×
06.02.2020
220.017.fff4

Результат интеллектуальной деятельности: Способ измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений, в импульсных режимах и устройство для его реализации

Вид РИД

Изобретение

Аннотация: Способ измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений, в импульсных режимах и устройство для его реализации. Предложены способ и устройство для измерения массы газов (водорода Н и кислорода O) при огневых испытаниях ракетных двигателей малых тяг при работе в режиме одиночных включений и в импульсных режимах. Устройство состоит из по меньшей мере одной рабочей и эталонной емкостей, электропневмоклапанов, датчика перепада давлений, датчиков давления и температуры, причем оно включает как минимум две емкости с рабочим телом - эталонную и по меньшей мере одну рабочую, каждая из которых изолирована от общей пневмогидравлической системы с помощью электропневмоклапанов. После проведения одиночного включения или импульсного режима при условии стабилизации параметров в емкостях измеряют перепад давлений между по меньшей мере одной рабочей и эталонной емкостями, затем определяют массу газа по соотношению Δm=(μVΔp)/(RT), где μ - молярная масса газа, V - объем по меньшей мере одной рабочей емкости, Δр - перепад давлений между по меньшей мере одной рабочей и эталонной емкостями, R - универсальная газовая постоянная, Т - температура рабочего тела. Изобретение позволяет увеличить точность определения параметров в режиме одиночных включений и в импульсных режимах работы ракетного двигателя малой тяги. 2 н.п. ф-лы, 1 ил.

Настоящее изобретение относится к области измерения газообразных водорода Н2 и кислорода O2 при огневых испытаниях на стендах ракетных двигателей малых тяг (РДМТ), которые применяются в качестве исполнительных органов систем управления объектов ракетно-космической техники и которые работают большую часть времени либо в режимах одиночных включений, либо в импульсных режимах. При этом длительность минимального импульса РДМТ составляет примерно 0,05 с, а максимальная частота включений двигателя по порядку величины может составлять примерно 20 Гц.

Особенно эффективны такие РДМТ в составе двигательных установок космических аппаратов с применением электролиза воды, который позволяет получать на борту газообразные водород и кислород и использовать их в качестве топлива для двигателей малых тяг.

Известны расходомеры, работающие на различных физических принципах, применяемых, в основном, для измерений массы газообразных компонентов топлива на длительных непрерывных режимах (В.И. Монахов. Измерение расхода и количества жидкости, газа и пара. Госэнергоиздат, Москва, Ленинград, 1962 г. Стр. 4-7). Такие расходомеры не пригодны для измерений массы газообразных компонентов топлива при работе РДМТ в импульсных режимах.

Наиболее близким к заявляемому техническому решению являются расходомеры, принцип действия которых основан на измерении перепада давлений, создаваемого при течении газа на каком-либо сужающемся устройстве, установленном внутри канала (В.И. Монахов. Измерение расхода и количества жидкости, газа и пара. Госэнергоиздат, Москва, Ленинград, 1962 г. Стр. 4-7. Кремлевский, П.П. Расходомеры [текст] / П.П. Кремлевский; Машгиз - М.-Л., 1964. - 656 с. Стр. 75-83).

Недостатком этого устройства является необходимость измерять перепад давлений в течение короткого времени, соизмеримого с длительностью импульса РДМТ, что технически практически невыполнимо.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа и устройства для измерения массы газов при огневых испытаниях ракетных двигателей малых тяг при работе в режиме одиночных включений и импульсных режимах.

Техническим результатом является перевод процесса импульсных измерений в стационарные, что приводит к увеличению точности определения параметров в режиме одиночных включений и импульсных режимах работы РДМТ.

Данная задача решается за счет того, что способ измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений и в импульсных режимах, заключающийся в измерении перепада давлений, само измерение перепада давлений осуществляют между изолированными от общей пневмогидравлической системы эталонной и, по меньшей мере, одной рабочей емкостями, причем перед испытанием двигателя открывают все электропневмоклапаны, кроме электропневмоклапана двигателя и заправляют емкости, затем все электропневмоклапаны закрывают, перед пуском двигателя открывают электропневмоклапаны, связывающие, по меньшей мере, одну рабочую емкость с двигателем, запускают двигатель, после проведения одиночного включения или импульсного режима при условии стабилизации параметров в, по меньшей мере, одной рабочей емкости, измеряют перепад давлений между, по меньшей мере, одной рабочей и эталонной емкостями, затем определяют массу газа по соотношению Δm=(μVΔp)/(RT), где μ - молярная масса газа, V - объем, по меньшей мере, одной рабочей емкостей, Δр - перепад давлений между, по меньшей мере, одной рабочей и эталонной емкостями, R - универсальная газовая постоянная, Т - температура рабочего тела.

Также задача решается и за счет того, что устройство для измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений и в импульсных режимах, состоящее из датчика перепада давлений, электропневмоклапанов, датчика давления и термопар, включает, как минимум, две емкости с рабочим телом - эталонную и, по меньшей мере, одну рабочую, каждая из которых установлена с возможностью изоляции от общей пневмогидравлической системы с помощью электропневмоклапанов, причем в каждой из них установлена термопара, а датчик перепада давлений установлен между эталонной и рабочей, по меньшей мере, одной емкостями.

Сущность изобретения поясняется чертежом, на котором изображены: электропневмоклапан 1, эталонная емкость 2, электропневмоклапан 3, электропневмоклапан 4, датчик перепада давлений 5, рабочая емкость 6, электропневмоклапан 7, электропневмоклапан 8, термопара 9, рабочая емкость 10, электропневмоклапан 11, термопара 12, электропневмоклапан 13, датчик давления на входе в двигатель 14, термопара на входе в двигатель 15, электропневмоклапан двигателя 16, ракетный двигатель 17.

На чертеже приводится схема только для одного компонента топлива, для другого компонента топлива схема аналогичная. Количество рабочих емкостей может быть любым, их число определяется диапазоном измеряемых масс газа.

Работает устройство следующим образом. Перед испытанием ракетного двигателя малой тяги осуществляется заправка устройства соответствующим количеством топлива через электропневмоклапан 1 при открытых электрогшевмоклапанах 1, 3, 4, 7, 8, 11, 13. Контроль давления осуществляется датчиком давления 14. Контроль температуры осуществляется термопарами 9 и 12. После заправки топливом электропневмоклапаны закрываются.

Для пуска двигателя открываются электропневмоклапаны 4 и 7, 8 (при необходимости открывается электропневмоклапан 11 и другие - по числу рабочих емкостей), открывается также электропневмоклапан двигателя 16. После выключения двигателя 17 закрываются электропневмоклапаны 8, 11, 16. Затем следует выдержка, длительность которой определяется стабилизацией температуры в емкостях 6, 10 по показаниям термопар 9, 12 (измеренные значения температуры в каждой из емкостей не должны отличаться на величину Δt≤1°С). После этого снимают показания датчика перепада давлений 5 и определяют массу газообразного компонента, прошедшего через двигатель за импульс или серию импульсов, время которого определяют по компьютерной записи. Массовый расход газообразного компонента топлива за импульс в серии импульсов рассчитывают.


Способ измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений, в импульсных режимах и устройство для его реализации
Источник поступления информации: Роспатент

Showing 31-40 of 77 items.
15.12.2018
№218.016.a7bb

Способ измерения частотных характеристик механических конструкций оптическим методом

Изобретение относится к измерительной технике. Способ измерения частотных характеристик механических конструкций заключается в том, что исследуемую конструкцию освещают когерентным лазерным излучением. Формируют опорную и предметную оптические волны. Используя оптическую систему, формируют...
Тип: Изобретение
Номер охранного документа: 0002675076
Дата охранного документа: 14.12.2018
13.01.2019
№219.016.af50

Способ импульсного электромагнитного воздействия на клеточные культуры в медицинских или биологических целях

Изобретение относится к медицине и может быть использовано для импульсного электромагнитного воздействия на клеточную культуру в медицинских и биологических целях. Действуют на клеточную культуру импульсным электромагнитным полем при индукции магнитного поля В=(0,35÷4) Тл, частоте f=(10÷70)...
Тип: Изобретение
Номер охранного документа: 0002676846
Дата охранного документа: 11.01.2019
25.01.2019
№219.016.b3d2

Комбинированная установка опреснения морской воды и выработки электроэнергии

Изобретение относится к теплоэнергетике, а точнее к направлению опреснения морской воды и выработки электроэнергии. Установка содержит: газотурбинную установку 1 с компрессором, камерой сгорания и газовой турбиной, электрогенератор 2, паропровод 3 перегретого пара, паровую турбину 4 с...
Тип: Изобретение
Номер охранного документа: 0002678065
Дата охранного документа: 22.01.2019
02.02.2019
№219.016.b5df

Упругодемпфирующий зажим для трубопровода

Изобретение относится к средствам виброзащиты трубопроводных систем, преимущественно авиационных и ракетных двигателей, работающих в условиях повышенной вибрации и температуры. Технический результат, на достижение которого направлено изобретение, заключается в повышении функциональности,...
Тип: Изобретение
Номер охранного документа: 0002678610
Дата охранного документа: 30.01.2019
06.04.2019
№219.016.fdb7

Устройство с кормовым диффузором для высотных испытаний ракетных двигателей малой тяги

Изобретение относится к области испытаний ракетных двигателей малой тяги. Устройство для высотных испытаний ракетных двигателей выполнено с кормовым диффузором для обеспечения безотрывного течения продуктов сгорания в сопле ракетного двигателя при испытаниях и включает две вакуумные камеры и...
Тип: Изобретение
Номер охранного документа: 0002684071
Дата охранного документа: 03.04.2019
06.04.2019
№219.016.fe1b

Автоматическое устройство термомеханического управления радиальным зазором между концами рабочих лопаток ротора и статора компрессора или турбины двухконтурного газотурбинного двигателя

Группа изобретений относится к авиационным газотурбинным двигателям и газотурбинным установкам, а именно к устройствам регулирования радиального зазора между концами рабочих лопаток ступени ротора компрессора или турбины и статором первого контура двухконтурного газотурбинного двигателя. Для...
Тип: Изобретение
Номер охранного документа: 0002684073
Дата охранного документа: 03.04.2019
27.04.2019
№219.017.3d9d

Место крепления рабочих лопаток роторов компрессора низкого и высокого давления авиадвигателей пятого поколения, ротор компрессора низкого давления и ротор компрессора высокого давления авиадвигателя пятого поколения с рабочими лопатками, закрепляемыми с помощью замков типа "ласточкин хвост" в кольцевых канавках этих устройств, способ сборки места крепления рабочих лопаток роторов компрессора

Группа изобретений относится к области гашения вибраций рабочих лопаток бустера и компрессора авиационных газотурбинных двигателей пятого поколения. Место крепления рабочих лопаток роторов компрессора низкого и высокого давления авиадвигателей пятого поколения, выполненное в виде кольцевого...
Тип: Изобретение
Номер охранного документа: 0002686353
Дата охранного документа: 25.04.2019
20.05.2019
№219.017.5c56

Установка для опреснения морской воды и выработки электроэнергии

Изобретение может быть использовано в теплоэнергетике и экологии. Установка для опреснения морской воды и выработки электроэнергии содержит газотурбинную установку 1 с компрессором, камерой сгорания, газовой турбиной и электрогенератором 2, паропровод перегретого пара 3, паровую турбину 4 с...
Тип: Изобретение
Номер охранного документа: 0002687922
Дата охранного документа: 16.05.2019
24.05.2019
№219.017.5ecb

Способ предварительной обработки и активации воздухом морской воды перед ее опреснением

Изобретение относится к области предварительной обработки морской воды перед опреснением в адиабатном многоступенчатом опреснителе путем ее гидродинамической кавитационной обработки и активации атмосферным воздухом. Исходную морскую воду подают через тангенциальные сопла во внутреннюю часть...
Тип: Изобретение
Номер охранного документа: 0002688617
Дата охранного документа: 21.05.2019
24.05.2019
№219.017.5ed6

Компрессорная станция магистральных газопроводов с электроприводными газоперекачивающими агрегатами

Изобретение относится к области транспорта газа и может быть применено на компрессорных станциях (КС) магистральных газопроводов. Компрессорная станция снабжена электроприводными ГПА и регенеративными энергетическими газотурбинными установками с высокооборотными компрессорами, газовыми...
Тип: Изобретение
Номер охранного документа: 0002688640
Дата охранного документа: 21.05.2019
Showing 11-13 of 13 items.
27.06.2019
№219.017.986b

Тягоизмерительное устройство для испытаний жидкостных ракетных двигателей малой тяги в стационарном режиме работы

Изобретение относится к испытаниям жидкостных ракетных двигателей малой тяги. Устройство состоит из упругой балки с двумя силоизмерительными датчиками (весоизмерительным и задающим), на которой крепится испытуемое изделие и измерительный датчик, узла подвеса, силозадающего устройства...
Тип: Изобретение
Номер охранного документа: 0002692591
Дата охранного документа: 25.06.2019
25.01.2020
№220.017.f9ef

Тягоизмерительное устройство для испытаний жидкостных ракетных двигателей малой тяги в импульсных режимах работы

Изобретение относится к испытательным стендам для жидкостных ракетных двигателей малой тяги (ЖРДМТ). Тягоизмерительное устройство состоит из корпуса, выполненного в виде круговой балки, упругих элементов, представляющих собой радиально ориентированные лепестки прямоугольного сечения,...
Тип: Изобретение
Номер охранного документа: 0002711813
Дата охранного документа: 23.01.2020
24.06.2020
№220.018.29f1

Ракетный двигатель малой тяги на несамовоспламеняющихся жидком горючем и газообразном окислителе

Изобретение относится к области ракетно-космической техники, а именно к ракетным двигателям малой тяги на несамовоспламеняющихся газообразном окислителе и жидком горючем. Ракетный двигатель содержит агрегат зажигания и свечу, электропневмоклапаны окислителя «О» и горючего «Г», смесительную...
Тип: Изобретение
Номер охранного документа: 0002724069
Дата охранного документа: 19.06.2020
+ добавить свой РИД