×
24.01.2020
220.017.f92c

Результат интеллектуальной деятельности: УСТРОЙСТВО ОТКЛОНЕНИЯ ВЕКТОРА РЕВЕРСИРОВАННОЙ ТЯГИ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к выходным устройствам газотурбинных двигателей авиационного применения, предназначенным для отклонения вектора тяги турбореактивного двигателя летательного аппарата, используемого в полете совместно с управляющими поверхностями летательного аппарата. Устройство для отклонения вектора реверсированной тяги турбореактивного двигателя включает корпуса поперечных выхлопных каналов, входы которых выполнены в наружном корпусе двигателя, при этом каждый вход снабжен запирающим устройством в виде заслонки. Ниже по потоку от заслонок расположены поворотные лопатки, концы поворотных лопаток прикреплены к наружному и внутреннему корпусам двигателя. Каждая поворотная лопатка состоит из неподвижной части, установленной перпендикулярно продольной оси двигателя и поворотной части, выполненной с возможностью поворота вокруг поперечной оси двигателя. На каждом выходе поперечных выхлопных каналов установлена заслонка воздушного тормоза. Поворотные лопатки объединены в группы, которые совместно с заслонками и заслонками воздушного тормоза сгруппированы по секторам. Внутри каждого сектора заслонка, заслонка воздушного тормоза и группа поворотных лопаток снабжены индивидуальными синхронизированными приводами. В продольной плоскости каждой поворотной лопатки перед заслонкой наклонно установлен пилон, при этом концы пилонов прикреплены к наружному и внутреннему корпусам двигателя. Изобретение позволяет увеличить маневренные возможности летательного аппарата с увеличением угловой скорости разворота. 4 з.п. ф-лы, 3 ил.

Изобретение относится к выходным устройствам газотурбинных двигателей авиационного применения, предназначенным для отклонения вектора тяги турбореактивного двигателя используемого в полете совместно с управляющими поверхностями летательного аппарата с целью увеличения его маневренных возможностей и создания отрицательного вектора тяги турбореактивного двигателя для интенсивного торможения летательного аппарата.

Известно устройство для реверсирования тяги турбореактивного двигателя, содержащее поперечные выхлопные каналы, входы которых выполнены в наружном корпусе и снабжены запирающими устройствами в виде заслонок и расположенных ниже по потоку поворотных лопаток, концы которых прикреплены к наружному и внутреннему корпусам, и выполненных из двух частей, одна из которых установлена неподвижно параллельно продольной оси двигателя, а другая с возможностью поворота вокруг поперечной оси двигателя, а на выходах установлены отклоняющие решетки. (RU 2002112846, 16.05.2002 - прототип).

Недостатком известного устройства для реверсирования тяги турбореактивного двигателя является невозможность индивидуального открытия заслонок и поворотных лопаток, управляющих течением газа через выхлопные каналы.

Задачей настоящего изобретения является увеличение маневренных возможностей летательного аппарата с увеличением угловой скорости разворота.

Техническим результатом, достигаемым при реализации предлагаемого изобретения, является создание отклоняемого вектора тяги реверсивного устройства турбореактивного двигателя с отклонением в окружном направлении вектора тяги вокруг продольной оси двигателя и отрицательным углом относительно прямой тяги турбореактивного двигателя при снижении массы конструкции и сохранении прочностных характеристик.

Указанный технический результат достигается тем, что устройство для отклонения вектора реверсированной тяги турбореактивного двигателя, включающее корпуса поперечных выхлопных каналов, входы которых выполнены в наружном корпусе двигателя, при этом каждый вход снабжен запирающим устройством в виде заслонки, ниже по потоку от заслонок расположены поворотные лопатки, концы поворотных лопаток прикреплены к наружному и внутреннему корпусам двигателя, при этом каждая поворотная лопатка состоит из неподвижной части, установленной перпендикулярно продольной оси двигателя и поворотной части, выполненной с возможностью поворота вокруг поперечной оси двигателя, согласно предложению на каждом выходе поперечных выхлопных каналов установлена заслонка воздушного тормоза, поворотные лопатки объединены в группы, которые совместно с заслонками и заслонками воздушного тормоза сгруппированы по секторам, при этом внутри каждого сектора заслонка, заслонка воздушного тормоза и группа поворотных лопаток снабжены индивидуальными синхронизированными приводами, в продольной плоскости каждой поворотной лопатки перед заслонкой наклонно установлен пилон, при этом концы пилонов прикреплены к наружному и внутреннему корпусам двигателя.

Устройство для отклонения вектора реверсированной тяги турбореактивного двигателя, в котором соотношение суммарной площади сечений на выходе поперечных выхлопных каналов к площади критического сечения выхлопного сопла двигателя находится в диапазоне 1-1,3 и распределено равномерно между всеми выхлопными каналами.

Устройство для отклонения вектора реверсированной тяги турбореактивного двигателя, в котором заслонки и заслонки воздушного тормоза выполнены преимущественно прямоугольной формы с соотношением сторон, равным 1,5-2,2, установлены с возможностью поворота вокруг оси, направленной поперек движения газового потока.

Устройство для отклонения вектора реверсированной тяги турбореактивного двигателя, в котором для двигателя с четырьмя поперечными выхлопными каналами ось симметрии каждого поперечного канала расположена под углом 20-45° от продольной вертикальной плоскости двигателя.

Устройство для отклонения вектора реверсированной тяги турбореактивного двигателя, в котором пилоны выполнены полыми.

Снабжение устройства отклонения вектора реверсированной тяги турбореактивного двигателя корпусами поперечных выхлопных каналов, входы которых выполнены в наружном корпусе и запирающим устройством в виде заслонок формирует канал, разворачивающий газовый поток для создания реверсивной тяги.

Расположение ниже по потоку поворотных лопаток, концы которых прикреплены к наружному и внутреннему корпусам позволяет опереть каждую поворотную лопатку на две точки опоры с увеличением ее прочностных характеристик и снижением массы конструкции. Устройство поворотной лопатки из неподвижной части, установленной перпендикулярно продольной оси двигателя, и поворотной части, выполненной с возможностью поворота вокруг поперечной оси двигателя позволяет опереть поворотную часть на неподвижную, обеспечив жесткость конструкции и минимизировать утечки газа, создающего реверсивную тягу.

Заслонка воздушного тормоза в закрытом положении выполняет функцию перекрытия газового потока вытекающего из поперечного выхлопного канала двигателя и способствует плавному обтеканию летательного аппарата воздушным потоком.

В открытом положении заслонка воздушного тормоза обеспечивает истекание газового потока из поперечного выхлопного канала для создания отклоняемого вектора тяги или реверсивной тяги, регулирует площадь критического сечения газового потока для организации устойчивой работы вентилятора в соответствии с программой регулирования турбореактивного двигателя. Открытие всех заслонок воздушного тормоза на режиме реверсивной тяги приводит к торможению летательного аппарата, на режиме отклонения вектора реверсированной тяги открывается одна или несколько заслонок воздушного тормоза, создавая несимметричное аэродинамическое сопротивление движению летательного аппарата и доворот в сторону открываемых заслонок воздушного тормоза.

Заслонки, группы поворотных лопаток, и заслонки воздушного тормоза, снабженные индивидуальными приводами, сгруппированные по секторам и для каждого сектора имеющие синхронизацию приводов на режиме отклонения вектора реверсированной тяги при посекторном открытии создают отклоняемый вектор тяги, увеличивая маневренные возможности летательного аппарата.

В продольной плоскости каждой поворотной лопатки перед заслонкой наклонно установлены пилоны, концы пилонов прикреплены к наружному и внутреннему корпусам, позволяя связать корпуса между собой, увеличив прочность и жесткость конструкции. Выполнение пилонов полыми позволяет снизить массу конструкции при сохранении прочностных свойств.

Соотношение суммарной площади проходных сечений на выходе выхлопных каналов к площади критического сечения выхлопного сопла находящееся в диапазоне 1-1,3 и распределенное равномерно между всеми выхлопными каналами и с заслонками и заслонками воздушного тормоза выполненными преимущественно прямоугольной формы с соотношением сторон, равным 1,5-2,2, установленными с возможностью поворота вокруг оси, направленной поперек потока газа, позволяет создавать посекторный отклоняемый вектор тяги с пропуском максимального расхода воздуха через один сектор для создания вектора тяги, а с другой стороны позволяет обеспечить прочностные характеристики конструкции с учетом вырезов в наружном корпусе для выхлопных каналов.

Для двигателя с четырьмя поперечными выхлопными каналами ось симметрии каждого поперечного канала расположена под углом 20-45° от продольной вертикальной плоскости двигателя, что позволяют скомпоновать отклоняемый вектор реверсированной тяги X образно как показано на фигуре 2 для летательного аппарата с традиционным вертикальным и горизонтальным оперением. Возможны также варианты реализации изобретения с двумя поперечными выхлопными каналами, направленными вверх и вниз, например, для летательного аппарата типа летающее крыло, или с тремя поперечными выхлопными каналами, например, для летательного аппарата с вертикальным оперением и V образным горизонтальным оперением с отрицательным углом установки.

На фигуре 1 показан продольный разрез устройства отклонения вектора реверсированной тяги турбореактивного двигателя в плоскости симметрии поперечного выхлопного канала.

На фигуре 2 показан вид спереди устройства отклонения вектора реверсированной тяги турбореактивного двигателя.

На фигуре 3 показано устройство отклонения вектора реверсированной тяги турбореактивного двигателя с указанием расположения осей и плоскостей.

1 - корпус поперечного выхлопного канала;

2 - наружный корпус;

3 - заслонка;

4 - ось вращения заслонки;

5 - поворотная лопатка;

6 - внутренний корпус;

7 - неподвижная часть поворотной лопатки;

8 - продольная ось двигателя;

9 - поворотная часть поворотной лопатки;

10 - поперечная ось двигателя;

11 - заслонка воздушного тормоза;

12 - ось вращения заслонки воздушного тормоза;

13 - привод подвижной части поворотной лопатки;

14 - привод заслонки воздушного тормоза;

15 - привод заслонки;

16 - продольная плоскость поворотной лопатки;

17 - пилон.

Устройство отклонения вектора реверсированной тяги турбореактивного двигателя состоит из корпусов поперечных выхлопных каналов 1, входы которых выполнены в наружном корпусе 2 двигателя и снабжены запирающим устройством в виде заслонок 3, вращаемых вокруг поперечных осей 4 и расположенных ниже по потоку поворотных лопаток 5, концы которых прикреплены к наружному 2 и внутреннему 6 корпусам двигателя. Поворотные лопатки 5 состоят из неподвижной части 7, установленной перпендикулярно продольной оси двигателя 8, и поворотной части 9, выполненной с возможностью поворота вокруг поперечной оси двигателя 10. На выходах поперечных выхлопных каналов 1 установлены заслонки воздушного тормоза И, вращаемые вокруг поперечных осей 12. Заслонки 3, группы поворотных лопаток 5, и заслонки воздушного тормоза 11 снабжены индивидуальными приводами 13, 14, 15 сгруппированы по секторам и для каждого сектора имеют синхронизацию приводов. В продольной плоскости 16 поворотной лопатки 5 перед заслонкой 3 наклонно установлены пилоны 17, концы пилонов прикреплены к наружному 2 и внутреннему 6 корпусам двигателя.

Принцип действия устройства заключается в следующем: На режиме прямой тяги заслонка 3 закрыта, заслонка воздушного тормоза 11 закрыта, поворотная лопатка 5 открыта, газовый поток из-за смесителя движется в осевом направлении в сторону реактивного сопла с минимальным гидравлическим сопротивлением, создавая прямую тягу турбореактивного двигателя.

На режиме реверсивной тяги приводами 14 открываются все заслонки воздушного тормоза 11, с созданием симметричного аэродинамического сопротивления движению летательного аппарата. Приводами 15 открываются заслонки 3, направляя газовый поток во все поперечные выхлопные каналы, создавая реверсивную тягу. С открытием заслонок 3 увеличивается площадь критического сечения газового потока с увеличением запаса устойчивой работы вентилятора, что положительно сказывается на устойчивой работе турбореактивного двигателя на переходном режиме от прямой тяги к реверсивной тяге. Приводами 13 закрываются все поворотные части 9 поворотных лопаток 5, запрещая осевое движение газового потока по направлению к реактивному соплу турбореактивного двигателя. Регулированием заслонок воздушного тормоза 11 подбирают площадь критического сечения газового потока потребную для устойчивой работы вентилятора в соответствии с программой управления турбореактивного двигателя на реверсивном режиме. Переход от реверсивной тяги к прямой тяге осуществляется в обратной последовательности.

На режиме отклонения вектора реверсированной тяги приводами 14 посекторно открываются заслонки воздушного тормоза 11, с созданием несимметричного аэродинамического сопротивления, что вызывает доворот летательного аппарата в сторону открываемых заслонок воздушного тормоза 11. Например, для отклонения вектора тяги вверх, открываются верхняя левая и верхняя правая заслонки воздушного тормоза, в случае, если заслонок воздушного тормоза 11 в конструкции предусмотрено четыре, как показано на фигуре 2. Приводами 15 посекторно открываются заслонки 3, направляя газовый поток в необходимые для создания вектора тяги поперечные выхлопные каналы. С посекторным открытием заслонок 3 незначительно увеличивается площадь критического сечения газового потока с увеличением запаса устойчивой работы вентилятора, что положительно сказывается на устойчивой работе турбореактивного двигателя на переходном режиме от прямой тяги к отклоняемому вектору реверсированной тяги. Приводом 13 посекторно закрываются поворотные части 9 поворотных лопаток 5, препятствуя в этом секторе осевому движению газового потока по направлению к реактивному соплу турбореактивного двигателя. Уменьшается площадь критического сечения реактивного сопла на величину площади критического сечения открытых заслонок воздушного тормоза 11, вынуждая газовый поток истекать через заслонку воздушного тормоза 11. Переход от отклоняемого вектора реверсированной тяги к прямой тяге осуществляется в обратной последовательности.


УСТРОЙСТВО ОТКЛОНЕНИЯ ВЕКТОРА РЕВЕРСИРОВАННОЙ ТЯГИ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ
УСТРОЙСТВО ОТКЛОНЕНИЯ ВЕКТОРА РЕВЕРСИРОВАННОЙ ТЯГИ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ
УСТРОЙСТВО ОТКЛОНЕНИЯ ВЕКТОРА РЕВЕРСИРОВАННОЙ ТЯГИ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Showing 61-70 of 71 items.
24.06.2020
№220.018.29c6

Опора турбины турбомашины

Изобретение относится к области турбо- и авиадвигателестроения, а именно к устройствам опор турбин. Изобретение позволяет исключить возможность чрезмерной стяжки упругих элементов с возможностью контроля натяжения спиц по моменту затяжки регулировочной гайки на ключе при сборке, а также...
Тип: Изобретение
Номер охранного документа: 0002724074
Дата охранного документа: 19.06.2020
25.06.2020
№220.018.2af7

Способ работы прямоточного воздушно-реактивного двигателя и устройство для его реализации

Изобретение относится к способу работы прямоточного воздушно-реактивного двигателя на основе непрерывно-детонационных камер сгорания и устройству для его реализации. Используют две кольцевые непрерывно-детонационные камеры сгорания, для которых задают начальную температуру их стенок и рабочую...
Тип: Изобретение
Номер охранного документа: 0002724557
Дата охранного документа: 23.06.2020
25.06.2020
№220.018.2af8

Способ и устройство организации периодической работы непрерывно-детонационной камеры сгорания

Способ организации периодической работы непрерывно-детонационной камеры сгорания включает подачу окислителя и жидкого топлива в виде струй и пристеночных пленок и инициирование горения. Для камеры сгорания определяют усталостную прочность ее стенок и критическую температуру, при которой она...
Тип: Изобретение
Номер охранного документа: 0002724558
Дата охранного документа: 23.06.2020
16.07.2020
№220.018.3357

Система удаленного мониторинга газотурбинной установки

Изобретение относится к удаленному мониторингу. Система удаленного мониторинга газотурбинной установки содержит датчики, передающие информацию об эксплуатационных параметрах установки на сервер нижнего уровня, который хранит и передает информацию на сервер верхнего уровня. Сервер нижнего уровня...
Тип: Изобретение
Номер охранного документа: 0002726317
Дата охранного документа: 14.07.2020
22.04.2023
№223.018.5119

Газоперекачивающий агрегат

Изобретение относится к области устройств газоперекачивающих агрегатов, а именно, к соединению газотурбинного двигателя с силовой турбиной и выходным валом с выхлопным устройством, содержащим выхлопную улитку при их монтаже в газоперекачивающий агрегат. Газоперекачивающий агрегат, включающий...
Тип: Изобретение
Номер охранного документа: 0002794302
Дата охранного документа: 14.04.2023
20.05.2023
№223.018.676f

Реактивное сопло с центральным телом

Изобретение относится к области авиадвигателестроения. Реактивное сопло с центральным телом, соединенное с двигателем и содержащее выходное устройство с центральным телом, проточной частью и выходным сечением, отличным от осесимметричного, содержит двигательную часть, закрепленную на двигателе,...
Тип: Изобретение
Номер охранного документа: 0002794950
Дата охранного документа: 26.04.2023
03.06.2023
№223.018.766f

Способ управления расходом топлива в камеру сгорания на запуске газотурбинного двигателя

Изобретение относится к области управления работой газотурбинных двигателей (ГТД), преимущественно авиационных, и может быть использовано для управления подачей топлива в ГТД на режиме запуска. Предлагается способ управления расходом топлива в камеру сгорания на запуске газотурбинного...
Тип: Изобретение
Номер охранного документа: 0002796562
Дата охранного документа: 25.05.2023
03.06.2023
№223.018.769a

Ротор турбины низкого давления газотурбинного двигателя

Изобретение относится к авиадвигателестроению, а именно к конструкциям роторов турбины низкого давления (ТНД) газотурбинного двигателя (ГТД). Ротор турбины низкого давления газотурбинного двигателя, содержащий промежуточный вал, носок с размещенным на нем подшипником, при этом в носке выполнены...
Тип: Изобретение
Номер охранного документа: 0002796564
Дата охранного документа: 25.05.2023
16.06.2023
№223.018.7c05

Способ диагностики технического состояния газотурбинного двигателя

Изобретение относится к неразрушающему контролю технического состояния газотурбинных двигателей. Способ диагностики технического состояния газотурбинного двигателя, заключающийся в том, что выбирают параметры, подлежащие диагностическому контролю, текущее значение которых регистрируют на...
Тип: Изобретение
Номер охранного документа: 0002745820
Дата охранного документа: 01.04.2021
16.06.2023
№223.018.7d15

Гидродинамический демпфер подшипниковой опоры ротора турбомашины

Изобретение относится к области машиностроения. Демпфер содержит внутренний корпус, образующий с корпусом радиальный зазор. На внутренней поверхности корпуса и наружной поверхности внутреннего корпуса выполнены проточки. В полости, образованной несквозными цилиндрическими проточками,...
Тип: Изобретение
Номер охранного документа: 0002741824
Дата охранного документа: 28.01.2021
Showing 51-55 of 55 items.
01.05.2020
№220.018.1aae

Устройство для установки датчика на гладкой опорной поверхности

Изобретение относится к устройствам для крепления предметов к гладким опорным поверхностям. Сущность: устройство содержит жесткий корпус (3), выполненный в виде перевернутого стакана с цельным донышком (7). В основании жесткого корпуса (3) выполнена концентрическая торцевая канавка (8), в...
Тип: Изобретение
Номер охранного документа: 0002720266
Дата охранного документа: 28.04.2020
03.06.2023
№223.018.7671

Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию

Изобретение относится к области эксплуатации и диагностики авиационных газотурбинных двигателей. Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию включает определение накопленной повреждаемости каждой основной детали двигателя с учетом режимов работы...
Тип: Изобретение
Номер охранного документа: 0002796563
Дата охранного документа: 25.05.2023
16.06.2023
№223.018.7c41

Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию

Изобретение относится к области диагностирования технического состояния авиационных газотурбинных двигателей с учетом конкретных условий эксплуатации. Техническим результатом, достигаемым при использовании заявленного способа, является более полное использование потенциальных возможностей...
Тип: Изобретение
Номер охранного документа: 0002742321
Дата охранного документа: 04.02.2021
16.06.2023
№223.018.7d15

Гидродинамический демпфер подшипниковой опоры ротора турбомашины

Изобретение относится к области машиностроения. Демпфер содержит внутренний корпус, образующий с корпусом радиальный зазор. На внутренней поверхности корпуса и наружной поверхности внутреннего корпуса выполнены проточки. В полости, образованной несквозными цилиндрическими проточками,...
Тип: Изобретение
Номер охранного документа: 0002741824
Дата охранного документа: 28.01.2021
16.06.2023
№223.018.7d3e

Способ снижения вибронапряжений в рабочих лопатках турбомашины

Изобретение предназначено для использования в турбомашиностроении и может найти широкое применение для снижения вибронапряжений в лопатках рабочих колес турбомашин. Проводят тензометрирование лопаток отдельного рабочего колеса турбомашины. Определяют наиболее опасную резонансную частоту...
Тип: Изобретение
Номер охранного документа: 0002746365
Дата охранного документа: 12.04.2021
+ добавить свой РИД