×
12.02.2020
220.018.018d

Результат интеллектуальной деятельности: СПОСОБ ЭКСПЛУАТАЦИИ ДВУХРЕЖИМНОГО ТЕРМОЭМИССИОННОГО РЕАКТОРА-ПРЕОБРАЗОВАТЕЛЯ ДЛЯ ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу эксплуатации термоэмиссионного реактора-преобразователя (ТРП) с эмиттерными оболочками ЭГК из упрочненного монокристаллического сплава на основе молибдена, включающий эксплуатацию ТРП на форсированном режиме при постоянной тепловой мощности с последующим выводом на номинальный режим. В процессе эксплуатации на номинальном режиме осуществляют непрерывный мониторинг тепловой и электрической мощности реактора и по мере выхода из строя отдельных наиболее энергонапряженных электрогенерирующих элементов термоэмиссионных электрогенерирующих каналов ЭГК и падения электрической мощности на ≥50 Вт с помощью системы автоматического управления с использованием незадействованного резерва по утилизации тепловой энергии на номинальном режиме увеличивают тепловую мощность реактора из условия сохранения постоянного значения выходной электрической мощности номинального режима в ресурсе. Увеличение тепловой мощности осуществляют в пределах разности проектных значений тепловой мощности реактора на форсированном и номинальном режимах эксплуатации. Техническим результатом является достижение длительного (7-10 лет) ресурса ТРП со встроенными в активную зону реактора ЭГК с эмиттерными оболочками из упрочненного монокристаллического сплава на основе молибдена при сохранении постоянной выходной электрической мощности на номинальном ресурсоопределяющем режиме работы ЭГК. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области ядерной техники, а более конкретно - к ядерной энергетической установке (ЯЭУ) на основе термоэмиссионного реактора-преобразователя (ТРП), преобразующего тепловую энергию в электрическую, и может быть использовано при разработке двухрежимных ТРП со встроенными в активную зону реактора термоэмиссионными электрогенерирующими каналами (ЭГК).

Для решения задач ближнего космоса известны двухрежимные ядерные энергетические установки, такие как ЯЭУ-25, ЯЭУ-50, работающие на форсированном режиме в течение 0,5-1,0 года и на номинальном - в течение 7-10 лет [Васильковский B.C., Андреев П.В., Зарицкий Г.А. и др. Проблемы космической энергетики и роль ядерных энергетических установок в их решении: Международная конференция «Ядерная энергетика в космосе - 2005», том 1, с. 20-25]. ЭГК таких установок состоят из последовательно скоммутированных девяти электрогенерирующих элементов (ЭГЭ), геометрические размеры которых выбраны из условия равенства генерируемой в них электрической мощности в обеспечение длительного ресурса. Как показывают расчеты, электрическая мощность таких ЭГЭ составляет ~ 50 Вт.

На современном уровне техники основная задача разработки ТРП заключается в достижении длительного ресурса в сочетании с энергомассовым совершенством конструкции и приемлемыми экономическими затратами. На решение этой общей проблемной задачи направлены, в частности, следующие технические решения, обеспечивающие повышенную в ресурсе пространственную стабильность эмиттерной оболочки термоэмиссионного твэла - основного элемента ТРП, во многом определяющего его работоспособность и массогабаритные характеристики:

- Использование в качестве материала эмиттерной оболочки упрочненного монокристаллического вольфрамового сплава W-Nb, обеспечивающего заданный длительный ресурс за счет перераспределения во внутренний свободный объем твэла распухающего топлива без воздействия на характер структурных изменений диоксида урана. [Гонтарь А.С., Гриднев А.А., Ракитская Е.М. и др. Оптимизация структуры диоксида урана применительно к твэлу термоэмиссионного реактора-преобразователя. - Атомная энергия, 2005, т. 99, вып. 4, с. 264-268]. Указанная оболочка является сложной в изготовлении и дорогостоящей в связи с необходимостью использования вразрабатываемом ТРП изотопного вольфрама 184W, обладающего малым сечением захвата тепловых нейтронов.

- Формирование оптимальной структуры диоксида урана в топливном сердечнике, выполненном с термически стабилизированной пористостью (10-20) % и преобладающим размером пор (20-60) мкм при ядерном нагреве штатного твэла до (1600-1850)°С в течение (50-300) часов. При выполнении указанных условий в сердечнике формируется столбчатая структура с уменьшенной шириной зерна (≤100 мкм) против (200-300) мкм в случае ординарного диоксида урана и штатных режимов эксплуатации ЭГК [Патент RU 2260862 «Способ формирования микроструктуры сердечника тепловыделяющего элемента»; Гонтарь А.С., Гриднев А.А., Гутник B.C. и др.; МПК G21C 3/58, опубл. 20.09.2005]. Достигнутое при этом уменьшение ширины столбчатых зерен приводит к возможности использования в качестве материала эмиттерной оболочки более технологичного в изготовлении и более дешевого монокристаллического сплава Мо+(3-6)% масс. Nb (МН3, МН6) на основе естественного молибдена [Гонтарь А.С, Нелидов М.В., Николаев Ю.В. и др. Конструкционные и топливные материалы твэлов термоэмиссионных ЯЭУ. - Атомная энергия, 2005, т. 99, вып. 5, с. 365-371].

- Возможность использования в качестве материала эмиттерной оболочки сплава на основе молибдена (МН3, МН6) вместо вольфрамового сплава W-Nb достигается также путем оптимизации распределения пористости и размера пор диоксида урана по длине ЭГК. В этом случае сердечники из диоксида урана крайних электрогенерирующих элементов (ЭГЭ) по одному с каждой стороны ЭГК выполняют с пористостью (3-5)% при преимущественном размере пор (5-10) мкм. Сердечники остальных ЭГЭ выполняют с размером пор (20-60) мкм, а пористость в них выбирают из условия сохранения загрузки топлива как в прототипном варианте исполнения ЭГК, в котором пористость равномерно распределена по длине ЭГК.

В этом техническом решении снижение деформации эмиттерной оболочки достигается за счет выбора оптимального сочетания величины пористости и размера пор в ЭГЭ с различной энергонапряженностью по длине ЭГК [Патент RU 2597875 «Многоэлементный электрогенерирующий канал термоэмиссионного реактора-преобразователя»; Выбыванец В.И., Гонтарь А.С, Колесников Е.Г. и др.; МПК H01J 45/00, опубл. 20.09.2016].

Общий недостаток указанных конструктивных вариантов твэла с эмиттерной оболочкой из монокристаллического сплава на основе Мо, таких как МН3, МН6 и топливом на основе пористого диоксида урана (в сочетании со свободным объемом в виде центрального канала в сердечнике) заключается в ограничении допустимой энергонапряженности ЭГК при реализованных запасах реактивности на проектирование разрабатываемого реактора [Выбыванец В.И., Гонтарь А.С, Еремин С.А. и др. Базовый электрогенерирующий канал двухрежимных термоэмиссионных ЯЭУ. Научно-технические проблемы разработки и создания: - Международная конференция «Ядерная энергетика в космосе - 2005», Москва - Подольск, 2005, том. 1, с. 79-82]. Этот недостаток проявляется в том, что ЭГК, расположенные в центральных рядах ТРП, где коэффициент неравномерного тепловыделения по радиусу реактора kr более 1,0, не достигают, как показывают расчеты, заданного ресурса 7-10 лет.

Проблематичной также является возможность решения поставленной задачи путем увеличения в активной зоне реактора суммарного свободного объема (пористость в топливе и центральный канал в сердечнике) свыше принятых 30% из соображений обеспечения ядерной безопасности при аварийной ситуации, связанной с попаданием реактора в воду.

Работа ТРП со встроенными в активную зону реактора ЭГК с эмиттерными оболочками из упрочненного монокристаллического сплава на основе молибдена осуществляется путем эксплуатации ТРП на форсированном режиме при постоянной тепловой мощности с последующим выводом на номинальный режим. Из-за относительно малой продолжительности форсированного режима, отказы наиболее напряженных ЭГК, вызванные коротким замыканием электродов из-за деформации оболочки под действием распухающего топливного сердечника, не наблюдаются. Однако при эксплуатации ТРП на номинальном ресурсоопределяющем режиме с течением времени происходит отказ наиболее энергонапряженных ЭГК, вызванный коротким замыканием электродов из-за деформации оболочки под действием распухающего топливного сердечника.

Задачей настоящего изобретения является достижение длительного (7-10 лет) ресурса ТРП со встроенными в активную зону реактора ЭГК с эмиттерными оболочками из упрочненного монокристаллического сплава на основе молибдена при сохранении постоянной выходной электрической мощности на номинальном ресурсоопределяющем режиме работы ЭГК.

Для решения поставленной задачи авторами предложен способ эксплуатации ТРП с эмиттерными оболочками ЭГК из упрочненного монокристаллического сплава на основе молибдена, включающий эксплуатацию ТРП на форсированном режиме при постоянной тепловой мощности с последующем выводом на номинальный режим, в котором, согласно изобретению, в процессе эксплуатации на номинальном режиме осуществляют непрерывный мониторинг тепловой и электрической мощности реактора и, по мере выхода из строя отдельных наиболее энергонапряженных электрогенерирующих элементов ЭГК и падения электрической мощности на ≥50 Вт, с помощью системы автоматического управления с использованием незадействованного резерва по утилизации тепловой энергии на номинальном режиме, увеличивают тепловую мощность реактора из условия сохранения постоянного значения выходной электрической мощности номинального режима в ресурсе, при этом увеличение тепловой мощности осуществляют в пределах разности проектных значений тепловой мощности реактора на форсированном и номинальном режимах эксплуатации.

В качестве упрочненного монокристаллического сплава на основе молибдена для эмиттерных оболочек ЭГК используют монокристаллический сплав Мо+(3-6)% масс. Nb, такой как МН3 или МН6.

В качестве незадействованного резерва по утилизации тепловой энергии на номинальном режиме используют холодильник-излучатель ЯЭУ.

Осуществление изобретения.

Типичная принципиальная схема термоэмиссионной космической ЯЭУ, поясняющая сущность предложенного способа эксплуатации такого ТРП, представлена в монографии [Синявский В.В. Методы и средства экспериментальных исследований термоэмиссионных сборок. - М.: Энергоатомиздат, 2000. - 375 с.].

Согласно предложенному способу эксплуатация реактора на форсированном режиме осуществляется, как в прототипе, при постоянной тепловой и соответственно электрической мощности, так как из-за относительно малой продолжительности форсированного режима отказы наиболее напряженных ЭГК, вызванные коротким замыканием электродов из-за деформации оболочки под действием распухающего топливного сердечника не наблюдаются. Последующий номинальный режим существенно менее энергонапряженный, поэтому разработанный на параметры форсированного режима холодильник-излучатель для сброса непреобразованного тепла задействован при эксплуатации на номинальном режиме лишь частично, т.е. в большей части ресурса является балластным элементом конструкции. В то же время большая продолжительность номинального режима приводит, как показывают расчетно-экспериментальные исследования, к недопустимо высокой радиальной деформации эмиттерной оболочки из молибденового сплава, выходу из строя отдельных ЭГЭ в наиболее энергонапряженных ЭГК и падения электрической мощности, как указывалось, на ≥50 Вт и соответственно к снижению выходной электрической мощности ТРП.

В предложенном способе для восстановления выходной электрической мощности до заданного значения на номинальном режиме с помощью присутствующей в составе ТРП системы автоматического управления реактором увеличивают тепловую мощность ТРП с использованием незадействованного резерва по тепловой мощности, сбрасываемой холодильником-излучателем. При этом электрическая мощность работоспособных ЭГК увеличивается, что обеспечивает заданную электрическую мощность ТРП. Как показывают расчетно-экспериментальные исследования авторов при восстановлении выходной электрической мощности ТРП рабочая температура и тепловая мощность работоспособных ЭГК возрастают незначительно, что и позволяет достигать заданный длительный ресурс ТРП при использовании более технологичных в изготовлении и более дешевых эмиттерных оболочек из монокристаллического сплава на основе молибдена, такого как МН3 или МН6.

В обоснование предложенного способа представлены результаты расчета ресурсного поведения ЭГК в составе ТРП, из которых следует, что при выходе из строя наиболее энергонапряженных ЭГЭ в составе ЭГК, из-за деформации эмиттерных оболочек выше допустимой, заданную электрическую мощность обеспечивают оставшиеся работоспособными ЭГЭ за счет повышения тепловой мощности ТРП. Расчеты проведены по разработанной авторами и используемой при разработке ЯЭУ космического назначения комплексной компьютерной программе ресурсного поведения ЭГК, взаимосогласованно учитывающей основные ресурсоопределяющие процессы, такие как: распухание топлива, кинетику изменения структуры и пористости топлива, влияние напряженного состояния топлива на скорость распухания, массоперенос топлива в полости твэла и вынос топлива за его пределы под воздействием высокой температуры и ее градиентов, изменения величины межэлектродного зазора, вызванного деформацией эмиттерной оболочки [Гонтарь А.С., Давыдов А.А., Зазноба В.А., Нелидов М.В., Сотников В.Н. Компьютерное моделирование ресурсного поведения многоэлементного ЭГК на основе диоксида урана. Вопросы атомной науки и техники. Серия: Физика радиационного воздействия на радиоэлектронную аппаратуру, выпуск 1, январь-март 2014, с. 18-25; Гонтарь А.С., Зазноба В.А., Нелидов М.В., Давыдов А.А., Сотников В.Н. Свидетельство о государственной регистрации программы для ЭВМ KIM_TFE №2018664164. Дата государственной регистрации в Реестре программ для ЭВМ 12 ноября 2018 г.].

Требуемое увеличение тепловой мощности в конце ресурса на ~ 15% для реализации предложенного технического решения требует повышения тепловой энергии реактора на ~ 3%, что может быть обеспечено увеличением обогащения топлива.

Сущность предложенного технического решения иллюстрируется чертежами, на которых представлены результаты расчета применительно к ТРП для ЯЭУ-25 с эмиттерными оболочками ЭГК из упрочненного монокристаллического сплава на основе молибдена.

На фиг. 1 представлена максимальная радиальная деформация эмиттерных оболочек электрогенерирующих элементов для наиболее энергонапряженного ЭГК с kr=1,12 в составе ТРП. Как видно из рисунка, приблизительно через четыре с половиной года радиальная деформация эмиттерной оболочки ЭГЭ №5 достигает предельно допустимого значения, в результате чего данный ЭГЭ перестает генерировать электроэнергию. По мере увеличения времени работы ТРП из строя последовательно начинают выходить ЭГЭ №4, 6, 3, 7, 2, 8. К концу ресурса работоспособными остаются только ЭГЭ №1 и 9. Для поддержания заданной электрической мощности ТРП в течение всего ресурса его тепловая мощность должна увеличиваться по мере выхода из строя ЭГЭ.

На фиг. 2 представлено изменение тепловой мощности ТРП в ресурсе. Как видно из рисунка подъем тепловой мощности начинается после четырех с половиной лет работы реактора. Для поддержания заданной выходной электрической мощности ТРП тепловая мощность к концу номинального режима должна быть увеличена приблизительно на 15%.

На фиг. 3 представлены значения радиальной деформации эмиттерных оболочек ЭГЭ ЭГК с kr=1,0 при подъеме тепловой мощности, представленной на фиг. 2. Деформация эмиттерных оболочек ЭГЭ в ЭГК с kr<1 также не превышает допустимого значения. Поэтому все ЭГЭ ЭГК с kr≤1 продолжают генерировать электроэнергию, что и обеспечивает заданную электрическую мощность ТРП в течение всего ресурса.


СПОСОБ ЭКСПЛУАТАЦИИ ДВУХРЕЖИМНОГО ТЕРМОЭМИССИОННОГО РЕАКТОРА-ПРЕОБРАЗОВАТЕЛЯ ДЛЯ ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ
СПОСОБ ЭКСПЛУАТАЦИИ ДВУХРЕЖИМНОГО ТЕРМОЭМИССИОННОГО РЕАКТОРА-ПРЕОБРАЗОВАТЕЛЯ ДЛЯ ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ
СПОСОБ ЭКСПЛУАТАЦИИ ДВУХРЕЖИМНОГО ТЕРМОЭМИССИОННОГО РЕАКТОРА-ПРЕОБРАЗОВАТЕЛЯ ДЛЯ ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ
Источник поступления информации: Роспатент

Showing 11-20 of 78 items.
27.02.2014
№216.012.a769

Способ прессования заготовок керметных стержней

Изобретение относится к способам прессования заготовок керметных стержней тепловыделяющих элементов ядерных реакторов. Заготовки, заплавленные силикатом натрия в цилиндрическом контейнере, выполненном из стали с содержанием углерода (0,1-0,35) мас.%, после образования на поверхности контейнера...
Тип: Изобретение
Номер охранного документа: 0002508572
Дата охранного документа: 27.02.2014
20.04.2014
№216.012.b8cc

Способ изготовления газонаполненного тепловыделяющег элемента

Изобретение относится к ядерной энергетике, в частности к способам изготовления газонаполненных тепловыделяющих элементов (твэлов) с топливными сердечниками из нитрида или карбонитрида урана. Способ изготовления твэла включает изготовление «трубы в сборе» путем герметичного соединения оболочки...
Тип: Изобретение
Номер охранного документа: 0002513036
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bb3f

Способ обработки оптического изображения сферических частиц топливной загрузки керметного стержня

Изобретение относится к области ядерной энергетики и может быть использовано при изготовлении тепловыделяющих элементов для ядерных реакторов. Согласно способу производят сканирование изображения сферических частиц круговым оптическим пятном и определяют площадь их проекций. Диаметр пятна...
Тип: Изобретение
Номер охранного документа: 0002513663
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c267

Ампульное облучательное устройство

Изобретение относится к ядерной технике, а более конкретно - к облучательным устройствам и тепловыделяющим сборкам для реакторных испытаний топливных образцов, а также модельных твэлов в исследовательском реакторе, и может быть использовано при разработке и обосновании конструкций твэла для...
Тип: Изобретение
Номер охранного документа: 0002515516
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.cc35

Способ осаждения пироуглерода на топливные частицы

Изобретение относится к области получения графитовых материалов и может быть использовано в химической технологии, атомной и электронной технике. Осуществляют осаждение пироуглерода на топливные частицы путем подачи в зону осаждения смеси углеводорода и инертного газа в течение времени τ,...
Тип: Изобретение
Номер охранного документа: 0002518048
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d187

Способ выращивания монокристаллов методом бестигельной зонной плавки и устройство для его осуществления

Изобретение относится к металлургии, а именно - к выращиванию монокристаллов методом бестигельной зонной плавки с электронно-лучевым нагревом. Способ включает затравление кристалла из расплавленной зоны, выдержку в течение заданного времени и вытягивание монокристалла на затравку из...
Тип: Изобретение
Номер охранного документа: 0002519410
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d2f1

Способ облучения патологий человеческого организма и устройство для его осуществления (варианты)

Группа изобретений относится к медицинской технике. При осуществлении способа одновременно или последовательно воздействуют на патологию ионизирующим и тепловым излучениями через выходное окно источника излучения, которое размещают вблизи или на поверхности патологии. Поток излучения...
Тип: Изобретение
Номер охранного документа: 0002519772
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.de01

Способ получения диоксида урана

Изобретение относится к области неорганической химии, в частности к металлургии урана и производству соединений урана, и может быть использовано в химической и ядерных технологиях. Способ получения диоксида урана заключается в гидрировании металлического урана при температуре 200-220°С,...
Тип: Изобретение
Номер охранного документа: 0002522619
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dec4

Способ получения порошков нитрида урана

Изобретение относится к порошковой металлургии и может быть использовано для получения исходного сырья для изготовления нитридного ядерного топлива. Способ получения порошка нитрида урана включает нагрев металлического урана, который осуществляют в вакуумируемой реакционной емкости при...
Тип: Изобретение
Номер охранного документа: 0002522814
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e125

Имитатор тепловыделяющего элемента ядерного реактора

Изобретение относится к области теплофизических исследований и может быть использовано при изучении поведения тепловыделяющих элементов (твэлов) ядерных реакторов. Имитатор твэла содержит оболочку, в которой размещен столб таблеток натурного топлива с центральным отверстием, и расположенный с...
Тип: Изобретение
Номер охранного документа: 0002523423
Дата охранного документа: 20.07.2014
Showing 11-20 of 23 items.
20.11.2015
№216.013.8fc7

Способ испытания полых изделий на термическую стойкость

Изобретение относится к измерительной технике и может быт использовано при испытаниях изделий на термическую стойкость. Заявлен способ испытаний полых изделий на термостойкость, заключающийся в нагреве изделия изнутри и охлаждении снаружи. Согласно изобретению внутрь изделия помещают...
Тип: Изобретение
Номер охранного документа: 0002568423
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.914d

Способ получения таблетированного модельного ядерного топлива на основе диоксида урана

Изобретение относится к ядерной энергетике, а именно к получению модельного ядерного топлива на основе диоксида урана, включающего имитаторы продуктов деления (ИПД). Способ получения таблетированного модельного ядерного топлива включает подготовку и сухое смешивание порошков диоксида урана и...
Тип: Изобретение
Номер охранного документа: 0002568813
Дата охранного документа: 20.11.2015
10.03.2016
№216.014.cc3e

Способ получения таблетированного диоксида урана

Изобретение относится к области ядерной техники и может быть использовано при получении таблеток из диоксида урана для высокотемпературных вентилируемых твэлов преимущественно термоэмиссионных реакторов-преобразователей (ТРП) встроенного типа. Способ получения таблетированного диоксида урана...
Тип: Изобретение
Номер охранного документа: 0002577272
Дата охранного документа: 10.03.2016
10.05.2016
№216.015.3b63

Способ определения внутренних параметров и выходных характеристик цилиндрического термоэмиссионного преобразователя

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую и может быть использовано при проектировании и испытаниях термоэмиссионных преобразователей (ТЭП) преимущественно для космических ядерных энергетических установок (ЯЭУ). Способ определения...
Тип: Изобретение
Номер охранного документа: 0002583891
Дата охранного документа: 10.05.2016
13.01.2017
№217.015.73e3

Многоэлементный электрогенерирующий канал термоэмиссионного реактора-преобразователя

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую и может быть использовано при создании многоэлементных электрогенерирующих каналов (ЭГК), встроенных в активную зону термоэмиссионного реактора-преобразователя (ТРП) космического назначения....
Тип: Изобретение
Номер охранного документа: 0002597875
Дата охранного документа: 20.09.2016
20.01.2018
№218.016.156d

Термоэмиссионный тепловыделяющий элемент

Изобретение относится к области прямого преобразования тепловой энергии в электрическую и может быть использовано при создании долгоресурсных термоэмиссионных электрогенерирующих каналов (ЭГК). Предложена конструкция твэла, включающего герметичную оболочку, выполненную из упрочненного...
Тип: Изобретение
Номер охранного документа: 0002634848
Дата охранного документа: 07.11.2017
10.05.2018
№218.016.3b3e

Способ испытания высокотемпературных тепловыделяющих элементов

Изобретение относится к способам испытаний высокотемпературных твэлов в исследовательском реакторе в составе ампульного облучательного устройства и может быть использовано при разработке и обосновании конструкции невентилируемых высокотемпературных твэлов, например, термоэмиссионного...
Тип: Изобретение
Номер охранного документа: 0002647486
Дата охранного документа: 16.03.2018
25.08.2018
№218.016.7eab

Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов

Изобретение относится к способу электронно-лучевой сварки труб из молибденовых сплавов и может быть использовано при изготовлении тонкостенных трубных сварных изделий для атомной и космической техники, в частности для изготовления гильз канала системы управления и защиты. Перед стыковкой труб...
Тип: Изобретение
Номер охранного документа: 0002664746
Дата охранного документа: 22.08.2018
28.02.2019
№219.016.c853

Ампульное устройство для реакторных исследований

Изобретение относится к ядерной технике, а именно к ампульным облучательным устройствам для реакторных исследований свойств тепловыделяющих элементов. Ампульное устройство для реакторных исследований включает внешнюю цилиндрическую оболочку с герметизирующими торцевыми крышками, внутри которой...
Тип: Изобретение
Номер охранного документа: 0002680721
Дата охранного документа: 26.02.2019
20.03.2019
№219.016.e306

Способ реакторных испытаний высокотемпературных вентилируемых тепловыделяющих элементов

Изобретение относится к способу реакторных испытаний высокотемпературных вентилируемых твэлов в составе ампульного облучательного устройства и может быть использовано при разработке конструкции и обосновании ресурса высокотемпературных, например, термоэмиссионных твэлов космической ЯЭУ. В...
Тип: Изобретение
Номер охранного документа: 0002682238
Дата охранного документа: 18.03.2019
+ добавить свой РИД