×
24.01.2020
220.017.f92c

Результат интеллектуальной деятельности: УСТРОЙСТВО ОТКЛОНЕНИЯ ВЕКТОРА РЕВЕРСИРОВАННОЙ ТЯГИ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к выходным устройствам газотурбинных двигателей авиационного применения, предназначенным для отклонения вектора тяги турбореактивного двигателя летательного аппарата, используемого в полете совместно с управляющими поверхностями летательного аппарата. Устройство для отклонения вектора реверсированной тяги турбореактивного двигателя включает корпуса поперечных выхлопных каналов, входы которых выполнены в наружном корпусе двигателя, при этом каждый вход снабжен запирающим устройством в виде заслонки. Ниже по потоку от заслонок расположены поворотные лопатки, концы поворотных лопаток прикреплены к наружному и внутреннему корпусам двигателя. Каждая поворотная лопатка состоит из неподвижной части, установленной перпендикулярно продольной оси двигателя и поворотной части, выполненной с возможностью поворота вокруг поперечной оси двигателя. На каждом выходе поперечных выхлопных каналов установлена заслонка воздушного тормоза. Поворотные лопатки объединены в группы, которые совместно с заслонками и заслонками воздушного тормоза сгруппированы по секторам. Внутри каждого сектора заслонка, заслонка воздушного тормоза и группа поворотных лопаток снабжены индивидуальными синхронизированными приводами. В продольной плоскости каждой поворотной лопатки перед заслонкой наклонно установлен пилон, при этом концы пилонов прикреплены к наружному и внутреннему корпусам двигателя. Изобретение позволяет увеличить маневренные возможности летательного аппарата с увеличением угловой скорости разворота. 4 з.п. ф-лы, 3 ил.

Изобретение относится к выходным устройствам газотурбинных двигателей авиационного применения, предназначенным для отклонения вектора тяги турбореактивного двигателя используемого в полете совместно с управляющими поверхностями летательного аппарата с целью увеличения его маневренных возможностей и создания отрицательного вектора тяги турбореактивного двигателя для интенсивного торможения летательного аппарата.

Известно устройство для реверсирования тяги турбореактивного двигателя, содержащее поперечные выхлопные каналы, входы которых выполнены в наружном корпусе и снабжены запирающими устройствами в виде заслонок и расположенных ниже по потоку поворотных лопаток, концы которых прикреплены к наружному и внутреннему корпусам, и выполненных из двух частей, одна из которых установлена неподвижно параллельно продольной оси двигателя, а другая с возможностью поворота вокруг поперечной оси двигателя, а на выходах установлены отклоняющие решетки. (RU 2002112846, 16.05.2002 - прототип).

Недостатком известного устройства для реверсирования тяги турбореактивного двигателя является невозможность индивидуального открытия заслонок и поворотных лопаток, управляющих течением газа через выхлопные каналы.

Задачей настоящего изобретения является увеличение маневренных возможностей летательного аппарата с увеличением угловой скорости разворота.

Техническим результатом, достигаемым при реализации предлагаемого изобретения, является создание отклоняемого вектора тяги реверсивного устройства турбореактивного двигателя с отклонением в окружном направлении вектора тяги вокруг продольной оси двигателя и отрицательным углом относительно прямой тяги турбореактивного двигателя при снижении массы конструкции и сохранении прочностных характеристик.

Указанный технический результат достигается тем, что устройство для отклонения вектора реверсированной тяги турбореактивного двигателя, включающее корпуса поперечных выхлопных каналов, входы которых выполнены в наружном корпусе двигателя, при этом каждый вход снабжен запирающим устройством в виде заслонки, ниже по потоку от заслонок расположены поворотные лопатки, концы поворотных лопаток прикреплены к наружному и внутреннему корпусам двигателя, при этом каждая поворотная лопатка состоит из неподвижной части, установленной перпендикулярно продольной оси двигателя и поворотной части, выполненной с возможностью поворота вокруг поперечной оси двигателя, согласно предложению на каждом выходе поперечных выхлопных каналов установлена заслонка воздушного тормоза, поворотные лопатки объединены в группы, которые совместно с заслонками и заслонками воздушного тормоза сгруппированы по секторам, при этом внутри каждого сектора заслонка, заслонка воздушного тормоза и группа поворотных лопаток снабжены индивидуальными синхронизированными приводами, в продольной плоскости каждой поворотной лопатки перед заслонкой наклонно установлен пилон, при этом концы пилонов прикреплены к наружному и внутреннему корпусам двигателя.

Устройство для отклонения вектора реверсированной тяги турбореактивного двигателя, в котором соотношение суммарной площади сечений на выходе поперечных выхлопных каналов к площади критического сечения выхлопного сопла двигателя находится в диапазоне 1-1,3 и распределено равномерно между всеми выхлопными каналами.

Устройство для отклонения вектора реверсированной тяги турбореактивного двигателя, в котором заслонки и заслонки воздушного тормоза выполнены преимущественно прямоугольной формы с соотношением сторон, равным 1,5-2,2, установлены с возможностью поворота вокруг оси, направленной поперек движения газового потока.

Устройство для отклонения вектора реверсированной тяги турбореактивного двигателя, в котором для двигателя с четырьмя поперечными выхлопными каналами ось симметрии каждого поперечного канала расположена под углом 20-45° от продольной вертикальной плоскости двигателя.

Устройство для отклонения вектора реверсированной тяги турбореактивного двигателя, в котором пилоны выполнены полыми.

Снабжение устройства отклонения вектора реверсированной тяги турбореактивного двигателя корпусами поперечных выхлопных каналов, входы которых выполнены в наружном корпусе и запирающим устройством в виде заслонок формирует канал, разворачивающий газовый поток для создания реверсивной тяги.

Расположение ниже по потоку поворотных лопаток, концы которых прикреплены к наружному и внутреннему корпусам позволяет опереть каждую поворотную лопатку на две точки опоры с увеличением ее прочностных характеристик и снижением массы конструкции. Устройство поворотной лопатки из неподвижной части, установленной перпендикулярно продольной оси двигателя, и поворотной части, выполненной с возможностью поворота вокруг поперечной оси двигателя позволяет опереть поворотную часть на неподвижную, обеспечив жесткость конструкции и минимизировать утечки газа, создающего реверсивную тягу.

Заслонка воздушного тормоза в закрытом положении выполняет функцию перекрытия газового потока вытекающего из поперечного выхлопного канала двигателя и способствует плавному обтеканию летательного аппарата воздушным потоком.

В открытом положении заслонка воздушного тормоза обеспечивает истекание газового потока из поперечного выхлопного канала для создания отклоняемого вектора тяги или реверсивной тяги, регулирует площадь критического сечения газового потока для организации устойчивой работы вентилятора в соответствии с программой регулирования турбореактивного двигателя. Открытие всех заслонок воздушного тормоза на режиме реверсивной тяги приводит к торможению летательного аппарата, на режиме отклонения вектора реверсированной тяги открывается одна или несколько заслонок воздушного тормоза, создавая несимметричное аэродинамическое сопротивление движению летательного аппарата и доворот в сторону открываемых заслонок воздушного тормоза.

Заслонки, группы поворотных лопаток, и заслонки воздушного тормоза, снабженные индивидуальными приводами, сгруппированные по секторам и для каждого сектора имеющие синхронизацию приводов на режиме отклонения вектора реверсированной тяги при посекторном открытии создают отклоняемый вектор тяги, увеличивая маневренные возможности летательного аппарата.

В продольной плоскости каждой поворотной лопатки перед заслонкой наклонно установлены пилоны, концы пилонов прикреплены к наружному и внутреннему корпусам, позволяя связать корпуса между собой, увеличив прочность и жесткость конструкции. Выполнение пилонов полыми позволяет снизить массу конструкции при сохранении прочностных свойств.

Соотношение суммарной площади проходных сечений на выходе выхлопных каналов к площади критического сечения выхлопного сопла находящееся в диапазоне 1-1,3 и распределенное равномерно между всеми выхлопными каналами и с заслонками и заслонками воздушного тормоза выполненными преимущественно прямоугольной формы с соотношением сторон, равным 1,5-2,2, установленными с возможностью поворота вокруг оси, направленной поперек потока газа, позволяет создавать посекторный отклоняемый вектор тяги с пропуском максимального расхода воздуха через один сектор для создания вектора тяги, а с другой стороны позволяет обеспечить прочностные характеристики конструкции с учетом вырезов в наружном корпусе для выхлопных каналов.

Для двигателя с четырьмя поперечными выхлопными каналами ось симметрии каждого поперечного канала расположена под углом 20-45° от продольной вертикальной плоскости двигателя, что позволяют скомпоновать отклоняемый вектор реверсированной тяги X образно как показано на фигуре 2 для летательного аппарата с традиционным вертикальным и горизонтальным оперением. Возможны также варианты реализации изобретения с двумя поперечными выхлопными каналами, направленными вверх и вниз, например, для летательного аппарата типа летающее крыло, или с тремя поперечными выхлопными каналами, например, для летательного аппарата с вертикальным оперением и V образным горизонтальным оперением с отрицательным углом установки.

На фигуре 1 показан продольный разрез устройства отклонения вектора реверсированной тяги турбореактивного двигателя в плоскости симметрии поперечного выхлопного канала.

На фигуре 2 показан вид спереди устройства отклонения вектора реверсированной тяги турбореактивного двигателя.

На фигуре 3 показано устройство отклонения вектора реверсированной тяги турбореактивного двигателя с указанием расположения осей и плоскостей.

1 - корпус поперечного выхлопного канала;

2 - наружный корпус;

3 - заслонка;

4 - ось вращения заслонки;

5 - поворотная лопатка;

6 - внутренний корпус;

7 - неподвижная часть поворотной лопатки;

8 - продольная ось двигателя;

9 - поворотная часть поворотной лопатки;

10 - поперечная ось двигателя;

11 - заслонка воздушного тормоза;

12 - ось вращения заслонки воздушного тормоза;

13 - привод подвижной части поворотной лопатки;

14 - привод заслонки воздушного тормоза;

15 - привод заслонки;

16 - продольная плоскость поворотной лопатки;

17 - пилон.

Устройство отклонения вектора реверсированной тяги турбореактивного двигателя состоит из корпусов поперечных выхлопных каналов 1, входы которых выполнены в наружном корпусе 2 двигателя и снабжены запирающим устройством в виде заслонок 3, вращаемых вокруг поперечных осей 4 и расположенных ниже по потоку поворотных лопаток 5, концы которых прикреплены к наружному 2 и внутреннему 6 корпусам двигателя. Поворотные лопатки 5 состоят из неподвижной части 7, установленной перпендикулярно продольной оси двигателя 8, и поворотной части 9, выполненной с возможностью поворота вокруг поперечной оси двигателя 10. На выходах поперечных выхлопных каналов 1 установлены заслонки воздушного тормоза И, вращаемые вокруг поперечных осей 12. Заслонки 3, группы поворотных лопаток 5, и заслонки воздушного тормоза 11 снабжены индивидуальными приводами 13, 14, 15 сгруппированы по секторам и для каждого сектора имеют синхронизацию приводов. В продольной плоскости 16 поворотной лопатки 5 перед заслонкой 3 наклонно установлены пилоны 17, концы пилонов прикреплены к наружному 2 и внутреннему 6 корпусам двигателя.

Принцип действия устройства заключается в следующем: На режиме прямой тяги заслонка 3 закрыта, заслонка воздушного тормоза 11 закрыта, поворотная лопатка 5 открыта, газовый поток из-за смесителя движется в осевом направлении в сторону реактивного сопла с минимальным гидравлическим сопротивлением, создавая прямую тягу турбореактивного двигателя.

На режиме реверсивной тяги приводами 14 открываются все заслонки воздушного тормоза 11, с созданием симметричного аэродинамического сопротивления движению летательного аппарата. Приводами 15 открываются заслонки 3, направляя газовый поток во все поперечные выхлопные каналы, создавая реверсивную тягу. С открытием заслонок 3 увеличивается площадь критического сечения газового потока с увеличением запаса устойчивой работы вентилятора, что положительно сказывается на устойчивой работе турбореактивного двигателя на переходном режиме от прямой тяги к реверсивной тяге. Приводами 13 закрываются все поворотные части 9 поворотных лопаток 5, запрещая осевое движение газового потока по направлению к реактивному соплу турбореактивного двигателя. Регулированием заслонок воздушного тормоза 11 подбирают площадь критического сечения газового потока потребную для устойчивой работы вентилятора в соответствии с программой управления турбореактивного двигателя на реверсивном режиме. Переход от реверсивной тяги к прямой тяге осуществляется в обратной последовательности.

На режиме отклонения вектора реверсированной тяги приводами 14 посекторно открываются заслонки воздушного тормоза 11, с созданием несимметричного аэродинамического сопротивления, что вызывает доворот летательного аппарата в сторону открываемых заслонок воздушного тормоза 11. Например, для отклонения вектора тяги вверх, открываются верхняя левая и верхняя правая заслонки воздушного тормоза, в случае, если заслонок воздушного тормоза 11 в конструкции предусмотрено четыре, как показано на фигуре 2. Приводами 15 посекторно открываются заслонки 3, направляя газовый поток в необходимые для создания вектора тяги поперечные выхлопные каналы. С посекторным открытием заслонок 3 незначительно увеличивается площадь критического сечения газового потока с увеличением запаса устойчивой работы вентилятора, что положительно сказывается на устойчивой работе турбореактивного двигателя на переходном режиме от прямой тяги к отклоняемому вектору реверсированной тяги. Приводом 13 посекторно закрываются поворотные части 9 поворотных лопаток 5, препятствуя в этом секторе осевому движению газового потока по направлению к реактивному соплу турбореактивного двигателя. Уменьшается площадь критического сечения реактивного сопла на величину площади критического сечения открытых заслонок воздушного тормоза 11, вынуждая газовый поток истекать через заслонку воздушного тормоза 11. Переход от отклоняемого вектора реверсированной тяги к прямой тяге осуществляется в обратной последовательности.


УСТРОЙСТВО ОТКЛОНЕНИЯ ВЕКТОРА РЕВЕРСИРОВАННОЙ ТЯГИ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ
УСТРОЙСТВО ОТКЛОНЕНИЯ ВЕКТОРА РЕВЕРСИРОВАННОЙ ТЯГИ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ
УСТРОЙСТВО ОТКЛОНЕНИЯ ВЕКТОРА РЕВЕРСИРОВАННОЙ ТЯГИ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Showing 51-60 of 71 items.
10.08.2019
№219.017.be16

Способ измерения динамических напряжений в трубопроводе турбомашины

Изобретение относится к области тензометрирования трубопроводов в турбомашиностроении, преимущественно в авиационных газотурбинных двигателях, а именно измерению динамических напряжений в трубопроводах при лабораторных, стендовых испытаниях или в условиях эксплуатации. Способ включает установку...
Тип: Изобретение
Номер охранного документа: 0002696943
Дата охранного документа: 07.08.2019
12.09.2019
№219.017.ca91

Магнитожидкостное уплотнение вала

Изобретение относится к уплотнительной технике. Магнитожидкостное уплотнение вала содержит корпус из немагнитного материала, внутри которого расположен кольцевой постоянный магнит, две полюсные приставки, имеющие кольцевые магнитопроводящие монолитные основания, у которых на поверхности,...
Тип: Изобретение
Номер охранного документа: 0002699865
Дата охранного документа: 11.09.2019
02.10.2019
№219.017.ce33

Способ упрочнения элемента в виде тела вращения ротора турбомашины металломатричным композитом

Изобретение относится к области авиационной техники, к способам формирования упрочняющего элемента из металломатричного композита на диске и/или барабане ротора газотурбинного двигателя. Способ упрочнения элемента в виде тела вращения ротора турбомашины металломатричным композитом включает...
Тип: Изобретение
Номер охранного документа: 0002700222
Дата охранного документа: 13.09.2019
10.11.2019
№219.017.dfaa

Турбокомпрессор

Изобретение относится к компрессоростроению, в частности к осевым, диагональным и осецентробежным компрессорам газотурбинных установок. Турбокомпрессор содержит корпус с размещенными в нем рабочими и направляющими лопатками, в котором над торцами рабочих лопаток выполнено надроторное...
Тип: Изобретение
Номер охранного документа: 0002705502
Дата охранного документа: 07.11.2019
10.11.2019
№219.017.e032

Способ управления газотурбинным двигателем с форсажной камерой сгорания

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления многорежимными газотурбинными двигателями (ГТД) с форсажной камерой сгорания (ФК). Способ управления газотурбинным двигателем с форсажной...
Тип: Изобретение
Номер охранного документа: 0002705500
Дата охранного документа: 07.11.2019
13.11.2019
№219.017.e102

Сигнализатор температуры и магнитных продуктов износа в системе смазки

Изобретение относится к авиационной технике, а именно к устройствам контроля и сигнализации газотурбинных двигателей. Сигнализатор температуры и магнитных продуктов износа в системе смазки содержит корпус с установленным в нем с зазором постоянным магнитом и электрическую цепь с источником...
Тип: Изобретение
Номер охранного документа: 0002705699
Дата охранного документа: 11.11.2019
21.11.2019
№219.017.e412

Способ ресурсных испытаний газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний авиационных газотурбинных двигателей. Способ ресурсных испытаний газотурбинного двигателя включает разбиение рабочей области частоты вращения ротора с рабочими лопатками на несколько диапазонов и наработку в...
Тип: Изобретение
Номер охранного документа: 0002706514
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e445

Способ управления газотурбинным двигателем с форсажной камерой сгорания

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления многорежимными газотурбинными двигателями (ГТД) с форсажной камерой сгорания (ФКС). Способ управления газотурбинным двигателем с форсажной...
Тип: Изобретение
Номер охранного документа: 0002706518
Дата охранного документа: 19.11.2019
01.12.2019
№219.017.e86d

Способ подготовки и сжигания топлива в камере сгорания газотурбинной установки

Изобретение относится к камерам сгорания газотурбинных установок, работающим на газообразном углеводородном топливе и использующим в своей работе каталитические средства. Способ подготовки и сжигания топлива в камере сгорания газотурбинной установки включает подачу воздуха из-за компрессора в...
Тип: Изобретение
Номер охранного документа: 0002707780
Дата охранного документа: 29.11.2019
25.04.2020
№220.018.18a7

Маслосистема газотурбинного двигателя

Изобретение относится к области авиадвигателестроения и касается устройства масляной системы авиационного газотурбинного двигателя (ГТД). Маслосистема содержит маслобак, неприводной центробежный воздухоотделитель, размещенный внутри маслобака, и электромагнитный сигнализатор металлических...
Тип: Изобретение
Номер охранного документа: 0002720054
Дата охранного документа: 23.04.2020
Showing 51-55 of 55 items.
01.05.2020
№220.018.1aae

Устройство для установки датчика на гладкой опорной поверхности

Изобретение относится к устройствам для крепления предметов к гладким опорным поверхностям. Сущность: устройство содержит жесткий корпус (3), выполненный в виде перевернутого стакана с цельным донышком (7). В основании жесткого корпуса (3) выполнена концентрическая торцевая канавка (8), в...
Тип: Изобретение
Номер охранного документа: 0002720266
Дата охранного документа: 28.04.2020
03.06.2023
№223.018.7671

Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию

Изобретение относится к области эксплуатации и диагностики авиационных газотурбинных двигателей. Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию включает определение накопленной повреждаемости каждой основной детали двигателя с учетом режимов работы...
Тип: Изобретение
Номер охранного документа: 0002796563
Дата охранного документа: 25.05.2023
16.06.2023
№223.018.7c41

Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию

Изобретение относится к области диагностирования технического состояния авиационных газотурбинных двигателей с учетом конкретных условий эксплуатации. Техническим результатом, достигаемым при использовании заявленного способа, является более полное использование потенциальных возможностей...
Тип: Изобретение
Номер охранного документа: 0002742321
Дата охранного документа: 04.02.2021
16.06.2023
№223.018.7d15

Гидродинамический демпфер подшипниковой опоры ротора турбомашины

Изобретение относится к области машиностроения. Демпфер содержит внутренний корпус, образующий с корпусом радиальный зазор. На внутренней поверхности корпуса и наружной поверхности внутреннего корпуса выполнены проточки. В полости, образованной несквозными цилиндрическими проточками,...
Тип: Изобретение
Номер охранного документа: 0002741824
Дата охранного документа: 28.01.2021
16.06.2023
№223.018.7d3e

Способ снижения вибронапряжений в рабочих лопатках турбомашины

Изобретение предназначено для использования в турбомашиностроении и может найти широкое применение для снижения вибронапряжений в лопатках рабочих колес турбомашин. Проводят тензометрирование лопаток отдельного рабочего колеса турбомашины. Определяют наиболее опасную резонансную частоту...
Тип: Изобретение
Номер охранного документа: 0002746365
Дата охранного документа: 12.04.2021
+ добавить свой РИД