×
06.02.2020
220.017.fef2

Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Группа изобретений относится к области биомедицины и биомедицинской техники и может быть использована как в исследовательских, так и прикладных задачах биомедицины: разработка новых технологий в области адресной доставки лекарств, исследование наномеханического воздействия на макромолекулярные и клеточные структуры с целью управления их функционированием, онкотерапии и др. Способ оказания локального воздействия переменного магнитного поля на биохимические системы с предварительно введенными в них функционализированными магнитными наночастицами заключается в управлении магнитными наночастицами с помощью комбинации постоянного градиентного магнитного поля напряженностью и переменного магнитного поля с амплитудой , согласно изобретению для локализации воздействия в области радиусом R* осуществляют периодическую переориентацию магнитных наночастиц в низкочастотном переменном магнитном поле с амплитудой и угловой частотой меньше любой (или меньшей) из двух величин - 1000 с и (где μ - магнитный момент магнитной наночастицы, V - ее гидродинамический объем, μ - магнитная проницаемость вакуума, η - вязкость окружающей среды). Устройство для локального наномеханического воздействия на биохимические системы, содержащие магнитные наночастицы, состоящее из узла, генерирующего градиентное магнитное поле H, узла катушек, создающих однородное магнитное поле H, которое изменяет положение области воздействия переменного магнитного поля, узла катушек, создающих переменное поле, которое управляет движением магнитных наночастиц, и управляемых источников постоянного и переменного тока для питания соответствующих катушек. Узел катушек, создающих переменное магнитное поле, генерирует магнитное поле с угловой частотой меньше любой из двух величин – 1000 си ω=μμH/(6ηV) (где μ - магнитный момент магнитной наночастицы, V - ее гидродинамический объем, μ - магнитная проницаемость вакуума, η - вязкость окружающей среды), обеспечивая периодическую механическую переориентацию магнитных наночастиц. Способ и устройство обеспечивают наномеханическое воздействие на отдельные молекулы и молекулярные структуры или клетки в выбранном ограниченном объёме биохимической системы с введёнными в неё магнитными наночастицами за счёт периодической переориентации магнитных наночастиц в низкочастотное переменное магнитное поле. 2 н. и 7 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Группа изобретений относится к области биомедицины и биомедицинской техники и может быть использовано как в исследовательских, так и прикладных задачах биомедицины: разработка новых технологий нанобиомедицины в области адресной доставки лекарств, исследование наномеханического воздействия на макромолекулярные и клеточные структуры, в том числе с целью управления их функционированием, в частности, в интересах онкотерапии и др.

Далее в описании используются следующие термины, которые, хотя и являются общепринятыми для специалистов в данной области техники, однако, требуют уточнения в контексте заявляемого изобретения.

ПМП - переменное магнитное поле;

НЧ - низкая частота;

ВЧ - высокая частота;

МНЧ -магнитные наночастицы;

МП - магнитное поле;

MPI - способ и устройство визуализации магнитных наночастиц (англ. magneticparticleimaging);

Группа изобретений предназначена для обеспечения локального воздействия переменного магнитного поля (ПМП) низкой частоты (НЧ) на биохимические системы, например, биоактивные молекулы и их комплексы, микроорганизмы, клеточные культуры, ткани, лабораторных животных, человека. При этом в биохимическую систему должны быть предварительно введены однодоменные магнитные наночастицы (МНЧ) преобразующие энергию НЧ МП в энергию вращательно - колебательных движений. Предлагаемые способ и устройство позволяют оказывать наномеханическое воздействие на отдельные биомакромолекулы и молекулярные структуры через конъюгированные с ними МНЧ или микроустройства на их основе без существенного разогрева в заранее намеченной (выбранной) области биохимической системы, не оказывая при этом воздействия в остальном объеме этой системы. При этом, можно управлять положением области воздействия и ее размерами для обеспечения 3D сканирования заранее намеченного объема (например, опухоли), не затрагивая окружающие ткани.

Из существующего уровня техники известны способы (US 4674481 A, US 5441532 A, US 5097844 А) локализации воздействия высокочастотного (ВЧ) ПМП на МНЧ, которые могут быть использованы для воздействия на биохимические системы путем преобразования энергии ПМП в тепловую энергию (магнитная гипертермия).

В патенте US 4674481 А описано устройство и способ локализации теплового воздействия ВЧ магнитного поля, основанные на изменении взаимной пространственной ориентации двух колец индуктивности.

В патенте US 5441532 А описывается устройство для проведения локальной терапии методом гипертермии с помощью набора катушек индуктивности, расположенных вокруг пациента и специфических алгоритмов, заложенных в управляющей системе. Такая система позволяет создать и управлять положением области с повышенной, по сравнению с остальной частью рабочего пространства, напряженностью высокочастотного (ВЧ) магнитного поля.

В патенте US 5097844 А описано устройство для локализации гипертермии в пространстве с помощью нескольких групп электромагнитных катушек, составленных из трех каждая, которые в совокупности создают поле с повышенной напряженностью ВЧ магнитного поля в определенной области организма человека по сравнению с окружающими тканями.

Недостатками упомянутых способов и соответствующих устройств является то, что локализация основана на создании области с повышенной напряженностью ПМП, что, во-первых, усложняет создание и применение устройств из-за большой мощности генераторов, во-вторых, создаваемое поле влияет на МНЧ, находящиеся вне интересующей зоны. Заявляемый способ и устройство основаны не на фокусировке управляющего ПМП в определенной области пространства, а на создании дополнительного градиентного поля, обеспечивающего блокировку движения МНЧ под действием внешнего НЧ ПМП за счет магнитного насыщения повсюду, кроме небольшой области, положение которой может регулироваться за счет смещающих магнитных полей.

В научной литературе, например, Tasci, Т.О., Vargel, I., Arat, A., Guzel, Е., Korkusuz, P., &Atalar, E. (2009). Focused RF hyperthermiausingmagneticfluids. Medicalphysics, 56(5), 1906-1912 описывается способ локализации области воздействия ВЧ магнитного поля, аналогичный предлагаемому и основанный на создании градиентного поля, создаваемого электромагнитными катушками. Из другого литературного источника (Jian, L., Shi, Y., Liang, J., Liu, С., &Xu, G. (2013). A novel targeted magnetic fluid hyperthermia system using HTS coil array for tumor treatment. IEEETransactionsonAppliedSuperconductivity, 23(3), 4400104-4400104) известен способ локализации гипертермии с помощью шести сверхпроводящих катушек, создающих экранирующее постоянное поле вокруг области воздействия ВЧ ПМП, с низкой напряженностью поля в рабочей области (области интереса), где МНЧ вызывают локальный нагрев тканей при включении высокочастотного поля.

Из существующего уровня техники известно устройство (RU 2593238) для исследования воздействия низкочастотного магнитного поля на кинетику биохимических процессов в биологических системах, содержащих магнитные наночастицы. Это устройство позволяет оказывать воздействие низкочастотным магнитным полем на магнитные наночастицы с целью управления функционированием биохимических систем.

Недостатком этого устройства является невозможность оказания локального воздействия ПМП на МНЧ в выбранной области, воздействие магнитного поля охватывает всю рабочую область устройства.

Из существующего уровня техники известен способ и устройство визуализации магнитных наночастиц (англ. magneticparticleimaging (MPI)), закрепленный патентами WO 2011116229 А2, WO 2008/078246 А2 и описанный в научной литературе, например, Weizenecker, J., Gleich, В., Rahmer, J., Dahnke, H., &Borgert, J. (2009). Three-dimensional real-time in vivo magnetic particle imaging. Physics in medicine and biology, 54(5), L1. и Т. Knopp, T.M. Buzug. (2012) Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. SpringerScience&BusinessMedia. 204 p.Упомянутый способ основан на создании двух областей: 1) с низкой напряженностью поля, где МНЧ находятся в ненасыщенном состоянии и 2) области с высокой напряженностью поля, где МНЧ находятся в насыщенном состоянии. Способ и устройства, описанные в указанных источниках, позволяют, используя систему, состоящую из выбирающего узла (selectionmeans), сдвигающего узла (drivemeans) и узла регистрации сигнала (receivingmeans), которые строятся, как правило, на основе электромагнитных катушек, визуализировать пространственную плотность распределения МНЧ в исследуемом объекте в реальном времени.

На базе принципов, положенных в основу MPI, запатентован способ локального нагрева с помощью магнитных частиц, (заявка WO 2004018039 А1, МПК A61H 1/40, A61N 2/00; A61N 1/40, 2004), который принят в качестве прототипа заявляемого способа. Общими признаками заявляемого способа и известного являются последовательность действий для локализации действия ПМП путем создания градиентного магнитного поля.

Недостатком известного способа является невозможность локализации нагрева, создаваемого МНЧ, в живых тканях в объеме менее 1 см3 в результате теплопроводности окружающих тканей, что ослабляет или сводит к нулю преимущества локализации воздействия ВЧ ПМП.

Заявляемый способ позволяет преодолеть этот недостаток за счет принципиально иного механизма действия, так как создает наномеханическое воздействие на биохимические системы с помощью периодической переориентации МНЧ без их значимого нагрева во внешнем НЧ ПМП. В этом заключается принципиальное отличие от прототипа, поскольку наномеханическое воздействие может быть локализовано на уровне отдельных биоактивных макромолекул и клеток.

Техническим результатом по объекту «способ» является локализация и изменение положения области конечного наномеханического воздействия МНЧ на молекулярные объекты биохимической системы за счет создания дополнительного градиентного поля с нулевой точкой и применения НЧ ПМП, вызывающего переориентацию МНЧ, что в свою очередь создает наномеханическое воздействие на отдельные биомакромолекулы или клетки и не распространяется самопроизвольно в объем всей биохимической системы.

Технический результат достигается способом оказания локального воздействия переменного магнитного поля на биохимические системы с предварительно введенными в них функционализированными магнитными наночастицами, заключающемся в управлении магнитными наночастицами с помощью комбинации постоянного градиентного магнитного поля напряженностью и переменного магнитного поля с амплитудой и перемещении области воздействия с помощью регулируемого по напряженности однородного магнитного поля Hb, согласно изобретению, для локализации воздействия в области радиусом R* осуществляют периодическую переориентацию магнитных наночастиц в низкочастотном переменном магнитном поле с амплитудой и угловой частотой меньше любой (или меньшей) из двух величин - 1000 с-1 и (где μ - магнитный момент магнитной наночастицы, VHD - ее гидродинамический объем, μ0 - магнитная проницаемость вакуума, η - вязкость окружающей среды).

Перед включением переменного и градиентного магнитных полей предварительно включают постоянное однородное магнитное поле напряженностью H0, способствующее агрегации магнитных наночастиц, что в свою очередь, усиливает наномеханической воздействие или позволяет снизить напряженность всех магнитных полей, используемых при реализации.

Переменное магнитное поле генерируют в виде последовательных пакетов и пауз с регулируемой длительностью te и tp соответственно, что позволяет увеличить эффективность наномеханического воздействия.

Размер области локализации увеличивают или уменьшают путем увеличения или уменьшения величины градиента локализирующего постоянного магнитного поля соответственно.

Переменное магнитное поле может иметь вращающийся вектор напряженности что увеличивает возможные деформации в конъюгированных биомакромолекулах.

Переменное магнитноеполе с напряженностью может генерироваться во времени как меандр, путем периодического переключения его направления на противоположное, что упрощает и удешевляет способ и устройство для его реализации.

Переменное магнитное поле может иметь вид затухающих во времени колебаний, разделенных паузами, что позволяет увеличить мгновенные значения напряженности переменного магнитного поля без увеличения средней мощности генератора.

Направление градиента может периодически изменятся, причем длительность фронта изменения направления градиента магнитного поля устанавливают меньше, чем продолжительность изменения направления вектора намагниченности магнитных наночастиц, что вызывает полезное повышение концентрации магнитных частиц вблизи точки с нулевым значением градиентного магнитного поля и уменьшение их концентрации на периферии.

В качестве прототипа устройства выбрано устройство, описанное в заявке WO 2004018039 А1, МПК A61N 1/40, A61N 2/00; A61N 1/40, 2004. Общими признаками заявляемого устройства и известного являются узел, генерирующий градиентное магнитное поле, узел смещающих катушек, изменяющих положение области воздействия переменного магнитного поля, узел управляющих катушек, создающих переменное поле, управляемые источники постоянного и переменного тока.

Техническим результатом по объекту «устройство» также является локализация конечного наномеханического воздействия МНЧ на молекулярные объекты биохимической системы за счет создания дополнительного градиентного поля с нулевой точкой и применения НЧ ПМП, вызывающего переориентацию МНЧ, что в свою очередь создает наномеханическое воздействие на отдельные биомакромолекулы или клетки и не распространяется самопроизвольно в объем всей биохимической системы. Изобретение включает возможность изменения размера области локализации воздействия.

Технический результат достигается тем, что устройство, состоящее из узла, генерирующего градиентное магнитное поле узла катушек, создающих магнитное поле Hb, которое изменяет положение области воздействия переменного магнитного поля, узла катушек, создающих переменное поле, управляющее движением магнитных наночастиц, управляемых источников постоянного и переменного тока низкой частоты для питания соответствующих катушек, согласно изобретению, что узел катушек, создающих переменное магнитное поле, генерирует магнитное поле с угловой частотой меньше любой из двух величин – 1000 с-1 и ωc=μμ0Ha/(6ηVHD). (где μ - магнитный момент магнитной наночастицы, VHD - ее гидродинамический объем, μ0 - магнитная проницаемость вакуума, η - вязкость окружающей среды), обеспечивая периодическую механическую переориентацию магнитных наночастиц.

Сущность изобретения поясняется прилагаемыми схемами, которые отражают возможный вариант осуществления способа и устройства, но не ограничивают всю полноту данной заявки.

Фиг. 1. Блок-схема одного из возможных вариантов исполнения устройства для осуществления заявляемого способа.

Фиг. 2. Результаты моделирования методом конечных элементов градиентного магнитного поля, создаваемого системой магнитов (1), изображенной на фиг. 1.

Фиг. 3. График изменения магнитного поля вдоль оси z, соединяющей центры магнитов.

Фиг. 4. График изменения магнитного поля вдоль оси х перпендикулярной оси, соединяющей центры магнитов.

Один из вариантов реализации заявляемого устройства для обеспечения выполнения способа локализации воздействия НЧ ПМП представлен на фиг. 1, который, между тем, не ограничивает всю полноту заявки. Указанные далее обозначения относятся к фиг. 1.

Основными компонентами заявляемого устройства являются: узел 1, создающий градиентное поле с точкой нулевого поля, узел 2, состоящий из нескольких пар катушек Гельмгольца, расположенных вдоль одной, двух или трех осей и создающих магнитное поле Hb, которое изменяет положение нулевой точки градиентного поля, и узел 3, создающий НЧ ПМП с амплитудой которое управляет движением МНЧ.

Узел 1, создающий градиентное магнитное поле с нулевой точкой может располагаться таким образом, чтобы направление максимального градиента как совпадало с осью, соединяющей одну пару катушек смещающего узла 2 для обеспечения легкого доступа в рабочую область, так и перпендикулярно к осям, соединяющим обе пары катушек узла 2. В зависимости от технической задачи управляющий магнитный узел 3 может помещаться в смещающий магнитный узел 2 и наоборот. Для обеспечения наибольшей локализации, т.е. для максимального уменьшения области воздействия ПМП, узел 1, создающий градиентное магнитное поле, может помещаться внутрь узлов 2 и 3.

Узел 1, создающий градиентное поле может быть реализован как с помощью постоянных магнитов, расположенных одноименными полюсами навстречу друг другу, так и с помощью электромагнитных катушек с противоположным направлением тока в них. Узел 1 может быть реализован с помощью электромагнитных катушек, подключенных к регулируемому источнику постоянного тока, что позволит изменять размеры области локализации воздействия ПМП за счет изменения тока в них, влекущего изменение градиента магнитного поля. Магнитное поле такой системы, реализованной, например, на постоянных магнитах, имеет такое распределение (фиг. 2-4), что в центре системы поверхности постоянной напряженности представляют собой эллипсоиды вращения, окружающие область пониженной, по сравнению с остальной системой, напряженности поля. Центром этой области и является точка нулевого поля.

Узел 2, изменяющий положение нулевой точки градиентного поля состоит из пар катушек Гельмгольца с взаимно ортогональными осями, которые создают перпендикулярно направленные внутри устройства однородные магнитные поля, изменяющие положение нулевой точки относительно ее положения, когда узел 2 отключен от источника питания. Катушки узла 2 подключаются последовательно к источникам постоянного тока (Источники питания 4 и 5), управляемых программно или вручную. Каждая пара катушек Гельмгольца смещающего узла 2 отвечает за смещение области воздействия ПМП вдоль определенной оси и подключаются к независимому источнику питания.

Узел 3 состоит из пары катушек, также расположенных в системе Гельмгольца, которые запитаны от регулируемого источника переменного тока (Источник питания 6). Причем угловая частота переменного тока, генерируемого источником питания 6, устанавливается ниже (где μ - магнитный момент магнитной наночастицы, VHD - ее гидродинамический объем, μ0 - магнитная проницаемость вакуума, η - вязкость окружающей среды), таким образом, создаваемое узлом 3 НЧ ПМП не вызывает нагрева МНЧ, что позволяет оказывать чисто наномеханическое воздействие, а также использовать разрезанный ферромагнитный сердечник, соединяющий между собой катушки узла 3 и усиливающий НЧ ПМП. Предельная частота ωс зависит от соотношения вращающего момента со стороны НЧ ПМП и вязкого сопротивления со стороны окружающей жидкости. При увеличении частоты выше ωс возрастает роль вязкости и МНЧ начинают совершать стесненные колебания на угол меньший 180°.

Описанное устройство позволяет создавать локально действующее на магнитные наночастицы НЧ ПМП, что позволяет оказывать наномеханическое воздействие на отдельные биомакромолекулы, молекулярные структуры и клетки в выбранном ограниченном объеме биохимической системы или организме с введенными в нее МНЧ за счет периодической переориентации МНЧ в НЧ ПМП, создаваемом узлом 3. Узел 2 позволяет выбирать область воздействия внутри рабочего пространства и производить последовательный обход всей биохимической системы при соответствующем программном управлении. Управление всеми источниками питания может быть реализовано при помощи персонального компьютера.

Заявляемый способ реализуют следующим образом:

1. Создают устройство, состоящее, как минимум, из: магнитного узла 1, создающего градиентное поле с нулевой точкой с помощью постоянных магнитов или электромагнитных катушек в системе Максвелла с изменяемой величиной тока в них и узла 3, создающего НЧ ПМП, которое управляет движением МНЧ.

2. Вводят в объект (например, в микроорганизмы, клеточные культуры, лабораторное животное или в человека), искусственно синтезированные функционализованные МНЧ, микроустройства на их основе или магниточувсвительные объекты природного происхождения.

3. Помещают объект в область действия управляющего движением магнитных наночастиц НЧ ПМП, создаваемого узлом 3 устройства, построенного согласно п. 1.

4. Включают генерацию узлом 3 управляющего движением магнитных наночастиц НЧ ПМП с амплитудой , при этом МНЧ, находящиеся в области пространства радиусом R* с напряженностью меньше амплитуды управляющего поля будут совершать вращательно-колебательные движения, оказывая локальное наномеханическое воздействие на конъюгированные с ними молекулы и молекулярные структуры объекта (Golovin Y.I., Gribanovsky S.L., Golovin D.Y., Klyachko N.L., Majouga A.G., Master A.M., Sokolsky M., Kabanov A.V. (2015). Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. JournalofControlledRelease, 219, 43-60), а МНЧ расположенные вне этой области, будут находиться в «замороженном» состоянии (поляризованы постоянным полем ), соответственно не оказывая никакого воздействия биохимическую систему. При этом амплитуда НЧ ПМП имеет амплитуду и угловую частоту меньше любой (или меньшей) из двух величин - 1000 с-1 и (где μ - магнитный момент магнитной наночастицы, VHD - ее гидродинамический объем, μ0 - магнитная проницаемость вакуума, η - вязкость окружающей среды).

Выполнение пунктов 1-4 обеспечивает наномеханическое воздействие на отдельные молекулы и молекулярные структуры или клетки в выбранном ограниченном объеме биохимической системы с введенными в нее МНЧ за счет периодической переориентации МНЧ в НЧ ПМП.

Способ направлен на создание условий и осуществление локального воздействия ПМП на систему с введенными в нее МНЧ. В частности, такая задача важна для перспективных технологий нанобиобиомедицины. В качестве целевых областей можно выделить регенеративную медицину, адресную доставку и выпуск лекарственных средств, безлекарственную терапию раковых заболеваний с помощью функционализированных МНЧ, действующих локально механически на механочувствительные клеточные структуры, изменяя их функционирование или разрушая мембраны искусственных контейнеров, содержащих терапевтические агенты. Все перечисленные направления подразумевают введение в организм в том или ином виде функционализованных МНЧ, которые имеют тенденцию равномерно распределяться в случае относительно однородной ткани либо скапливаться в определенных органах в случае с живым организмом. Описанная комбинация магнитных полей и последовательность их включения позволяет добиться макролокализации их действия на МНЧ в области с размерами от 1 до 100 мм (в зависимости от устанавливаемых параметров этих полей), а функционализация МНЧ дает возможность действовать селективно на избранные молекулярные мишени, т.е. локализовать действие в объеме порядка 1 нм, что принципиально невозможно в стратегии магнитной гипертермии в высокочастотном магнитном поле.


Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Источник поступления информации: Роспатент

Showing 1-10 of 23 items.
10.03.2016
№216.014.cbb9

Способ лечения заболеваний глаз, сопровождающихся окислительным стрессом

Изобретение относится к медицине, в частности к офтальмологии, и предназначено для лечения заболеваний глаз, сопровождающихся окислительным стрессом. Супероксиддисмутазу вводят в состав кальций-фосфатных биодеградируемых наночастиц, покрытых дисахаридами, с радиусом до 350 нм и в диапазоне...
Тип: Изобретение
Номер охранного документа: 0002577236
Дата охранного документа: 10.03.2016
10.05.2018
№218.016.4658

Способ подавления деформационных полос на поверхности алюминий-магниевых сплавов

Изобретение относится к обработке давлением металлических сплавов системы алюминий-магний, демонстрирующих прерывистую деформацию и локализацию деформации в полосах, вызывающих преждевременную коррозию и разрушение этих сплавов. Способ подавления деформационных полос на поверхности заготовок из...
Тип: Изобретение
Номер охранного документа: 0002650217
Дата охранного документа: 13.04.2018
04.07.2018
№218.016.6a5c

Термографический способ контроля объектов и устройство для его осуществления

Группа изобретений относится к области неразрушающего контроля и может быть использована для идентификации близких к поверхности дефектов в контролируемом объекте. Термографический способ контроля изделий включает нагрев либо охлаждение участка контролируемого объекта. Далее регистрируют...
Тип: Изобретение
Номер охранного документа: 0002659617
Дата охранного документа: 03.07.2018
02.08.2018
№218.016.77a8

Способ прогнозирования нарушений репродуктивного здоровья у женщин фертильного возраста

Изобретение относится к области медицины, а именно к гинекологии, и может быть использовано для прогнозирования нарушений репродуктивного здоровья у женщин фертильного возраста. Способ включает определение процента CD3+CD8+, CD16+CD56+, CD19+клеток среди лимфоцитов крови, уровней в сыворотке...
Тип: Изобретение
Номер охранного документа: 0002662918
Дата охранного документа: 31.07.2018
21.10.2018
№218.016.94c7

Термографический способ контроля объектов и устройство для его осуществления

Группа изобретений относится к области неразрушающего контроля и может быть использована для идентификации близких к поверхности дефектов в контролируемом объекте. Заявлен термографический способ контроля изделий, который содержит следующие шаги: нагревают участок контролируемого объекта с...
Тип: Изобретение
Номер охранного документа: 0002670186
Дата охранного документа: 18.10.2018
13.01.2019
№219.016.af51

Устройство для измерения температуры

Предлагаемое изобретение относится к измерительной технике и может быть использовано для измерения физических величин с первичными резисторными датчиками. Устройство содержит термометр сопротивления R, включенный в мостовую схему 1, диагональ питания которой через балластный резистор 2...
Тип: Изобретение
Номер охранного документа: 0002676821
Дата охранного документа: 11.01.2019
17.03.2019
№219.016.e2b6

Измеритель температуры

Изобретение относится к технике измерения температуры, а точнее к измерителям температуры, в которых температуру определяют по величине сигнала термопреобразователя в переходном режиме. Измеритель температуры содержит термопреобразователь 1, например термоэлектрический преобразователь,...
Тип: Изобретение
Номер охранного документа: 0002682101
Дата охранного документа: 14.03.2019
01.09.2019
№219.017.c4f4

Способ получения композиционного материала с противомикробными свойствами на основе оксида графена и наночастиц оксида меди

Изобретение относится к способу получения композиционного материала с противомикробными свойствами на основе оксида графена и наночастиц оксида меди и может найти применение главным образом в области нанобиотехнологий и наномедицины для изготовления препаратов, подавляющих жизнедеятельность...
Тип: Изобретение
Номер охранного документа: 0002698713
Дата охранного документа: 29.08.2019
01.09.2019
№219.017.c5ba

Способ подавления механической неустойчивости алюминиевого сплава

Использование: для подавления механических неустойчивостей алюминиевого сплава В95пч. Сущность изобретения заключается в том, что используют установку датчика акустической эмиссии вблизи потенциально опасного участка (концентратора напряжения) изделия или конструкции, осуществляют...
Тип: Изобретение
Номер охранного документа: 0002698518
Дата охранного документа: 28.08.2019
01.09.2019
№219.017.c5e0

Электрохимический способ раннего выявления повреждений в алюминиевых сплавах, деформируемых в водной среде

Изобретение может быть использовано в системах непрерывного бесконтактного высокоскоростного мониторинга состояния деформируемой металлической поверхности и ранней диагностики повреждаемости конструкций из алюминиевых сплавов систем Al-Zn-Cu-Mg, Al-Mg-Mn, Al-Li-Mg, эксплуатируемых в водных...
Тип: Изобретение
Номер охранного документа: 0002698519
Дата охранного документа: 28.08.2019
Showing 1-10 of 32 items.
20.01.2013
№216.012.1b41

Способ снижения внутриглазного давления

Изобретение относится к медицине, в частности к офтальмологии и фармации, и предназначено для снижения внутриглазного давления. Способ включает введение в конъюнктивальную полость специально разработанных препаратов из группы ингибиторов ангиотензинпревращающего фермента. Препарат...
Тип: Изобретение
Номер охранного документа: 0002472471
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.26c5

Способ получения объемного наноструктурированного материала

Изобретение относится к нанотехнологии. Сущность изобретения: в способе получения объемного наноструктурированного материала на подложке электроосаждением металла из электролита на подложку из электропроводного материала, индифферентного по отношению к осаждаемому металлу, на катоде образуют...
Тип: Изобретение
Номер охранного документа: 0002475445
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.27da

Способ идентификации материала в насыпном виде и устройство для его осуществления

Изобретение относится к нанотехнологическому оборудованию и предназначено для идентификации материалов в насыпном виде и экспресс-контроля микромеханических, реологических и микро-электромеханических характеристик продукции, их стабильности на разных стадиях производства продукта и отклонений...
Тип: Изобретение
Номер охранного документа: 0002475722
Дата охранного документа: 20.02.2013
10.05.2013
№216.012.3ce3

Способ получения гибких композиционных сорбционно-активных материалов

Изобретение относится к способам получения сорбционно-активных материалов. Способ включает смешение порошка цеолита или силикагеля либо их комбинации с раствором полимера и формование полученной композиции в изделие требуемой геометрической конфигурации. На смешение с порошком подают раствор...
Тип: Изобретение
Номер охранного документа: 0002481154
Дата охранного документа: 10.05.2013
20.06.2013
№216.012.4b6d

Способ изготовления химического адсорбента диоксида углерода

Изобретение относится к способам получения адсорбента диоксида углерода, предназначенного для использования в средствах защиты органов дыхания. Способ включает образование дисперсии гидроксидов щелочных и/или щелочноземельных металлов и формование волокон адсорбента. Образование дисперсии...
Тип: Изобретение
Номер охранного документа: 0002484891
Дата охранного документа: 20.06.2013
10.10.2013
№216.012.718f

Наноэмульсия, содержащая биологически активное вещество

Изобретение относится к наноэмульсии в качестве носителя биологически активного вещества, представляющего собой дельта-сон индуцирующий пептид (ДСИП) или растительный экстракт. Наноэмульсия содержит воду, поверхностно-активное вещество (ПАВ), представляющее собой блоксополимер этиленоксида и...
Тип: Изобретение
Номер охранного документа: 0002494728
Дата охранного документа: 10.10.2013
27.02.2014
№216.012.a5a8

Фармацевтическая композиция для местного применения при лечении воспалительных заболеваний глаз и способ ее использования

Группа изобретений относится к области медицины и химико-фармацевтической промышленности. Группа изобретений относится к фармацевтической композиции, предназначенной для местного применения и содержащей в качестве действующего вещества супероксиддисмутазу в составе наночастиц на основе сшитого...
Тип: Изобретение
Номер охранного документа: 0002508123
Дата охранного документа: 27.02.2014
10.08.2014
№216.012.e8fe

Способ управления биохимическими реакциями

Изобретение относится к биохимии и может быть использовано для управления биохимическими реакциями in vitro и in vivo. Управление осуществляется посредством воздействия на магнитную наносуспензию, содержащую биоактивную макромолекулу, прикрепленную непосредственно или через лиганд к...
Тип: Изобретение
Номер охранного документа: 0002525439
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.e9ca

Наноразмерный ферментный биокатализатор для детоксификации фосфорорганических соединений in vivo

Изобретение относится к биотехнологии. Предложен ферментный биокатализатор в виде наноразмерных частиц для детоксификации фосфорорганических соединений in vivo. Биокатализатор представляет собой нековалентные полиэлектролитные комплексы. Данные комплексы состоят из полигистидин-содержащего...
Тип: Изобретение
Номер охранного документа: 0002525658
Дата охранного документа: 20.08.2014
20.02.2015
№216.013.27c9

Способ экологически чистой биоконверсии высокодисперсных отходов металлургической индустрии, содержащих тяжелые металлы

Изобретение относится к сельскому хозяйству. Способ экологически чистой биоконверсии высокодисперсных отходов металлургической индустрии, содержащих тяжелые металлы, включает создание смесей на основе песка, металлургического шлама, торфа и карбоната кальция для выращивания растений, причем для...
Тип: Изобретение
Номер охранного документа: 0002541642
Дата охранного документа: 20.02.2015
+ добавить свой РИД