1.

Расчет рецепта шихт для ССМ для получения тарного стекла состава мас.%: SiO2–73; Al2O3– 2; CaO – 10; MgO – 2; Na2O – 13.

Сырьевые материалы, используемые при составлении шихты: песок кварцевый ВС-030-В; гидроксид натрия чешуированный марки ТР, (ч.д.а), ГОСТ 4328-77; сода кальцинированная техническая, марка Б; полевошпатный концентрат ПШС-0,20-21; доломит молотый марки ДМ 20-0,10; известняк кусковой для стекольной промышленности ГОСТ 23671-79.

Рецепт шихты с использованием NaOH на 100 в.ч стекла (в.ч): песок кварцевый – 67,62; ПШС – 8,70; гидроксид натрия – 17,09; доломит – 10,05; известняк – 12,38. Потери при стелкообразовании – 15,85 %.

Рецепт шихты с использованием Na2CO3 на 100 в.ч стекла (в.ч): песок кварцевый – 67,62; ПШС – 8,70; сода кальцинированная – 21,84; доломит – 10,05; известняк – 12,38. Потери при стелкообразовании – 20,38 %.

Химический состав ССМ на основе кварцевого песка и каустика, масс.%: SiO2 – 82,2; Na2O – 17,8.

Эвтектическая точка (Фиг. 1), имеющая минимальную температуру 793 ºС возникновения жидкой фазы в оксидной системе Na2O - SiO2,имеет следующий состав, масс.%:Na2O – 26,1; SiO2 – 73,9.

Исходя из приведенных значений химического состава ССМ и эвтектического состава оксидной системы Na2O - SiO2, получить ССМ указанного эвтектического состава возможно, активируя36,31 в.ч. кварцевого песка, в свободном (неактивированном) виде останется 31,32 в.ч. кварцевого песка.

Количество NaOH, необходимое для активации 31,32в.чкварцевого песка согласно (3) равно 0,31 в.ч.

В соответствии с (2), рецепты шихт для ССМ:

- шихта (А), соответствующая эвтектическому составу, в.ч.: гидроксид натрия – 16,78; кварцевый песок – 35,66

- шихта (Б) - для активации остаточной части кварцевого песка, в.ч.: гидроксид натрия – 0,31; кварцевый песок – 31,97

После обработки смесей по наиболее оптимальным способам, представленным в патентах /1,2/, на основе шихт (А) и (Б) получаем двухкомпонентные ССМ (А) и ССМ (Б), которые смешиваем с остальными сырьевыми материалами шихты щелочно-силикатного стекла тарного состава с последующим возможным агломерированием.

Сравнительный рентгено-фазовый анализ кварцевого песка ВС-030-В (Фиг. 2), термообработанных образцов шихты на основе кварцевого песка и кальцинированной соды (Фиг. 3) и шихты на основе гидроксида натрия и каустика, подготовленного по раскрываемому способу (Фиг. 4), показал, что в отличие от образцов (Фиг. 2,3), фазовый состав образца (Фиг. 4) представлен основными фазами в виде аморфной и кристаллической низкотемпературного β- кварца и метасиликата натрия. Отмечается присутствие соединения, характерного для Na2CO3.Интенсивность пиков, характерных для присутствия низкотемпературной формы кварца в образце шихты, подготовленной в соответствии с изобретением, имела меньшие значения, а форма пиков – более «размыта», чем в образце (Фиг. 3), что указывает на вероятное изменение структуры кварца, способствующее разрыву связей кремне-кислородного каркаса при меньших энергетических затратах.

Растровая электронная микроскопия частиц ССМ и их шлифов, подготовленных в соответствии с изобретением, показала, что ядром частицы является кварцевое зерно с приповерхностном слоем в виде соединений, имеющих в своем составе Si, O, Na (Фиг. 5).Оболочка на кварцевом зерне обладает сложной морфологической структурой толщиной от 10-70 µm в виде равномерно распределенных скоплений кристаллических образований. Отличительной особенностью является образование приповерхностной оболочки в дефект-каналах кварцевого зерна   (Фиг. 6), что в совокупности с покрытием на поверхности кварцевого зерна способствует интенсификации твердофазных реакций шихтных материалов.

Пример 2.

Расчет рецепта шихты для получения натриевой силикат-глыбы с n = 4, следующего химического состава, масс.%: SiO2 – 79,5; Na2O – 20,5.

Сырьевые материалы, используемые при составлении шихты: песок кварцевый ВС-030-В; чешуйчатый гидроксид натрия марки ТР, (ч.д.а), ГОСТ 4328-77.

Рецепт шихты на 100 в.ч стекла, в.ч: песок кварцевый – 79,46 ; гидроксид натрия – 27,30. Потери при стеклообразовании – 6,78 %.

ССМ эвтектического состава (Фиг. 1), указанного в Примере 1, будет содержать 57,88 в.ч. кварцевого песка, в свободном (не активированном) виде останется 21,58 в.ч. кварцевого песка.

Количество NaOH, необходимое для активации 21,58 в.ч кварцевого песка согласно (3) равно 0,22 в.ч.

В соответствии с (2), рецепты шихт для ССМ:

- шихта (А), соответствующая эвтектическому составу, в.ч.: гидроксид натрия – 27,08; кварцевый песок – 57,41

- шихта (Б) - для активации остаточной части кварцевого песка, в.ч.: гидроксид натрия – 0,22; кварцевый песок – 22,06.

Получение ССМ аналогично описанному в Примере 1.

Продукты синтеза частей кварцевого песка и гидроксида натрия либо используются в виде смеси или агломератов для получения силикат-глыбы различной модульности, либо смешиваются с остальными компонентами стекольной шихты щелочно-силикатных стекол с последующей возможной агломерацией известными способами.

Сравнительные лабораторные варки таблетированных образцов шихтсиликат-глыбы из Примера 2 (Фиг. 7) показал, что образец на карбонатной шихте содержал большее количество газовой фазы в виде пузырей до 1-2 мм, а также нерастворенных зерен кварца.

Образец шихты, подготовленной по раскрывемому способу, содержал меньшее количество газообразной фазы, а площадь расплава с более выраженной стекловидной фазой была больше площади расплава образца на традиционной основе.

Источники информации.

1. Патент 2597008. РФ. Заявл. 24.08.2015. Опубл. 10.09.2016.

2. Патент 2638195. РФ. Заявл. 03.07.2016. Опубл. 12.12.2017.

3. Патент 2007131721. РФ. Заявл. 21.08.2007. Опубл. 27.02.2009.

4. Патент 2152363. РФ. Заявл. 18.06.1999. Опубл. 10.07.2000.

5. Патент GB1411257(A). US.Заявл. 21.07.1972. Опубл. 22.10.1975.

6. Патент US3817776 (A). FR. Заявл. 31.03.1970. Опубл. 18.06.1974.

6. Патент US2008087044 (A1). US.Заявл. 27.02.2003. Опубл. 17.04.2008.


Способ подготовки шихты для щелочно-силикатного стекла.
Способ подготовки шихты для щелочно-силикатного стекла.
Способ подготовки шихты для щелочно-силикатного стекла.
Способ подготовки шихты для щелочно-силикатного стекла.
Источник поступления информации: Роспатент

Showing 221-230 of 320 items.
02.10.2019
№219.017.cf5d

Теплотрубная матрешка

Изобретение относится к энергомашиностроению и может быть использовано для транспортировки тепловой энергии по тепловым трубам. Теплотрубная матрешка включает в себя n тепловых труб, вставленных друг в друга, каждая из которых состоит из цилиндрического корпуса, заглушенного с одного торца...
Тип: Изобретение
Номер охранного документа: 0002700811
Дата охранного документа: 23.09.2019
02.10.2019
№219.017.d090

Система оборотного водоснабжения

Изобретение относится к области энергетики. Система оборотного водоснабжения содержит теплообменники, подключаемые прямой и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой магистрали соединительным трубопроводом с регулятором расхода и эжектором,...
Тип: Изобретение
Номер охранного документа: 0002700988
Дата охранного документа: 24.09.2019
02.10.2019
№219.017.d13c

Газораспределительная станция

Изобретение относится к газовой технике, в частности к газораспределительным станциям для снижения давления газа в газопроводе. Технической задачей предлагаемого изобретения является обеспечение эффективной эксплуатации газораспределительной станции при поддержании нормированных параметров по...
Тип: Изобретение
Номер охранного документа: 0002700842
Дата охранного документа: 23.09.2019
02.10.2019
№219.017.d154

Способ утилизации полимерных компонентов коммунальных и промышленных отходов и устройство для его осуществления

Изобретение относится к охране окружающей среды и может быть использовано для переработки и утилизации полимерных компонентов коммунальных и промышленных отходов, а именно производства элементов строительных конструкций. Техническим результатом является повышение надежности и эффективности...
Тип: Изобретение
Номер охранного документа: 0002700862
Дата охранного документа: 23.09.2019
03.10.2019
№219.017.d1c6

Устройство для акустического контроля за состоянием пчелиной семьи

Изобретение относится к области пчеловодства и может найти применение при практической работе на индивидуальных и коллективных пасеках. Устройство для акустического контроля за состоянием пчелиной семьи содержит внешний съёмный конденсаторный микрофон с электропитанием, источник питания,...
Тип: Изобретение
Номер охранного документа: 0002701812
Дата охранного документа: 01.10.2019
03.10.2019
№219.017.d1cd

Трубчатые наноструктуры оксида меди (ii) и электрохимический способ их получения

Использование: для производства наноструктурированных порошков трубчатых наночастиц оксида меди (II), применяемых в качестве катализаторов горения углеродных топливных (энергонасыщенных) составов. Сущность изобретения заключается в том, что трубчатые наноструктуры оксида меди (II) имеют форму и...
Тип: Изобретение
Номер охранного документа: 0002701786
Дата охранного документа: 01.10.2019
04.10.2019
№219.017.d271

Слоевой пластинчатый термоэлектрогенератор

Изобретение относится к области теплоэнергетики. Изобретение представляет собой слоевой пластинчатый термоэлектрогенератор, содержащий термоэлектрическую секцию, состоящую из термоэлектрических преобразователей, выполненных из соединенных между собой у кромок пластин металлов М1 и М2, крайние...
Тип: Изобретение
Номер охранного документа: 0002701883
Дата охранного документа: 02.10.2019
05.10.2019
№219.017.d298

Санитарная приставка для теплогенераторов систем автономного теплоснабжения

Изобретение относится к теплоэнергетике и может быть использовано для очистки дымовых газов теплогенераторов крышных котельных и систем квартирного отопления от вредных примесей. Технический результат: повышение надежности и эффективности санитарной приставки. Санитарная приставка для...
Тип: Изобретение
Номер охранного документа: 0002702043
Дата охранного документа: 03.10.2019
05.10.2019
№219.017.d2a3

Триггерный синхронный r-s триггер на полевых транзисторах

Изобретение относится к цифровой схемотехнике, автоматике и промышленной электронике. Оно, в частности, может быть применено в блоках вычислительной техники, выполненных с использованием R-S триггеров. Технический результат: повышение нагрузочной способности триггерного синхронного R-S триггера...
Тип: Изобретение
Номер охранного документа: 0002702051
Дата охранного документа: 03.10.2019
10.10.2019
№219.017.d41a

Многофильерный питатель для изготовления непрерывного волокна из расплава горных пород

Изобретение относится к многофильерным питателям. Техническим результатом является устранение статического электричества. Многофильерный питатель для изготовления непрерывного волокна из расплава горных пород включает корпус, соединенную с ним фильерную пластину и токоподводы, размещенные по...
Тип: Изобретение
Номер охранного документа: 0002702439
Дата охранного документа: 08.10.2019
Showing 11-14 of 14 items.
29.05.2019
№219.017.66e9

Способ контроля местоположения бурового долота в процессе бурения

Изобретение относится к области сейсмических исследований и может быть использовано в нефтяной промышленности для непрерывного контроля по глубине и латерали местоположения бурового долота при бурении скважин с использованием сигнала, излучаемого долотом, в процессе бурения вертикальных,...
Тип: Изобретение
Номер охранного документа: 0002305298
Дата охранного документа: 27.08.2007
06.06.2019
№219.017.74a0

Способ изготовления микросфер из перлитового песка

Изобретение относится к получению нанодисперсных микросфер, применяемых в качестве сорбентов для извлечения нефтепродуктов из водных сред, а также в качестве теплоизоляционных наполнителей при изготовлении различных строительных материалов. Способ получения микросфер из перлитового песка...
Тип: Изобретение
Номер охранного документа: 0002690569
Дата охранного документа: 04.06.2019
13.06.2019
№219.017.810d

Способ оценки состояния контакта фундаментной плиты строящегося здания с грунтовым основанием

Изобретение относится к области контроля качества строительных работ при возведении зданий и может быть использовано для определения состояния контакта фундаментной плиты строящегося здания с грунтовым основанием. Заявлен способ оценки состояния контакта фундаментной плиты строящегося здания с...
Тип: Изобретение
Номер охранного документа: 0002691208
Дата охранного документа: 11.06.2019
03.10.2019
№219.017.d1cd

Трубчатые наноструктуры оксида меди (ii) и электрохимический способ их получения

Использование: для производства наноструктурированных порошков трубчатых наночастиц оксида меди (II), применяемых в качестве катализаторов горения углеродных топливных (энергонасыщенных) составов. Сущность изобретения заключается в том, что трубчатые наноструктуры оксида меди (II) имеют форму и...
Тип: Изобретение
Номер охранного документа: 0002701786
Дата охранного документа: 01.10.2019
+ добавить свой РИД