×
06.02.2020
220.018.000b

Результат интеллектуальной деятельности: Способ исследования высоты и направления трещины разрыва пласта

Вид РИД

Изобретение

№ охранного документа
0002713285
Дата охранного документа
04.02.2020
Аннотация: Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения азимутального направления и высоты трещины после проведения гидравлического разрыва пласта (ГРП) в породах со слабосцементированной призабойной зоной пласта. Техническим результатом является повышение достоверности результатов исследования высоты и направления распространения трещины разрыва пласта, повышение эффективности способа, продуктивности скважины, сложенной из слабосцементированных горных пород, после ввода ее в эксплуатацию. Способ включает бурение скважины с вскрытием продуктивного пласта и зумпфом, крепление обсадной колонны скважины цементированием заколонного пространства от устья до забоя скважины, перфорацию продуктивного пласта и проведение акустической цементометрии, выполнение фонового замера в интервале продуктивного пласта методом кросс-дипольного акустического каротажа, проведение гидравлического разрыва пласта – ГРП спуском колонны насосно-компрессорных труб с пакером с получением трещины разрыва и креплением её проппантом, выполнение основного замера в интервале продуктивного пласта методом кросс-дипольного акустического каротажа, определение высоты трещины разрыва и её направление по азимуту по результатам фонового и основного замеров. При этом между выполнением фонового замера в интервале продуктивного пласта методом кросс-дипольного акустического каротажа и проведением ГРП дополнительно выполняют плотностной каротаж в интервале проведения ГРП и определяют плотность горной породы пластов в интервале проведения ГРП, затем проводят многостадийный ГРП с установкой нижнего конца колонны труб на расстоянии 5 м выше кровли пласта, при этом в последней стадии проведения ГРП крепление трещины разрыва осуществляют закачкой сшитого геля с облегчённым смолопокрытым проппантом фракции 20/40 меш с плотностью 1570 кг/м при плотности горной породы менее 1650 кг/м, или утяжелённым смолопокрытым проппантом фракции 16/30 меш с плотностью 1800 кг/м при плотности горной породы больше 1650 кг/м, причём перед закачкой смолопокрытый проппант нагревают на устье скважины до температуры 55–60°С. 2 з.п. ф-лы, 3 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения азимутального направления и высоты трещины после проведения гидравлического разрыва пласта (ГРП) в породах со слабосцементированной призабойной зоной пласта.

Известен способ заканчивания скважины (а.с. SU№1799997, МПК Е21В 33/13, 7/00, опубл. 07.03.1993 в бюл. №9), включающий бурение скважины со вскрытием продуктивного пласта и зумпфом глубиной больше 10 м, крепление обсадной колонны скважины цементированием заколонного пространства от устья до забоя скважины, перфорацию продуктивного пласта, а также оценку качества цементирования в зонах вскрытия, включая зоны выше и ниже 10 м от границ продуктивного пласта методом акустической цементометрии.

Недостатками способа являются:

- во-первых, низкая продуктивность законченной скважины после ввода ее в эксплуатацию путем проведения перфорации обсадной колонны за счет отсутствия операций по интенсификации добычи применением гидравлического разрыва пласта;

- во-вторых, низкая эффективность способа за счет недостаточной полноты определяемых параметров проведением исследований методом акустической цементометрии;

- в-третьих, низкая надежность реализации способа в слабосцементированных породах продуктивного пласта после их вскрытия без крепления призабойной зоны пласта.

Также известен способ применения многозондого кросс-дипольного акустического каротажа при сопровождении ГРП (НТВ «Каротажник», вып. 232, 10/2013, с. 98, абзац 2, 3 с. 100, выводы).

Недостатком способа является низкое качество исследования, т.е. достоверность определения результатов высоты и направления распространения трещины разрыва, полученных с помощью кросс-дипольного акустического каротажа - фонового и основного замеров в призабойной зоне слабосцементированных горных пород, ниже 50%.

Наиболее близким по технической сущности и достигаемому результату является способ исследования высоты и направления трещины разрыва пласта (патент RU №2652394, МПК Е21В 47/00, 43/26, G01V 1/44, опубл. 26.04.2018 в бюл. №12), включающий бурение скважины с вскрытием продуктивного пласта и зумпфом, крепление обсадной колонны скважины цементированием заколонного пространства от устья до забоя скважины, перфорацию продуктивного пласта и проведение акустической цементометрии, выполнение фонового замера в интервале продуктивного пласта методом кросс-дипольного акустического каротажа, проведение ГРП спуском колонны НКТ с пакером с получением трещины разрыва и креплением ее песком (проппантом), выполнение основного замера в интервале продуктивного пласта методом кросс-дипольного акустического каротажа, определение высоты трещины разрыва и ее направление по азимуту по результатам фонового и основного замеров.

Недостатками способа являются:

- во-первых, низкая достоверность результатов исследования высоты и направления распространения трещины разрыва пласта, полученных с помощью кросс-дипольного акустического каротажа - фонового и основного замеров, за счет снижения качества показателей на 50% при исследовании призабойной зоны слабосцементированных горных пород и без учета плотности горной породы и трещины, заполненной проппантом;

- во-вторых, низкая эффективность способа и, как следствие, низкая продуктивность скважины после ввода ее в эксплуатацию, обусловленная выносом текучей среды, интенсифицирующей приток, в полость скважины, поэтому искажаются показатели исследования и эффект (повышение нефтеотдачи пласта) от проведения ГРП оказывается непродолжительным (до 1 месяца);

- в-третьих, низкая надежность реализации способа в слабосцементированных породах продуктивного пласта, обусловленная низким качеством крепления проппантом в призабойной зоне скважины. Это происходит вследствие того, что не учитывается плотность горных пород в призабойной зоне скважины в интервале проведения ГРП, поэтому закачанный в процессе ГРП проппант постепенно выносится из призабойной зоны скважины при последующем освоении или эксплуатации скважины.

Техническими задачами изобретения являются повышение достоверности результатов исследования высоты и направления распространения трещины разрыва пласта, повышение эффективности способа, продуктивности скважины, сложенной из слабоцементированных горных пород, после ввода ее в эксплуатацию.

Поставленные технические задачи решаются способом исследования высоты и направления трещины разрыва пласта, включающим бурение скважины с вскрытием продуктивного пласта и зумпфом, крепление обсадной колонны скважины цементированием заколонного пространства от устья до забоя скважины, перфорацию продуктивного пласта и проведение акустической цементометрии, выполнение фонового замера в интервале продуктивного пласта методом кросс-дипольного акустического каротажа, проведение гидравлического разрыва пласта - ГРП спуском колонны насосно-компрессорных труб с пакером с получением трещины разрыва и креплением ее проппантом, выполнение основного замера в интервале продуктивного пласта методом кросс-дипольного акустического каротажа, определение высоты трещины разрыва и ее направление по азимуту по результатам фонового и основного замеров.

Новым является то, что между выполнением фонового замера в интервале продуктивного пласта методом кросс-дипольного акустического каротажа и проведением ГРП дополнительно выполняют плотностной каротаж в интервале проведения ГРП и определяют плотность горной породы пластов в интервале проведения ГРП, затем проводят многостадийный ГРП с установкой нижнего конца колонны труб на расстоянии 5 м выше кровли пласта, при этом в последней стадии проведения ГРП крепление трещины разрыва осуществляют закачкой сшитого геля с облегченным смолопокрытым проппантом фракции 20/40 меш с плотностью 1570 кг/м3 при плотности горной породы менее 1650 кг/м3, или утяжеленным смолопокрытым проппантом фракции 16/30 меш с плотностью 1800 кг/м3 при плотности горной породы больше 1650 кг/м3, причем перед закачкой смолопокрытый проппант нагревают на устье скважины до температуры 55-60°С.

Также новым является то, что скважину бурят с вскрытием продуктивного пласта и зумпфом глубиной больше 10 м.

Также новым является то, что акустическую цементометрию проводят на 10 м выше кровли продуктивного пласта и на 10 м ниже подошвы продуктивного пласта.

На фиг. 1 и 2 схематично изображен процесс реализации предлагаемого способа.

На фиг. 3 изображен график сопоставления данных до и после проведения ГРП по результатам исследований методом кросс-дипольного акустического каротажа.

Предлагаемый способ реализуют следующим образом.

Скважину 1 бурят с зенитным углом α от 5 до 40° с вскрытием продуктивного пласта 2 и зумпфом 3 глубиной L=10 м, необходимым для размещения аппаратуры в интервале продуктивного пласта 2.

Производят крепление скважины 1 обсадной колонной 4 с минимальным проходным диаметром D=124 мм цементированием заколонного пространства 5 от устья до забоя скважины 1.

Перфорируют продуктивный пласт 2 с образованием перфорационных отверстий 6, сообщающих призабойную зону продуктивного пласта 2 с полостью скважины 1.

Для перфорации используют, например кумулятивный перфоратор марки ПК-105.

После чего проводят акустическую цементометрию (АКЦ) в интервале продуктивного пласта 2, а также АКЦ проводят на 10 м (на фиг. 1-3 не показано) выше кровли и ниже подошвы продуктивного пласта 2.

АКЦ проводят с целью исключения нарушения крепления (цементного камня в заколонном пространстве) в интервале продуктивного пласта 2 и на 10 м выше и ниже соответственно кровли и подошвы продуктивного пласта 2, чтобы не принять нарушенное цементное кольцо при последующих геофизических исследованиях за трещину ГРП.

Затем на устье скважины размещают геофизический подъемник. Оснащают нижний конец геофизического кабеля (на фиг. 1-3 не показан) через наконечник аппаратурой для проведения кросс-дипольного акустического каротажа, например марки MPAL. Спускают аппаратуру в скважину в интервал продуктивного пласта 2 и методом кросс-дипольного акустического каротажа выполняют фоновый замер до проведения ГРП (фиг. 3).

Далее извлекают геофизический кабель с аппаратурой из скважины 1, отсоединяют наконечник геофизического кабеля от аппаратуры марки MPAL, а затем к наконечнику геофизического кабеля присоединяют прибор плотностного гамма-гамма каротажа, например 2ГГКП-К-84 (на фиг. 1-3 не показан). Затем спускают прибор плотностного гамма-гамма каротажа в интервал продуктивного пласта 2 скважины. Выполняют плотностной каротаж в интервале проведения ГРП. После чего извлекают из скважины геофизический кабель с прибором плотностного гамма-гамма каротажа.

Сущность плотностного каротажа заключается в определении плотности горной породы пласта в интервале выполнения ГРП с целью повышения эффекта от проведения ГРП и исключения искажения показателей исследования. Выполнение плотностного каротажа повышает достоверность результатов исследования высоты и направления распространения трещины разрыва, полученных с помощью кросс-дипольного акустического каротажа - фонового и основного замеров.

По результатам проведения плотностного каротажа при плотности горной породы менее 1650 кг/м3 подбирают облегченный смолопокрытый проппант фракции 20/40 меш с плотностью 1570 кг/м3, если плотность горной породы больше 1650 кг/м3, то подбирают утяжеленный смолопокрытый проппант фракции 16/30 меш с плотностью 1800 кг/м3.

Это доказано опытном путем и объясняется равномерным распределением соответствующего проппанта по всей высоте трещины в пласте в зависимости от плотности горной породы, где производят ГРП.

Например, если по результатам плотностного каротажа плотность породы пласта р=1500 кг/м3, тогда подбирают облегченный смолопокрытый проппант фракции 20/40 меш с плотностью 1570 кг/м3.

А если по результатам плотностного каротажа плотность породы пласта р=1750 кг/м3, тогда подбирают утяжеленный смолопокрытый проппант фракции 16/30 меш с плотностью 1800 кг/м3.

Далее проводят многостадийный ГРП любым известным способом, при этом в качестве интенсифицирующей приток жидкости производят закачку сшитого геля с проппантом, а в последней стадии проведения ГРП крепление трещины разрыва осуществляют закачкой сшитого геля с проппантом в зависимости от плотности породы пласта.

Для проведения многостадийного ГРП в скважину 1 спускают технологическую колонну труб 7, например колонну НКТ диаметром 89 мм с пакером 8. Сажают пакер выше кровли продуктивного пласта 2, например на 10 м, при этом нижний конец колонны НКТ размещают на расстоянии 5 м выше кровли продуктивного пласта 2. Пакер 8 предназначен для защиты обсадной колонны 4 от воздействия высоких давлений, возникающих в процессе проведения ГРП.

Выполняют многостадийный (многоциклический) ГРП с получением трещины разрыва 9. Крепление трещины разрыва осуществляют закачкой сшитого геля с проппантом 10, например фракции 12/20 меш (см. фиг. 1). ГРП выполняют любым известным способом, например, описанным в патентах RU №2522366 или №2473798.

В последней стадии проведения ГРП крепление трещины разрыва осуществляют закачкой сшитого геля со смолопокрытым проппантом 11 с плотностью и фракцией, соответствующей определенной плотности горной породы пласта, как указано выше, при этом перед закачкой смолопокрытый проппант нагревают на устье скважины до температуры 55-60°С.

Например, в последней стадии (цикле) проведения ГРП в сшитом геле объемом 4 м3 закачивают утяжеленный смолопокрытый проппант фракции 16/30 меш плотностью 1800 кг/м3 (весом 3000 кг), нагретый на устье скважины до температуры 55-60°С.

Готовят гелированную жидкость разрыва - сшитый гель в объеме 5 м3 с добавлением в линейный гель, например, боратного сшивателя или используют любой известный сшитый гель (например, см. главу 3 монографии С.А. Рябоконя «Технологические жидкости для заканчивания и ремонта скважин (ОАО НПО «Бурение», 2006. С. 153).

Плотность проппанта в трещине ГРП в призабойной зоне, отличающаяся от плотности горной породы пласта, позволяет достичь большего акустического контраста при проведении основного замера кросс-дипольного акустического каротажа, выполняемого после проведения ГРП.

Проплаты применяют по ГОСТ Р 51761-2013 Проппанты алюмосиликатные. Технические условия (с Поправкой).

После чего на устье скважины 1 вновь размещают геофизический подъемник. Оснащают нижний конец геофизического кабеля через наконечник аппаратурой для проведения кросс-дипольного акустического каротажа, например марки MPAL. Спускают аппаратуру в скважину в интервал продуктивного пласта 2 и методом кросс-дипольного акустического каротажа производят основной замер после ГРП (фиг. 3).

Геофизические исследования с проведением акустического каротажа в скважине 1 до и после проведения ГРП позволяют установить такие параметры, как пористость и проницаемость, трещиноватость пород, и проследить в динамике эффективность ГРП.

Сопоставлением коэффициента анизотропии (фиг. 3) до и после проведения ГРП определяют высоту Н трещины разрыва 9 (фиг. 1 и 3).

Применение многозондовой аппаратуры кросс-дипольного акустического каротажа MPAL позволяет помимо определения кинематических и динамических параметров основных типов волн по данным кросс-диполей аппаратуры MPAL оценивать величину анизотропии и определять ее направления, что позволяет определить направление максимального напряженного состояния и направление 12 (фиг. 2 и 3) развития трещины разрыва 9 (фиг. 2 и 3).

Основным критерием анизотропии служит расщепление поперечной волны на высоко- и низкоскоростные компоненты. Компонента с более высокой скоростью несет основную часть энергии волны и поляризована параллельно направлению преобладающей трещиноватости породы.

Медленная и менее интенсивная компонента поляризована перпендикулярно трещиноватости. Масштаб и направление азимутальной анизотропии по поперечным волнам определяют по 4-компонентным кросс-дипольным замерам.

Азимутальную анизотропию определяют по разнице скоростей поперечных волн, приходящих во взаимно перпендикулярных направлениях.

На фиг. 3 приведены данные двух замеров кросс-дипольной акустикой: фонового - до проведения ГРП и основного замера - после проведения ГРП. По расхождению акустических параметров достоверно фиксируют высоту Н трещины разрыва 9, образовавшейся после ГРП.

По результатам сопоставления графиков до и после проведения ГРП видно, что в интервале исследований определены упруго-деформационные свойства пластов. В интервале проведения ГРП 1481-1493 м высота трещины разрыва 9 по данным MPAL составила 22,8 м, простирание - север-юг (фиг. 1-3).

Благодаря реализации способа в 3-5 раз увеличивается дебит скважины после ввода ее в эксплуатацию. Это обусловлено тем, что закачанный в процессе ГРП в последней стадии многостадийного ГРП подогретый смолопокрытый проппант с фракцией и плотностью, соответствующими определенным плотностям горной породы, образует прочные связи между зернами проппанта и не выносится из призабойной зоны скважины при последующем освоении или эксплуатации скважины, что исключает осыпание и разрушение породы продуктивного пласта после проведения ГРП. При этом повышается длительность эффекта стабильной нефтеотдачи, т.е. дебит скважин остается стабильным на протяжении не менее 6 месяцев после освоения и ввода скважины в эксплуатацию.

Повышается надежность реализации способа в слабосцементированных породах продуктивного пласта, связанная с качественным креплением призабойной зоны пласта, обусловленная тем, что крепящий трещину ГРП смолопокрытый проппант (плотность и фракция), закачиваемый на сшитом геле, подбирают исходя из плотности горной породы в интервале проведения ГРП, как указано выше. Смолопокрытые проплаты - это проппанты, покрытые полимерной смолой, которые после проведения гидроразрыва полимеризуются. Проппанты, слипаясь, создают монолитный каркас с сохранением около 40% по объему сквозных каналов, сквозь которые нефть поступает в скважину и выдавливается на поверхность без захвата проппанта.

Повышается качество показателей исследования высоты и направления распространения трещины разрыва, полученных с помощью кросс-дипольного акустического каротажа - фонового и основного замеров в призабойной зоне слабосцементированных горных пород, при этом достоверность результатов исследований достигает 90-95%. Выполнение геофизических исследований методом кросс-дипольного акустического каротажа: (фонового - до проведения ГРП и основного замеров - после проведения ГРП по направлению азимутальной анизотропии и изменению коэффициента анизотропии соответственно) позволяет определить, как направление закрепленной трещины относительно оси скважины, так и высоту закрепленной трещины в продуктивном пласте, вследствие чего процесс проведения ГРП является более информативным.

Владение информацией о высоте и направлении распространения трещины разрыва, полученной в процессе ГРП на данной скважине, позволяет учитывать это при строительстве других скважин, что в целом повышает эффективность разработки продуктивного пласта.

Выполнение плотностного каротажа с закачкой подобранного в соответствии с плотностью горной породы проппанта в последней стадии ГРП в 2-3 раза увеличивает расхождение акустических параметров фонового и основного замеров, получаемых методом кросс-дипольного акустического каротажа, при этом достоверно фиксируется высота Н трещины разрыва 9, образовавшейся после ГРП, и ее направление, что в целом позволяет увеличить эффективность применения технологии ГРП, что позволяет повысить качество исследования и достоверность результатов исследования, т.е. основного замера кросс-дипольного акустического каротажа, выполняемого после проведения ГРП. Предлагаемый способ позволяет:

- повысить достоверность результатов исследования высоты и направления распространения трещины разрыва пласта;

- повысить эффективность способа;

- повысить продуктивность скважины, сложенной из слабоцементированных горных пород после ввода ее в эксплуатацию.


Способ исследования высоты и направления трещины разрыва пласта
Способ исследования высоты и направления трещины разрыва пласта
Способ исследования высоты и направления трещины разрыва пласта
Источник поступления информации: Роспатент

Showing 161-170 of 170 items.
15.05.2023
№223.018.58fa

Способ разработки неоднородного пласта сверхвязкой нефти

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке залежи высоковязкой и битумной нефти в неоднородном пласте. Способ разработки неоднородного пласта сверхвязкой нефти, включающий бурение в продуктивном пласте паронагнетательной горизонтальной...
Тип: Изобретение
Номер охранного документа: 0002760747
Дата охранного документа: 30.11.2021
15.05.2023
№223.018.59d2

Способ разработки послойно-зонально-неоднородной залежи сверхвязкой нефти или битума

Изобретение относится к нефтяной промышленности. Технический результат - повышение эффективности разработки залежи, вовлечение в разработку маломощных продуктивных пластов толщиной менее 10 м, осложненных непроницаемыми пропластками, с одновременным снижением материальных затрат. Способ...
Тип: Изобретение
Номер охранного документа: 0002761799
Дата охранного документа: 13.12.2021
15.05.2023
№223.018.59d3

Способ разработки послойно-зонально-неоднородной залежи сверхвязкой нефти или битума

Изобретение относится к нефтяной промышленности. Технический результат - повышение эффективности разработки залежи, вовлечение в разработку маломощных продуктивных пластов толщиной менее 10 м, осложненных непроницаемыми пропластками, с одновременным снижением материальных затрат. Способ...
Тип: Изобретение
Номер охранного документа: 0002761799
Дата охранного документа: 13.12.2021
15.05.2023
№223.018.5a21

Устройство для удержания колонны насосных штанг

Изобретение относится к нефтедобывающей промышленности, а именно к устройству для удержания колонны насосных штанг. Устройство содержит корпус с отверстием под шток. Корпус состоит из двух полукорпусов 4 и 5, соединённых относительно друг друга резьбовым механизмом сжатия в виде расположенных с...
Тип: Изобретение
Номер охранного документа: 0002761145
Дата охранного документа: 06.12.2021
15.05.2023
№223.018.5a22

Устройство для удержания колонны насосных штанг

Изобретение относится к нефтедобывающей промышленности, а именно к устройству для удержания колонны насосных штанг. Устройство содержит корпус с отверстием под шток. Корпус состоит из двух полукорпусов 4 и 5, соединённых относительно друг друга резьбовым механизмом сжатия в виде расположенных с...
Тип: Изобретение
Номер охранного документа: 0002761145
Дата охранного документа: 06.12.2021
15.05.2023
№223.018.5b49

Способ вывода в ремонт парового горизонтального водотрубного котла

Изобретение может быть использовано при ремонте паровых котлов. Способ вывода в ремонт парового горизонтального водотрубного котла заключается в отключении подачи топлива в горелку (9), вытеснении из топки (8) продуктов сгорания, закачки воды для ускорения начала ремонтных работ и выпуска пара...
Тип: Изобретение
Номер охранного документа: 0002763631
Дата охранного документа: 30.12.2021
15.05.2023
№223.018.5b4b

Способ вывода в ремонт парового горизонтального водотрубного котла

Изобретение может быть использовано при ремонте паровых котлов. Способ вывода в ремонт парового горизонтального водотрубного котла заключается в отключении подачи топлива в горелку (9), вытеснении из топки (8) продуктов сгорания, закачки воды для ускорения начала ремонтных работ и выпуска пара...
Тип: Изобретение
Номер охранного документа: 0002763631
Дата охранного документа: 30.12.2021
16.05.2023
№223.018.60c0

Способ определения содержания органического хлора в химических реагентах, применяемых в нефтедобыче

Изобретение относится к способам определения органического хлора. Описан способ определения содержания органического хлора в химических реагентах на органической основе, на водной основе, на основе соляной кислоты и в твердом агрегатном состоянии, применяемых в нефтедобыче, включающий введение...
Тип: Изобретение
Номер охранного документа: 0002740991
Дата охранного документа: 22.01.2021
16.05.2023
№223.018.60c1

Способ определения содержания органического хлора в химических реагентах, применяемых в нефтедобыче

Изобретение относится к способам определения органического хлора. Описан способ определения содержания органического хлора в химических реагентах на органической основе, на водной основе, на основе соляной кислоты и в твердом агрегатном состоянии, применяемых в нефтедобыче, включающий введение...
Тип: Изобретение
Номер охранного документа: 0002740991
Дата охранного документа: 22.01.2021
16.05.2023
№223.018.6103

Якорь гидравлического действия для фиксации насосно-компрессорных труб в скважинах с штанговыми насосами (варианты)

Изобретение относится к нефтедобывающей промышленности, в частности к устройствам для фиксирования колонны насосно-компрессорных труб (НКТ) в эксплуатационной колонне (ЭК) при добыче нефти скважинными штанговыми насосными установками. Техническим результатом является повышение надежности...
Тип: Изобретение
Номер охранного документа: 0002743035
Дата охранного документа: 12.02.2021
Showing 161-170 of 292 items.
29.12.2017
№217.015.feb4

Устройство для поинтервального гидроразрыва пласта

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для проведения поинтервального кислотного гидроразрыва пласта. Устройство для проведения поинтервального гидроразрыва пласта содержит колонну насосно-компрессорных труб с полым цилиндрическим корпусом, снизу...
Тип: Изобретение
Номер охранного документа: 0002638673
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.0478

Способ эксплуатации продуктивного и водоносного пластов, разделённых непроницаемым пропластком, скважиной с горизонтальными стволами и с трещинами гидравлического разрыва пласта

Изобретение относится к нефтедобывающей промышленности и может найти применение при совместной эксплуатации продуктивного и водоносного пластов с применением гидравлического разрыва пласта. Технический результат - повышение эффективности способа за счет исключения дополнительных энергетических...
Тип: Изобретение
Номер охранного документа: 0002630514
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0597

Способ освоения скважины после проведения гидроразрыва пласта

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для освоения скважин после проведения гидроразрыва пласта. Способ освоения скважины включает спуск колонны насосно-компрессорных труб (НКТ) в скважину, обвязку азотного компрессора нагнетательной линией с...
Тип: Изобретение
Номер охранного документа: 0002630930
Дата охранного документа: 14.09.2017
19.01.2018
№218.016.05b7

Способ очистки и обработки призабойной зоны горизонтальной скважины в залежи битума

Изобретение относится к нефтяной промышленности и может найти применение при обработке призабойной зоны в горизонтальных стволах скважин, пробуренных в залежи битумов. Способ очистки и обработки призабойной зоны горизонтальной скважины в залежи битума включает спуск в скважину колонны гибких...
Тип: Изобретение
Номер охранного документа: 0002630938
Дата охранного документа: 14.09.2017
20.01.2018
№218.016.1103

Способ разработки залежи высоковязкой нефти или битума с применением трещин гидроразрыва пласта

Изобретение относится к разработке залежей высоковязкой нефти или битума, содержащих непроницаемые пропластки трещинами гидроразрыва пласта. Способ включает бурение вертикальной нагнетательной и горизонтальной добывающей скважин в залежи, представленной верхней и нижней частями продуктивного...
Тип: Изобретение
Номер охранного документа: 0002633887
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.111f

Секционный гидропескоструйный перфоратор

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для направленного вскрытия продуктивного пласта в горизонтальной скважине с обсадной колонной и проведения гидравлического разрыва пласта. Секционный гидропескоструйный перфоратор содержит полый корпус,...
Тип: Изобретение
Номер охранного документа: 0002633904
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.1135

Способ разработки залежи высоковязкой нефти пароциклическим воздействием

Изобретение относится к разработке залежей высоковязкой нефти с пароциклическим воздействием, содержащих непроницаемые пропластки с применением трещин гидроразрыва пласта (ГРП). Способ включает бурение вертикальной скважины в залежи высоковязкой нефти, крепление вертикальной скважины обсадной...
Тип: Изобретение
Номер охранного документа: 0002633930
Дата охранного документа: 19.10.2017
13.02.2018
№218.016.271a

Способ гидравлического разрыва пласта в скважине

Изобретение относится к нефтяной промышленности и может быть применено для гидроразрыва пласта. В способе гидравлического разрыва пласта ГРП в скважине, включающем перфорацию стенок обсадной колонны скважины в интервале пласта каналами, спуск колонны труб с пакером, посадку пакера над кровлей...
Тип: Изобретение
Номер охранного документа: 0002644361
Дата охранного документа: 09.02.2018
13.02.2018
№218.016.2738

Способ установки цементного моста в скважине

Изобретение относится к нефтегазодобывающей промышленности, а именно к установке цементных мостов в эксплуатационных колоннах скважин при временном отключении продуктивной части отдельных пластов или части пласта и ликвидации скважин. Технический результат – повышение эффективности установки...
Тип: Изобретение
Номер охранного документа: 0002644360
Дата охранного документа: 09.02.2018
04.04.2018
№218.016.3117

Способ гидравлического разрыва пласта

Изобретение относится к области нефтегазодобывающей промышленности, в частности к способам гидравлического разрыва пласта в добывающей скважине при наличии попутной и/или подошвенной воды. В способе гидравлического разрыва пласта - ГРП, включающем спуск колонны труб с пакером в скважину,...
Тип: Изобретение
Номер охранного документа: 0002644807
Дата охранного документа: 14.02.2018
+ добавить свой РИД