×
27.01.2020
220.017.faa2

СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ НАНОКРИСТАЛЛИЧЕСКИХ МЕЗОПОРИСТЫХ ПОРОШКОВ В СИСТЕМЕ CeO(ZrO)-AlO ДЛЯ ТРЕХМАРШРУТНЫХ КАТАЛИЗАТОРОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к трехмаршрутным катализаторам для очистки выхлопного газа, который очищает выхлопной газ, выбрасываемый двигателем внутреннего сгорания. Заявленная технология синтеза дает возможность получать мезопористые порошки в системе CeO(ZrO)-AlO площадью удельной поверхности при 1000°С 90-105 м/г, объемом пор ~0.380 см/г и узким распределением их по размерам 3-10 и 2.5-7 нм. Нанесение активной фазы (металлы Pt, Re) на данные порошки при использовании их в качестве носителей катализаторов обеспечит их тонкое диспергирование благодаря развитой поровой структуре и будет способствовать повышению потенциальных возможностей каталитической системы в целом. 8 ил., 2 табл.
Реферат Свернуть Развернуть

Изобретение относится к трехмаршрутным катализаторам для очистки выхлопного газа, который очищает выхлопной газ, выбрасываемый двигателем внутреннего сгорания.

Защита окружающей среды от токсичных компонентов выбросов автотранспорта остается одной из наиболее актуальных проблем современной прикладной химии. Для очистки выхлопных газов двигателей внутреннего сгорания используются катализаторы на основе платиновых металлов, нанесенных на керамические или металлические блоки сотовой структуры. Такие катализаторы эффективны в процессах одновременной нейтрализации СО, NOx и углеводородов, но являются достаточно дорогостоящими. Поэтому минимизация содержания платиновых металлов в составе данных катализаторов является в настоящее время одной из важнейших задач научных исследований и практических разработок.

Альтернативой катализаторам на основа платиновых металлов могут быть многокомпонентные каталитические системы, в состав которых входят оксиды переходных металлов (или их комбинация с оксидами редкоземельных элементов), промотированые небольшими количествами металлов платиновой группы. Важным компонентом структурированных катализаторов является носитель катализатора, роль которого заключатся в обеспечении равномерного распределения платиновых металлов, как на поверхности, так и в объеме. Носитель катализатора способствует увеличению дисперсности активного компонента и повышению производительности, что позволяет минимизировать содержание платиновых металлов в составе катализаторов.

Для нейтрализации продуктов сгорания углеводородного топлива целесообразно использовать трехмаршрутные катализаторы (TWC), обеспечивающие одновременную конверсию СО, углеводородов (CmHn) и оксидов азота (NOX) [1, 2], в состав которых входят платиновые металлы (Pt, Pd, Rh), нанесенные на оксидный мезопористый носитель катализатора. Согласно данным [3, 4], наиболее перспективными катализаторами детоксикации являются твердые растворы на основе диоксида церия, имеющие кристаллическую структуру типа флюорита (Fm3m). Введение ионов активной фазы катализатора в кристаллическую решетку диоксида церия вызывает образование многочисленных решеточных дефектов как на поверхности, так и в Объеме, создавая предпосылки для высокой подвижности кислорода, и, как следствие, для увеличения каталитической активности. Также следует отметить, что использование СеО2 в качестве носителя катализаторов для TWC связано со способностью катионов церия частично восстанавливаться и окисляться, что позволяет аккумулировать и высвобождать решеточный кислород в зависимости от состава среды в результате превращения Се4+↔Се3+ без изменения фазового состава [5], приводя к повышению кислородной емкости.

Из уровня техники известен катализатор очистки выхлопного газа по патенту РФ №2572810, включающий в себя основу и каталитический покровный слой, сформированный на поверхности этой основы, при этом каталитический покровный слой сформирован в виде слоистой структуры с верхним и нижним слоями, причем нижний слой лежит ближе к поверхности основы, а верхний слой лежит относительно дальше от нее, и каталитический покровный слой содержит родий и палладий в качестве катализаторов из драгоценных металлов, каталитический покровный слой содержит в качестве носителя материал, характеризующийся способностью к накоплению кислорода, в качестве который выполнен из CeO2 или оксидной композиции в системе CeO2-ZrO2.

Однако, в условиях высоких температур выхлопных газов автомобильных двигателей (~1000°С) использование нелегированного диоксида церия в качестве носителя катализатора ограничено его термической нестабильностью, а также уменьшением площади удельной поверхности CeO2 в процессе его спекания [6]. Введение ZrO2 в кристаллическую решетку CeO2 способствует повышению термической стабильности кубического твердого раствора на основе диоксида церия. Также присутствие некоторого количества изовалентного иона Zr4+ в CeO2 увеличивает подвижность кислорода в системе CeO2-ZrO2 путем окислительно-восстановительного перехода Ce4+↔Ce3+, что положительно влияет на каталитическую активность всего катализатора [7]. При температурах выше 1000°С возможна трансформация кубического твердого раствора CexZr1-xO2-δ (х=0,5÷0,8) с выделением тетрагональной фазы, обогащенной ZrO2. Как отмечалось в [8] кубический твердый раствор CexZr1-xO2-δ по сравнению с тетрагональным твердым раствором CexZr1-xO2-δ характеризуется существенно более высоким значением кислородной емкости. Поэтому синтез твердых растворов CexZr1-xO2-δ со стабильной кубической структурой является важной задачей при создании каталитических систем. Предотвратить трансформацию кубического твердого раствора на основе диоксида церия в системе CeO2-ZrO2 возможно путем введения Al2O3 в твердый раствор CexZr1-xO2-δ, поскольку оксид алюминия существенно замедляет процесс роста кристаллитов кубического твердого раствора на основе диоксида церия, охраняя их размер в нанометровом диапазоне, что делает его структуру стабильной при температурах >1000°С [3, 9].

Для эффективной работы TWC в двигателях внутреннего сгорания необходимо создать в носителе катализатора пористую структуру с заданными параметрами: площадь удельной поверхности 50-100 м2/г, наличие мезопор (2-20 нм), объем которых более 0,20 см3/г, мономодальное распределение пор по размерам. Совокупность данных параметров позволит осуществить равномерное распределение активного вещества, как на поверхности, так и в объеме носителя, что даст возможность достигнуть высокой каталитической активности катализатора.

Важным звеном в получении нанодисперсных порошков является технологический аспект, поэтому поиск оптимальных методов синтеза порошков с заданной кристаллической структурой и размером частиц не более 100 им по-прежнему считается одним из главных вопросов в современном материаловедении. В настоящее время при синтезе носителей катализаторов на основе CeO2 для TWC, как правило, используют метод совместного осаждения гидроксидов и гидротермальный синтез, но каждый из этих методов имеет свои недостатки.

Метод совместного осаждения отличается простотой в исполнении и использованием дешевых химических реагентов, но для данного метода характерна высокая степень агломерации частиц полу чаемого осадка, возникающая за счет водородных и диоловых связей между молекулами, в результате полученные порошки имеют большую способность к уплотнению, что отрицательно влияет на их дисперсность. Дезагломерировать осадок возможно используя его дополнительную обработку (ультразвуковую или криохимичсскую), что позволяет получать при дальнейшей термообработке нанокристаллические порошки [10, 11].

Гидротермальный метод синтеза позволяет контролировать текстурные характеристики оксидных композиций за счет варьирования параметров обработки: температурного режима, продолжительности синтеза, концентрации и рН раствора, давления в системе, но является достаточно сложным с технологической точки зрения, поскольку требует специального оборудования (автоклавы, специальные печи). Также этот метод не позволяют получать конечный продукт в достаточно больших количествах [12].

Золь-гель метод - перспективный и эффективный конденсационный способ синтеза наноразмерных частиц. К преимуществам данного метода можно отнести низкую температуру процесса, возможность контроля и регулирования размеров формирующихся нанообъектов, высокую степень гомогенности и монодисперсности конечных продуктов, возможность получения многофазных композиционных наночастиц. Метод является недорогостоящим, так как для него не требуется специальной аппаратуры (отсутствие операции центрифугирования, фильтрации, промывки и сушки), поэтому может быть реализован в лабораторных условиях, а в качестве исходных материалов чаще всего используются доступные азотнокислые соли [11].

Из различных вариантов золь-гель методов синтеза особого внимания заслуживает цитратный метод (метод Печини) [13, 14]. Этот метод известен как относительно несложный, практичный и недорогой метод синтеза металлоксидных порошков, в котором полимерный материал, полученный из соли металлов, α-гидроксикислот и многоатомного спирта, подвергается прокаливанию. Образование полимера происходит в результате реакции этерификации между цитратным комплексом металлов и этиленгликолем. [15, 16]. Образование цитратных комплексов металлов сглаживает различия в свойствах катионов в растворе, что способствует их более полному смешению и позволяет избежать разделения компонентов на последующих стадиях синтеза. Метод практически не требует аппаратуры (отсутствие операции центрифугирования, фильтрации, промывки и сушки), а в качестве исходных материалов чаще всего используются доступные нитраты. Цитратный метод синтеза оксидных материалов нивелирует разницу в индивидуальном поведении катионов и способствует более полному смешению реагентов в растворе, что позволяет избежать их разделения на последующих стадиях синтеза и получать высокогомогенный конечный продукт при достаточно низких температурах [17].

Задачей изобретения является разработка технологии синтеза мезопористых нанопорошков в системе CeO2(ZrO2)-Al2O3, обладающих высокими значениями площади удельной поверхности и объема пор, фазовой однородностью и термостабильностью, для применения в составе трехмаршрутных катализаторов.

Сущность заявленного технического решения выражается в следующей совокупности существенных признаков, достаточной для решения указанной заявителем технической проблемы и получения обеспечиваемого изобретением технического результата.

Согласно изобретению способ получения композиционных мезопористых порошков в системе CeO2(ZrO2)-Al2O3 для трехмаршрутных катализаторов, включающий синтез дисперсных композиционных порошков нитратным методом с образованием полимера в результате реакции этерификации между цитратным комплексом металлов и этиленгликолем, характеризуется тем, что в качестве базового компонента для получения дисперсных порошков в системе СеО2(ZrO2)-Al2O3 выбирают состав 70 мол. % CeO2 - 30 мол. % ZrO2 - Ce0.7Zr0.3O2-δ, затем формируют необходимый химический состав конечного продукта путем смешения азотнокислых солей металлов в заданных пропорциях по оксидам с раствором лимонной кислоты, после чего полученный высокодисперсный коллоидный раствор - золь, состоящий из металл-цитратных комплексов Ме(NO3)3+3C6H8O7→Ме(C6H8O7)3⋅(NO3)3, объединяют с этиленгликолем, и полученный золь упаривают при температуре 100°С в течение 8 ч в сушильном шкафу, после чего образовавшийся гелеобразный продукт подвергают обработке при температуре 200°С в течение 10 с последующим нагревом при температуре 300°С в течение 0.5 ч и дальнейшей термообработкой при 1000°С в течение 1 ч.

Заявленная совокупность существенных признаков обеспечивает достижение технического результата, который заключается в том, что заявленная технология синтеза дает возможность получать мезопористые порошки в системе CeO2(ZrO2) Al2O3 площадью удельной поверхности при 1000°С (90-105 м2/г), объемом пор (0.350-0.380 см3/г) и узким распределением их по размерам (3-10 и 2.5-7 нм). Нанесение активной фазы (металлы Pt, Re) на данные порошки при использовании их в качестве носителей катализаторов обеспечит их тонкое диспергирование, благодаря развитой поровой структуре, и будет способствовать повышению потенциальных возможностей каталитической системы в целом.

Синтез композиций в системе CeO2(ZrO2)-Al2O3 проводили методом Печини, для этого использовали химические реактивы, приведенные в табл. 1.

В качестве базового компонента для получения дисперсных порошков в системе CeO2(ZrO2)-Al2O3 был выбран состав 70 мол. % СеО2 - 30 мол. % ZrO2 - Се0.7Zr0.3O2-δ. При данном соотношении оксидов, согласно диаграмме фазовых соотношений [21], образуется однофазный твердый раствор на основе CeO2 со структурой флюорита. Были приготовлены оксидные композиции с массовым соотношением Ce0.7Zr0.3O2-δ:Al2O3; равным 90:10 (CZA-1) и 80:20 (CZA-2). Для сравнения также приготовлен состав, соответствующий твердому раствору Се0.7Zr0.3O2-δ без добавки оксида алюминия (CZ-3).

Сущность заявляемого технического решения поясняется чертежом, на котором на фиг. 1 представлены дифрактограммы порошков-прекурсоров в системе CeO2(ZrO2)-Al2O3 после термообработке геля при 300°С. CZA-1 (a), CZA-2 (б), на фиг. 2 - распределение частиц по размерам в порошках-прекурсорах составов CZA-1 (а) и CZA-2 (б) после термообработке при 300°С, на фиг. 3 - термограммы порошков-прекурсоров в системе CeO2(ZrO2)-Al2O3; CZA-1 (a), CZA-2 (б), на фиг. 4 - дифрактограммы порошков составов CZA-1 (а) и CZA-2 (б) после термообработки прекурсоров при 700°С (□ - твердый раствор Ce0.7Zr0.3O2-δ со структурой флюорита, на фиг. 5 - технологическая схема синтеза композиционных нанокристаллических мезопористых порошков в системе CeO2(ZrO2)-Al2O3, на фиг. 6 - изменение среднего размера кристаллитов твердого раствора Ce0.7Zr0.3O2-δ в интервале температур 700-1200°С : CZA-1 (a), CZA-2 (б), CZ-3 (в) (для сравнения), на фиг. 7 - изотермы низкотемпературной адсорбции-десорбции азота порошков составов: CZA-1 (a), CZA-2 (б), на фиг. 8 - распределение пор по размерам в порошках составов: CZA-1 (a), CZA-2 (б).

Заявленный способ реализуют следующим образом.

На первом этапе синтеза композиционных порошков в системе CeO2(ZrO2)-Al2O3 формировали необходимый химический состав конечного продукта путем смещения азотнокислых солеи металлов в заданных пропорциях по оксидам с раствором лимонной кислоты в количестве 10 мл и получали высокодисперсный коллоидный раствор - золь, состоящий из металл-цитратных комплексов: Me(NO3)3+3C6H8O7→Me(C6H8O7)3⋅(NO3)3.

Затем коллоидный раствор Объединяли с этиленгликолем, который брали в избытке в количестве 3 мл, поскольку гидроксильные группы С2Н4(ОН)2 стабилизируют в растворе металл-цитратные комплексы [14, 16]:

n[Ме(C6H8O7)3](NO3)3C2H4(OH)2→[Ме-C6H7O6-O-СН2-СН2-O-C6H7O6-Me]n.

На втором этапе полученный золь медленно упаривали при 100°С (8 ч) в сушильном шкафу, при этом молекулы лимонной кислоты и этиленгликоля вступают в реакцию поликонденсации. Увеличение концентрации дисперсной фазы путем упаривания способствует появлению коагуляционных контактов между частицами и началу процесса структурирования - гелеообразования, который приводит к формированию полимерного геля с включенными в него молекулами цитратов. Затем образовавшийся гелеобразный продукт подвергали обработке при температуре ~200°С (10 ч). В процессе нагрева происходило образование хелатных комплексов, имеющих свободные гидро-ксильные группы [14], за счет которых протекала реакция этерификации [16].

На третьем этапе синтеза осуществляли нагрев полученного геля при 300°С (0.5 ч), что способствовало удалению физически связанной воды, оксидов азота и образованию порошка-прекурсора. РФА термообработанных порошков составов CZA-1 и CZA-2, фиг. 1, фиксирует «размытые» дифракционные максимумы, что свидетельствует об их рентгеноаморфной структуре. По результатам седиментационного анализа установлен размер агломерированных частиц в прекурсорах составов CZA-1 и CZA-2, частицы имеют мономодальное распределение по размерам в интервале от 100 до 200 нм, фиг. 2.

Заявленный способ исследовали с использованием следующий методов.

1. Седиментационный анализ применяли для оценки размера агломерированных частиц (Da) синтезированных порошков-прекурсоров (лазерный анализатор Horiba LB-550). Погрешность измерения Da составляла от 0.01 мкм до 0.1 мкм в зависимости от дисперсности порошков.

2. Рентгенофазовый анализ (РФА, дифрактометр D8-Advance фирмы Bruker с монохроматическим CuKα - излучением) использовали для установления структуры и фазового состава порошков. Съемку проводили в интервале углов 26 от 10 до 60° при комнатной температуре. Средний размер кристаллитов (dk) рассчитывали из уширения дифракционных максимумов по формуле Селякова-Щеррера: dk=0.9 λ/β⋅cosθ (λ - длина волны CuKα, β - полуширина дифракционного пика) [18]. Идентификация фаз осуществлялась с помощью международную базу данных ICDD-2006. При расчете величины погрешности размеров кристаллитов учитывалась точность юстировки дифрактометра, точность определения интенсивности и полуширины дифракционных линий, Данная погрешность составляла ± 1-5 нм в зависимости от величины среднего размера кристаллитов.

3. Метод низкотемпературной адсорбции азота (БЭТ, анализатор сорбции газов Quantachrom NOVA 1200е) использовали для определения площади удельной поверхности (Sуд.), размера (Dпор) и объема пор (Vпор) ксерогелей и порошков. Перед измерениями образцы дегазировали в сушильном отделении при 40°С в течение 5 ч. Относительная погрешность определения Sуд. не превышала 4%. Удельный объем пор был определен по предельному заполнению (Р/Р0=0,99), относительная погрешность при этом составляла 6%. Расчет распределения пор по размерам осуществляли на основании изотерм десорбции азота по методу Баррета-Джойнера-Халенды (BJH) [19]. Тип поровой структуры и форма пор синтезированных нанопорошков были определены путем анализа вида полученных для них изотерм адсорбции и формы петель капиллярно-конденсационного гистерезиса согласно международной классификации ИЮПАК [20].

4. Дифференциальный термический анализ (ДТА, дериватограф Q-1000 фирмы MOM) применяли для изучения процессов термического разложения порошков в интервале температур 20-1000°С. Скорость нагрева - 10°С/мин. Точность определения температур составляла ±5°С. 5. Термическую обработку образцов осуществляли в диапазоне 100-1200°С для изучения процессов образования фаз (электрическая печь фирмы Naberterm). Точность определения температур составляла ±10-12°С.

Термическое разложение синтезированных порошков-прекурсоров составов CZA-1 и CZA-2 изучали методом ДТА, фиг. 3. Эндотермический эффект с максимумом при температуре 300°С соответствует остаточной дегидратации и процессу разложения металл-цитратных комплексов. Начиная с температур 450°С (CZA-2) и 475°С (CZA-1) происходит кристаллизация твердого раствора на основе диоксида церия (Се0.7Zr0.3O2-δ), чему соответствуют первые экзотермические эффекты на кривых ДТА (500 и 475°С). Вторые экзотермические эффекты на кривых ДТА (675 и 650°С) связаны с удалением органических составляющих, образовавшихся в результате разложения металл-цитратных комплексов. Данный эффект носит «взрывной» характер и способствует дополнительному диспергированию образовавшегося продукта в результате выделения большого количества газообразных веществ.

С учетом результатов термогравиметрического исследования порошков-прекурсоров была выбрана температура обжига для получения твердых растворов на основе диоксида церия в системе CeO2(ZrO2)-Al2O3, которая составляла 700°С. На дифрактограммах порошков составов CZA-1 и CZA-2, прокаленных при 700°С, идентифицируются рефлексы, отвечающие фазе твердого раствора со структурой флюорита, характерной для Ce0.7Zr0.3O2-δ, фиг. 4. Дальнейшее повышение температуры обжига до 1000°С не нарушает фазового состава порошков. Физико-химические свойства порошков составов CZA-1 и CZA-2 после термообработки при 1000°С приведены в таблице 2.

Технологическая схема синтеза нанокристаллических мезопористых порошков в системе CeO2(ZrO2)-Al2O3 представлена на фиг. 5.

На основании данных РФА были рассчитаны значения размеров кристаллитов твердого раствора Се0.7Zr0.3O2-δ в интервале температур 700-1200°С, фиг. 6. Присутствие Al2O3 в порошках CZA-1 и CZA-2 замедляет рост кристаллитов твердого раствора Ce0.7Zr0.3O2-δ по сравнению с порошком состава CZ-3, вероятно, благодаря равномерному распределению высокодисперсной фазы Al2O3 по поверхности кристаллитов твердого раствора на основе диоксида церия.

Для установления текстурных параметров пористой структуры порошков CZA-1 и CZA-2 после обжига при температуре 1000°С были проведены их исследования методом БЭТ. На фиг. 7 приведены изотермы низкотемпературной адсорбции-десорбции азота порошков CZA-1 и CZA-2 после термообработки прекурсоров соответствующих прекурсоров при 1000°С, поскольку именно эта температура является рабочей для TWC. Форма изотерм, полученных для CZA-1 и CZA-2 соответствует IV типу (по классификации ИЮПАК) - изотермы с четко выраженной капиллярной конденсацией, что характерно для мезопористых материалов с размером пор от 2 до 50 нм [18]. Взаимосвязь профиля гистерезиса и вида пористой структуры веществ описана в работе [19]. Профиль петли гистерезиса на изотермах, фиг. 7, эквивалентен цилиндрическим (или трубчатым) порам с открытыми концами (тип H1 по ИЮПАК). Площадь петли гистерезиса для порошка CZA-2 несколько больше, чем для CZA-1, что свидетельствует о большем удельном объеме пор в CZA-2, данный факт подтверждается расчетами, выполненными по предельному заполнению (Р/Р0=0,99) азота порового пространства порошков CZA-1 и CZA-2 (0.358 и 0.382 м2/г соответственно).

Пористая структура порошков CZA-1 и CZA-2 является однородной, поскольку на дифференциальных кривых распределения объема пор по размерам регистрируется только один максимум, фиг. 8, Текстурные свойства порошков приведены в табл. 2. С ростом содержания Al2O3 отмечается небольшое увеличение площади удельной поверхности и объема и пор, при этом размер пор в порошке CZA-2 меньше, чем в порошке CZA-1.

Важным свойством каталитической системы, используемой для TWC, является термическая стабильность носителя катализатора при рабочей температуре, в связи с этим было исследовано влияние температуры на дисперсность и кристаллическую структуру порошков CZA-1 и CZA-2. Термическую обработку порошков проводили в интервале температур 1000-1100°С; изотермическая выдержка составила 30 ч. Внешний вид и структура термообработанных порошков не изменились. По результатам РФА наблюдается некоторый рост среднего размера кристаллитов фазы твердого раствора Ce0.7Zr0.3O2-δ (до 45-50 нм), площадь удельной поверхности порошков уменьшилась на 10-12%.

Заявленная технология жидкофазного синтеза мезопористых композиционных порошков в системе CeO2(ZrO2)-Al2O3 для носителей трехмаршрутных катализаторов отличается простотой в исполнении и не требует больших энергетических затрат. Данная технология позволяет осуществлять равномерное распределение компонентов на ионно-молекулярном уровне в многокомпонентных оксидных системах и позволяет синтезировать монодисперсные нанокристаллические порошки.

Оксид алюминия, выступающий в качестве структурного промоутора твердого раствора Ce0,7Zr0,3O2-δ, замедляет рост кристаллитов. Равномерное перемешивание наночастиц Се0,7Zr0,3O2-δ и Al2O3 в процессе синтеза повышает термическую стабильность и устойчивость конечного продукта.

На основании экспериментальных результатов, представленных в данной работе, можно констатировать, что заявленная технология синтеза дает возможность получать мезопористые порошки в системе CeO2(ZrO2)-Al2O3 площадью удельной поверхности при 1000°С (90-105 м2/г), объемом пор (~0.380 см3/г) и узким распределением их по размерам (3-10 и 2.5-7 нм). Нанесение активной фазы (металлы Pt, Re) на данные порошки при использовании их в качестве носителей катализаторов обеспечит их тонкое диспергирование, благодаря развитой поровой структуре, и будет способствовать повышению потенциальных возможностей каталитической системы в целом.

ЛИТЕРАТУРА

1. Крылов О.В. Гетерогенный катализ. M.: ИКЦ «Академкнига», 2004.

2. Шикина Н., Подъячева О., Ищенко А., Хайрулин С., Ткаченко Т., Мороз А., Исмагилов З. Морфологические, структурные и каталитические свойства в окислении метана Pd-CeO2/Al2O3 композиций и покрытий на их основе // Катализ в промышленности. 2019. Т. 19. №3. С. 206-218.

3. Иванова А.И. Физико-химические и каталитические свойства систем на основе CeO2 // Кинетика и катализ. 2009. Т. 50. №6. С. 831-849.

4. Крылова А.В., Михайличенко А.И. Церийсодержащие оксидные катализаторы. Часть I // Химическая технология. 2000. №9. С. 2-16.

5. Кузнецова Т.Г., Садыков В.А. Особенности дефектной структуры метастабильных нанодисперсных диоксидов церия и циркония и материалов на их основе // Кинетика и катализ. 2008. Т. 49. №6. С. 886-905.

6. Машковцев М.А., Аликин Е.А., Волков А.С., Афанасьев А.С., Рычков В.Н. Синтез и физико-химическое исследование материалов состава Zr0.5Ce0.4Ln0.1Ox (где Ln=Y, La, Nd) в качестве компонента автомобильных трехмаршрутных катализаторов // Фундаментальные исследования. 2013. 6. С. 895-900.

7. Monte R., Kaspar J., Bradshaw H., Norman С. Rationale for the development of thermally stable nanostructured CeO2-ZrO2-containing mixed oxides // Journal of rare earths. 2008. Vol. 26. No. 2, P. 136-140.

8. Kuznetsova T.G., Sadykov V.A., Veniaminov S.A. et al. Methane Transformation into Syngas over Ce-Zr-O Systems: Role of the Surface/Bulk Promoters and Oxygen Mobility // Catalysis Today. 2004. Vol. 91-92. P. 161-164.

9. Иванов В.К., Полежаева О.С., Копица Г.П., Федоров П.П., Pranzas К., Рунов В.В. Особенности высокотемпературного роста наночастиц диоксида церия // Журнал Неорганической химии. 2009. Т. 54. №11. С. 1767-1775.

10. Морозова Л.В., Калинина М.В., Арсентьев М.Ю., Шилова М.Б. Влияние криохимической и ультразвуковой обработки на текстуру, термическое разложение ксерогелей и свойства нанокерамики в системе ZrO2〈Y2O3〉-Al2O3 // Неорганические материалы. 2017. Т. 53. №6. С. 654-661.

11. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. Изд. 2-е, исправленное и дополненное. М.: Наука-Физматлит, 2007. 416 с.

12. Сергеев Г.Б. Нанохимия. М.: Изд-во МГУ, 2007. 336 с.

13. Pechini М. Method of preparing lead and alkaline earth titanates and niobates and coating method using thesame to forma capacitor. US. Patent №3330697. July 11, 1967.

14. Tai L.W., Lessing P.A. Modifide resin-intermediate processing of perovskite powders. Part II: Processing for fine, nonagglomerated Sr-doped lanthanum chromite powders / J. Mater. Res. 1992. No 7. P. 511-519.

15. Моррисон P., Бонд P. Органическая химия. M.: Мир. 1974. 1132 с.

16. Химическая энциклопедия / Под ред. И.Л. Кнуньянца. М.: Большая Российская энциклопедия, 1988. Т. 5. С. 440-441.

17. Kirillov S.A., Romanova I.V., Farbun I.A. Synthesis of mixed oxides using polybasic carboxylic hydroxyl - and aminoacids routes: problems and prospects / NATO-CARWC «New Carbon Based Materials for Electrochemical Energy Storage Systems». 2006. P. 495-504.

18. Гусев А.И., Курлов A.C. Аттестация нанокристаллических материалов по размеру частиц (зерен) // Металлофизика и новейшие технологии. 2008. Т. 30. №5. С. 679-694.

19. Sing, К.S.W., Everett D.H., Haul R.A.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity // Pure & Appl. Chem. 1985. Vol. 57. P. 603-619

20. Kruk M., Jaroniec M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater., 2001, v. 13, №10, p. 3169-3183.

21. Tani E., Yoshimura M., Somiy S. Revised Phase Diagram of the System ZrO2-CeO2 Below. 1400°C // Reprinted from Journal of the American Ceramic Society. 1983. V. 66. №7. P. 506-510.

Способ получения композиционных нанокристаллических мезопористых порошков в системе CeO(ZrO)-AlO для трехмаршрутных катализаторов, включающий синтез дисперсных композиционных порошков цитратным золь-гель методом с образованием полимера в результате реакции этерификации между цитратным комплексом металлов и этиленгликолем, отличающийся тем, что в качестве базового компонента для получения дисперсных порошков в системе CeO(ZrO)-AlO выбирают состав 70 мол. % СеО - 30 мол. % ZrO - CeZrO, затем формируют необходимый химический состав конечного продукта путем смешения азотнокислых солей металлов в заданных пропорциях по оксидам с раствором лимонной кислоты, после чего полученный высокодисперсный коллоидный раствор - золь, состоящий из металл-цитратных комплексов Ме(NO)+3СНО→Ме(CHO)⋅(NO), объединяют с этиленгликолем и полученный золь упаривают при температуре 100°С в течение 8 ч в сушильном шкафу, после чего образовавшийся гелеооразный продукт подвергают обработке при температуре 200°С в течение 10 ч с последующим нагревом при температуре 300°С в течение 0.5 ч и дальнейшей термообработкой при 1000°С в течение 1 ч.
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ НАНОКРИСТАЛЛИЧЕСКИХ МЕЗОПОРИСТЫХ ПОРОШКОВ В СИСТЕМЕ CeO(ZrO)-AlO ДЛЯ ТРЕХМАРШРУТНЫХ КАТАЛИЗАТОРОВ
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ НАНОКРИСТАЛЛИЧЕСКИХ МЕЗОПОРИСТЫХ ПОРОШКОВ В СИСТЕМЕ CeO(ZrO)-AlO ДЛЯ ТРЕХМАРШРУТНЫХ КАТАЛИЗАТОРОВ
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ НАНОКРИСТАЛЛИЧЕСКИХ МЕЗОПОРИСТЫХ ПОРОШКОВ В СИСТЕМЕ CeO(ZrO)-AlO ДЛЯ ТРЕХМАРШРУТНЫХ КАТАЛИЗАТОРОВ
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ НАНОКРИСТАЛЛИЧЕСКИХ МЕЗОПОРИСТЫХ ПОРОШКОВ В СИСТЕМЕ CeO(ZrO)-AlO ДЛЯ ТРЕХМАРШРУТНЫХ КАТАЛИЗАТОРОВ
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ НАНОКРИСТАЛЛИЧЕСКИХ МЕЗОПОРИСТЫХ ПОРОШКОВ В СИСТЕМЕ CeO(ZrO)-AlO ДЛЯ ТРЕХМАРШРУТНЫХ КАТАЛИЗАТОРОВ
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ НАНОКРИСТАЛЛИЧЕСКИХ МЕЗОПОРИСТЫХ ПОРОШКОВ В СИСТЕМЕ CeO(ZrO)-AlO ДЛЯ ТРЕХМАРШРУТНЫХ КАТАЛИЗАТОРОВ
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ НАНОКРИСТАЛЛИЧЕСКИХ МЕЗОПОРИСТЫХ ПОРОШКОВ В СИСТЕМЕ CeO(ZrO)-AlO ДЛЯ ТРЕХМАРШРУТНЫХ КАТАЛИЗАТОРОВ
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ НАНОКРИСТАЛЛИЧЕСКИХ МЕЗОПОРИСТЫХ ПОРОШКОВ В СИСТЕМЕ CeO(ZrO)-AlO ДЛЯ ТРЕХМАРШРУТНЫХ КАТАЛИЗАТОРОВ
Источник поступления информации: Роспатент

Showing 11-20 of 57 items.
10.02.2015
№216.013.2454

Способ поиска новых кристаллических соединений в стеклообразующих эвтектических оксидных системах, кристаллизующихся в порошке

Изобретение относится к средствам для обнаружения новых кристаллических соединений в системах, не кристаллизующихся в экспериментах ДТА/ДСК в монолитном состоянии. Техническим результатом изобретения является выявление новых кристаллических соединений для стеклообразующих эвтектических систем....
Тип: Изобретение
Номер охранного документа: 0002540753
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2455

Способ получения высококремнеземного пористого стекла с магнитными свойствами

Изобретение относится к пористым высококремнеземистым стеклам. Технический результат изобретения заключается в получении пористых стекол в форме массивных изделий толщиной 0,1÷2 мм с размерами кристаллитов 5÷20 нм. Объем пор стекла составляет 0,2÷0,6 см/см. В состав базового...
Тип: Изобретение
Номер охранного документа: 0002540754
Дата охранного документа: 10.02.2015
10.04.2015
№216.013.3e9c

Способ синтеза в стеклах объемно кристаллизующихся соединений

Изобретение относится к технологиям создания новых материалов и предназначено для использования в области технологии кристаллических и стеклокристаллических материалов. Стекла кристаллизуют в виде крупных кусков в условиях, обеспечивающих быстрое выпадение известных фаз, соответствующих фазовой...
Тип: Изобретение
Номер охранного документа: 0002547516
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.406e

Способ получения наночастиц серебра

Изобретение относится к области получения наноразмерных частиц серебра и может быть использовано в технологиях, связанных с применением ультрадисперсных порошков серебра. Способ включает проведение синтеза сереброборатного стекла, выработанного из шихты для синтеза сереброборатного стекла,...
Тип: Изобретение
Номер охранного документа: 0002547982
Дата охранного документа: 10.04.2015
10.07.2015
№216.013.5b73

Композитный твердый электролит на основе фаз, кристаллизующихся в системе bio-bao-feо, и способ его получения (варианты)

Изобретение относится к композитному твердому электролиту на основе фаз, кристаллизующихся в системе BiO-BaO-FeO. При этом он содержит, мол.%: BiO - 67-79, BaO - 17-22, FeO - 2-16. Также изобретение относится к вариантам способа получения электролита. Указанные материалы имеют более высокие...
Тип: Изобретение
Номер охранного документа: 0002554952
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5cb3

Электрохимический роботизированный комплекс для формирования наноразмерных покрытий

Изобретение относится к электрохимической установке для формирования наноразмерного покрытия и может быть использовано в полупроводниковой и электронной промышленности. Установка содержит компьютер, контроллер и манипулятор 1, установленный на стойке 2 с возможностью вращения вокруг...
Тип: Изобретение
Номер охранного документа: 0002555272
Дата охранного документа: 10.07.2015
20.08.2015
№216.013.736b

Способ получения сорбента для очистки растворов от ионов тяжелых металлов

Изобретение относится к получению сорбентов для очистки растворов от ионов тяжелых металлов. Согласно способу нитраты алюминия, магния и натрия растворяют в азотной кислоте с добавлением этилового спирта, в полученную смесь вливают тетраэтоксисилан. Далее проводят осаждение геля состава...
Тип: Изобретение
Номер охранного документа: 0002561117
Дата охранного документа: 20.08.2015
20.12.2015
№216.013.9bad

Состав композиции для получения сегнетоэлектрического материала титаната бария-стронция

Состав композиции для получения сегнетоэлектрического материала титаната бария-стронция предназначен для получения сегнетоэлектрических материалов и может быть использован в области радиоэлектронной промышленности, например, в качестве конденсаторов малых линейных размеров. Шихта для получения...
Тип: Изобретение
Номер охранного документа: 0002571478
Дата охранного документа: 20.12.2015
10.04.2016
№216.015.2e7e

Способ получения синтетического цеолита структурного типа rho

Изобретение относится к области синтеза цеолитов. Способ получения синтетического цеолита структурного типа Rho включает приготовление реакционной смеси, при этом сначала смешивают воду, краун-эфир, гидроксид цезия и гидроксид натрия, затем добавляют алюминат натрия и перемешивают до...
Тип: Изобретение
Номер охранного документа: 0002580723
Дата охранного документа: 10.04.2016
10.08.2016
№216.015.52fb

Способ получения синтез-газа высокотемпературным каталитическим окислительным превращением метана

Изобретение относится к способу получения синтез-газа высокотемпературным каталитическим окислительным превращением метана. Способ заключается в подаче в реактор, в который помещен катализатор, исходной газовой смеси, содержащей смесь метана и углекислого газа и проведении процесса при...
Тип: Изобретение
Номер охранного документа: 0002594161
Дата охранного документа: 10.08.2016
Showing 1-8 of 8 items.
27.12.2014
№216.013.1431

Способ получения керамики на основе диоксида циркония для реставрационной стоматологии

Способ получения керамики на основе диоксида циркония может быть использован в реставрационной стоматологии. Из исходных реагентов в виде водных растворов оксинитрата циркония (ZrO(NO)·2HO), нитратов иттрия (Y(NO)·6HO), алюминия (Al(NO)·9HO) и водного раствора аммиака обеспечивают совместное...
Тип: Изобретение
Номер охранного документа: 0002536593
Дата охранного документа: 27.12.2014
13.01.2017
№217.015.838d

Керамический материал для интерконнекторов топливных элементов и способ его получения

Изобретение относится к твердооксидным топливным элементам (ТОТЭ), а именно к керамическому материалу. Керамический материал для интерконнекторов топливных элементов представляет собой твердый раствор на основе оксида индия с легирующей добавкой при следующем соотношении компонентов, мол. %:...
Тип: Изобретение
Номер охранного документа: 0002601436
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.b559

Способ жидкофазного синтеза многокомпонентного керамического материала в системе zro-yo-gdo-mgo для создания электролита твердооксидного топливного элемента

Изобретение может быть использовано для создания электролита твердооксидного топливного элемента. Жидкофазный синтез многокомпонентного керамического материала в системе ZrO-YO-GdO-MgO осуществляют путем выбора в качестве исходных реагентов солей ZrO(NO)⋅2HO, Y(NO)⋅5HO, Gd(NO)⋅6HO и Mg(NO)⋅6HO....
Тип: Изобретение
Номер охранного документа: 0002614322
Дата охранного документа: 24.03.2017
19.01.2018
№218.016.011b

Способ получения мезопористых ксерогелей и нанопорошков в системе zro(yo)-alo для носителей катализаторов при конверсии метана в синтез-газ

Изобретение относится к области синтеза мезопористых материалов, а именно к способу получения мезопористых ксерогелей и нанопорошков в системе ZrO(YO)-AlO для носителей катализаторов при конверсии метана в синтез-газ. Способ осуществляют путем совместного осаждения исходных реагентов водным...
Тип: Изобретение
Номер охранного документа: 0002629667
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.1c77

Способ получения пористых мембран на основе диоксида циркония для фильтрации жидкостей и газов

Изобретение относится к технологии получения пористых мембран на основе диоксида циркония, которые могут быть использованы в качестве фильтров для очистки и разделения жидкостей и газов, носителей катализаторов в различных химических процессах. Способ получения пористых мембран включает...
Тип: Изобретение
Номер охранного документа: 0002640546
Дата охранного документа: 09.01.2018
28.08.2018
№218.016.800a

Способ получения дисперсных мезопористых порошков на основе оксида алюминия для носителей катализаторов

Изобретение относится к области синтеза дисперсных мезопористых материалов на основе в системе ZrO(YO)-AlO для носителей катализаторов, заявленный способ реализуют в два этапа, при этом на первом этапе в процессе совместного осаждения гидроксидов в системе ZrO-YO получают три порции...
Тип: Изобретение
Номер охранного документа: 0002665038
Дата охранного документа: 27.08.2018
23.04.2019
№219.017.36dd

Способ получения плотной нанокерамики на основе оксида алюминия в системе alo-zro(yo)

Изобретение относится к технологии получения композиционной нанокерамики с высокими показателями микротвердости и прочности на изгиб, которая может найти широкое применение в различных областях современной техники. Способ характеризуется тем, что водные растворы солей Al(NO), ZrO(NO) и Y(NO)...
Тип: Изобретение
Номер охранного документа: 0002685604
Дата охранного документа: 22.04.2019
27.01.2020
№220.017.fad2

Способ получения мезопористого γ-aloдля каталитических систем

Изобретение относится к области синтеза дисперсных мезопористых материалов для носителей катализаторов. Описан способ получения мезопористого γ-AlO для каталитических систем, включающий осаждение гидроксидов. В качестве исходного реагента используют соль Al(NO)⋅9HO, из которой приготавливают...
Тип: Изобретение
Номер охранного документа: 0002711921
Дата охранного документа: 24.01.2020
+ добавить свой РИД