×
22.01.2020
220.017.f86b

Результат интеллектуальной деятельности: СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ ЕМКОСТИ РАСТВОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной емкости. Изобретение касается способа определения антиоксидантной емкости раствора с использованием потенциометрического метода, в котором предварительно готовят исходный фосфатный буферный раствор, в который вводят систему, содержащую одновременно окисленную и восстановленную формы металла в составе комплексного соединения K3[Fe(CN)6]/K4[Fe(CN)6], а оценку антиоксидантной емкости проводят по изменению окислительно-восстановительного потенциала раствора, измеренного между рабочим платиновым электродом и хлорид-серебряным электродом сравнения, зарегистрированным до и после введения в исходный раствор анализируемого вещества. Из общей антиоксидантной емкости раствора выделяют восстанавливающую и хелатирующую емкости, при этом восстанавливающую емкость предварительно определяют методом потенциометрического титрования окисленной формой реагента (K3[Fe(CN)6. Хелатирующую емкость определяют как разницу между антиоксидантной емкостью и восстанавливающей емкостью. Технический результат - получение достоверной количественной информации о восстанавливающих и хелатирующих свойствах исследуемых объектов с антиоксидантным действием, а также повышение точности и достоверности получаемых результатов. 3 пр., 6 ил.

Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной емкости раствора.

Широко распространены методы определения антиоксидантов с использованием в качестве окислителя различных комплексов железа. Они обладают рядом преимуществ: простота и информативность; доступность разнообразных устойчивых комплексных соединений железа, используемых в качестве модели окислителя. Варьируя лигандное окружение состава комплексного соединения железа существует возможность выбора оптимальной модели окислителя по окислительной способности, по устойчивости комплексных соединений при различных рН, по растворимости. Кроме того, большинство комплексов железа имеет устойчивую гексагональную структуру, подобную структуре гемма в молекуле гемоглобина.

Важнейшим классом антиоксидантов являются полифенольные соединения. Механизм антиоксидантного действия полифенолов заключается как в их восстанавливающей способности, так и в том, что полифенольные соединения могут образовывать стабильные комплексы с ионами металлов переменной валентности (константы устойчивости комплексов железа (III) с некоторыми полифенолами β=1027-1043), и тем самым тормозить окислительные процессы с участием свободных радикалов, образующихся по реакции Фентона (1):

Fe2+ + H2O2 → Fe3+ + OH· + OH (1)

Это свойство является важной хелатирующей составляющей в суммарном антиоксидантном действии. Поэтому очень важно иметь информацию как о восстанавливающей, так и хелатирующей составляющих.

Известен способ определения суммарной антиоксидантной активности (RU 2282851), заключающийся во взаимодействии аналита с реагентом Fe(III)-о-фенантролин, аскорбиновой кислоты с реагентом с последующим фотометрированием и расчетом величины суммарной антиоксидантной активности по отношению к стандартному веществу - аскорбиновой кислоте.

К недостаткам данного способа можно отнести то, что в данном способе не учтена хелатирующая емкость полифенольных соединений, входящих в состав природных объектов, по отношению к ионам Fe3+, в то время как комплекс Fe(III)-о-фенантролин обладает гораздо меньшим значением константы устойчивости (β=1023,5), чем многие комплексы Fe(III) с полифенольными соединениями. Также результаты, получаемые данным способом, выражаются в относительных единицах - эквивалентах аскорбиновой кислоты.

Известен способ определения антиоксидантов в растворе [Международная публикация US 6177260В1], основанный на использовании в качестве окислителя комплекса Fe(III)-трипиридилтриазина, который при взаимодействии с антиоксидантами восстанавливается до Fe(II)-трипиридилтриазина, окрашенного в синий цвет (максимум поглощения при 593 нм).

Недостатком этого способа является то, что измерения проводятся в кислой среде, поэтому метод является нечувствительным к сульфгидрильным SH-содержащим антиоксидантам, таким как глутатион и цистеин и не позволяет оценить суммарное содержание антиоксидантов в исследуемом объекте. В данном способе также не учитывается возможное образование комплексных соединений между полифенолами и ионами железа, т.е. не оценена хелатирующая составляющая. Данный способ, как и выше описанный является спектрофотометрическим, т.е. не позволяет достоверно проводить анализ окрашенных и мутных образцов.

Наиболее близким решением служит потенциометрический способ определения оксидантной/антиоксидантной активности растворов (RU 2235998), заключающийся в том, что предварительно готовят исходный раствор, в который вводят одновременно окисленную и восстановленную формы реагента, а оценку оксидантной/антиоксидантной активности проводят по изменению окислительно-восстановительного потенциала раствора, определенного до и после введения в исходный раствор анализируемого вещества.

К недостаткам данного способа можно отнести то, что в случае использования системы свободных солей Fe3+/Fe2+ не учитывается возможное гидроксообразование, и также не учитывается хелатирующий эффект полифенольных соединений, в то время как при использовании свободных солей реакции комплексообразования полифенолов с ионами Fe3+ будут протекает с более высокой долей вероятности, чем в предыдущих методах.

Таким образом, общей проблемой существующих способов является получение интегрального параметра об антиоксидантных свойствах исследуемых объектов и отсутствие информации о составляющих этого параметра: хелатирующей и восстанавливающей способности соединений.

Техническим решением настоящего изобретения является получение достоверной количественной информации о восстанавливающей и хелатирующей емкости исследуемых объектов с антиоксидантным действием, а также повышение точности и достоверности получаемых результатов.

Проблема решается тем, что при определении суммарной антиоксидантной емкости растворов предлагается выделять восстанавливающую емкость и хелатирующую емкость. При определении суммарной антиоксидантной емкости в растворе присутствует избыток возможного комплексообразователя - системы Fe(III)/Fe(II) в виде комплексных соединений, поэтому возможно протекание как реакции восстановления железа (III), так и реакции комплексообразования между полифенольными соединениями и Fe(III), вероятность которой зависит от соотношения условных констант устойчивости исходных комплексов железа и полифенольных комплексов железа. Таким образом, при определении суммарной антиоксидантной емкости при взаимодействии с комплексным соединением Fe(III) в растворе, происходит одновременное определение как восстанавливающей, так и хелатирующей емкости по реакциям (2) и (3).

[Fe3+L] + AO = n[Fe2+L] + AOOx (2)

При потенциометрическом титровании анализируемого раствора соединением железа (III), взаимодействие происходит в условиях недостатка комплексообразователя, в связи с этим, более вероятным становится процесс окисления - восстановления и, таким образом, определяется восстанавливающая емкость. Хелатирующая емкость находится по разности между суммарной антиоксидантной емкостью и восстанавливающей емкостью.

Сущность заявляемого способа заключается в том, что определения антиоксидантной емкости раствора с использованием потенциометрического метода проводят по изменению окислительно-восстановительного системы окисленная/восстановленная форма железа в составе комплексного соединения, определенного до и после введения в исходный раствор анализируемого вещества. Антиоксидантную емкость в растворе рассчитывают по формуле:

где АОЕ- антиоксидантная емкость;

Сох - концентрация окисленной формы реагента;

Cred - концентрация восстановленной формы реагента;

где Е - исходный потенциал системы, E1 - потенциал, устанавливающийся в системе после введения пробы, b=2,3RT/nF,

где R - универсальная газовая постоянная, Т - температура, К, n - число электронов, участвующих в окислительно-восстановительной реакции; F - число Фарадея.

Из общей антиоксидантной емкости раствора выделяют восстанавливающую емкость и хелатирующую емкость.

Восстанавливающую емкость предварительно определяют методом потенциометрического титрования окисленной формой реагента и рассчитываются по формуле:

где ВЕ - восстанавливающая емкость, СOx - концентрация окисленной формы реагента, VOx - объем окисленной формы реагента в точке эквивалентности, V - объем раствора анализируемого вещества,

хелатирующая емкость оценивается как разница между антиоксидантной емкостью и восстанавливающей емкостью по формуле:

где ХЕ - хелатирующая емкость.

В качестве реагентов могут быть использованы комплексные соединения Fe(II) и Fe(III): K3[Fe(CN)6], Fe(III)-PHEN, Fe(III)-EDTA, Fe(III)-TPTZ, K4[Fe(CN)6], Fe(II)-PHEN, Fe(II)-EDTA, Fe(II)-TPTZ.

Рабочий электрод может быть изготовлен из платины, золота, стеклоуглерода. Электродом сравнения может служить стандартный хлоридсеребряный электрод.

Указанные отличия существенны. Выделение хелатирующей и восстанавливающей емкости из общей антиоксидантной емкости позволяет получать достоверные данные об антиоксидантных свойствах исследуемых соединений, механизмах их антиоксидантного действия: восстанавливающей и хелатирующей способности.

В настоящее время из патентной и научно-технической литературы неизвестен способ определения интегральной антиоксидантной емкости, позволяющий разделить восстанавливающею и хелатирующую емкость, в заявляемой совокупности признаков.

На фиг. 1 представлена зависимость потенциала от времени при добавлении к системе K3[Fe(CN)6]/K4[Fe(CN)6] пирогаллола.

На фиг. 2 представлена интегральная кривая потенциометрического титрования пирогаллола раствором K3[Fe(CN)6].

На фиг. 3 представлена дифференциальная кривая потенциометрического титрования пирогаллола раствором K3[Fe(CN)6].

На фиг. 4 представлена зависимость потенциала от времени при добавлении к системе K3[Fe(CN)6]/K4[Fe(CN)6] кверцетина.

На фиг. 5 представлена интегральная кривая потенциометрического титрования кверцетина раствором K3[Fe(CN)6].

На фиг. 6 представлена дифференциальная кривая потенциометрического титрования кверцетина раствором K3[Fe(CN)6].

Способ иллюстрируется следующими примерами.

Пример 1

В 10 мл водного раствора, содержащего 0,01М K3[Fe(CN)6] и 0,0001М K4[Fe(CN)6] в фосфатном буферном растворе, опускают измерительный электрод и электрод сравнения. Установившееся значение потенциала (Е), измеряемое с помощью цифрового вольтметра, составляет 335 мВ. В электрохимическую ячейку вносят 0,1 мл 0,01М раствора пирогаллола. Установившееся значение потенциала (Е1) составляет 287 мВ.

Результаты измерений приведены на фиг.1. Антиоксидантную емкость рассчитывают по формуле:

где АОЕ- антиоксидантная емкость;

Сох - концентрация окисленной формы реагента;

Cred - концентрация восстановленной формы реагента;

где Е - исходный потенциал системы, E1 - потенциал, устанавливающийся в системе после введения пробы, b=2,3RT/nF,

где R - универсальная газовая постоянная, Т - температура, К, n - число электронов, участвующих в окислительно-восстановительной реакции; F - число Фарадея.

Расчет показывает, что значение АОЕ составляет 5,17·10-4 М-экв.

В 10 мл водного раствора, содержащего 0,1мМ пирогаллол в фосфатном буферном растворе, опускают измерительный электрод и электрод сравнения. Затем проводят потенциометрическое титрование 0,01М K3[Fe(CN)6]. Результаты измерений интегральной кривой потенциометрического титрования приведены на фиг.2. Полученную кривую дифференцируют по объему титранта K3[Fe(CN)6]. Дифференциальная кривая титрования приведена на фиг.3. Объем добавленного K3[Fe(CN)6] в точке эквивалентности, определенный по максимуму дифференциальной кривой титрования, составляет 3,8 мл.

Восстанавливающую емкость рассчитываются по формуле:

где ВЕ - восстанавливающая емкость, СOx - концентрация K3[Fe(CN)6], VOx - объем K3[Fe(CN)6] в точке эквивалентности, V - объем раствора анализируемого вещества.

Расчет показывает, что значение ВЕ составляет 3,80·10-4 М-экв.

Хелатирующая емкость оценивается как разница между антиоксидантной емкостью и восстанавливающей емкостью по формуле:

где ХЕ - хелатирующая емкость.

Расчет показывает, что значение ХЕ составляет 1,37·10-4 М-экв.

Пример 2

В 10 мл водного раствора, содержащего 0,01М K3[Fe(CN)6] и 0,0001М K4[Fe(CN)6] в фосфатном буферном растворе, опускают измерительный электрод и электрод сравнения. Установившееся значение потенциала (Е), измеряемое с помощью цифрового вольтметра, составляет 338 мВ. В электрохимическую ячейку вносят 0,1 мл 0,01М раствора квернцетина. Установившееся значение потенциала (Е1) составляет 292 мВ.

Результаты измерений приведены на фиг.4. Антиоксидантную емкость рассчитывают по формуле:

где АОЕ- антиоксидантная емкость;

Сох - концентрация окисленной формы реагента;

Cred - концентрация восстановленной формы реагента;

где Е - исходный потенциал системы, E1 - потенциал, устанавливающийся в системе после введения пробы, b=2,3RT/nF,

где R - универсальная газовая постоянная, Т - температура, К, n - число электронов, участвующих в окислительно-восстановительной реакции; F - число Фарадея.

Расчет показывает, что значение АОЕ составляет 4,91·10-4 М-экв.

В 10 мл водного раствора, содержащего 0,1мМ кверцетина в фосфатном буферном растворе, опускают измерительный электрод и электрод сравнения. Затем проводят потенциометрическое титрование 0,01М K3[Fe(CN)6]. Результаты измерений интегральной кривой потенциометрического титрования приведены на фиг.5. Полученную кривую дифференцируют по объему титранта K3[Fe(CN)6]. Дифференциальная кривая титрования приведена на фиг.6. Объем добавленного K3[Fe(CN)6] в точке эквивалентности, определенный по максимуму дифференциальной кривой титрования, составляет 2 мл.

Восстанавливающую емкость рассчитываются по формуле:

где ВЕ - восстанавливающая емкость, СOx - концентрация K3[Fe(CN)6], VOx - объем K3[Fe(CN)6] в точке эквивалентности, V - объем раствора анализируемого вещества.

Расчет показывает, что значение ВЕ составляет 2,00·10-4 М-экв.

Хелатирующая емкость оценивается как разница между антиоксидантной емкостью и восстанавливающей емкостью по формуле:

где ХЕ - хелатирующая емкость.

Расчет показывает, что значение ХЕ составляет 2,91·10-4 М-экв.

Пример 3

В 10 мл водного раствора, содержащего 0,01М [Fe(III)- о-фенантролин] и 0,0001М [Fe(II)-о-фенантролин] в фосфатном буферном растворе, опускают измерительный электрод и электрод сравнения. Установившееся значение потенциала (Е), измеряемое с помощью цифрового вольтметра, составляет 446 мВ. В электрохимическую ячейку вносят 0,1 мл 0,01М раствора аскорбиновой кислоты. Установившееся значение потенциала (Е1) составляет 417 мВ.

Антиоксидантную емкость рассчитывают по формуле:

где АОЕ- антиоксидантная емкость;

Сох - концентрация окисленной формы реагента;

Cred - концентрация восстановленной формы реагента;

где Е - исходный потенциал системы, E1 - потенциал, устанавливающийся в системе после введения пробы, b=2,3RT/nF,

где R - универсальная газовая постоянная, Т - температура, К, n - число электронов, участвующих в окислительно-восстановительной реакции; F - число Фарадея.

Расчет показывает, что значение АОЕ составляет 2,04·10-4 М-экв.

В 10 мл водного раствора, содержащего 0,1мМ аскорбиновую кислоту в фосфатном буферном растворе, опускают измерительный электрод и электрод сравнения. Затем проводят потенциометрическое титрование 0,01М K3[Fe(CN)6]. Полученную кривую дифференцируют по объему титранта K3[Fe(CN)6]. Объем добавленного K3[Fe(CN)6] в точке эквивалентности, определенный по максимуму дифференциальной кривой титрования, составляет 2,0 мл.

Восстанавливающую емкость рассчитываются по формуле:

где ВЕ - восстанавливающая емкость, СOx - концентрация K3[Fe(CN)6], VOx - объем K3[Fe(CN)6] в точке эквивалентности, V - объем раствора анализируемого вещества.

Расчет показывает, что значение ВЕ составляет 2,00·10-4 М-экв.

Хелатирующая емкость оценивается как разница между антиоксидантной емкостью и восстанавливающей емкостью по формуле:

где ХЕ - хелатирующая емкость.

Расчет показывает, что значение ХЕ составляет 0,04·10-4 М-экв. Хелатирующие свойства у аскорбиновой кислоты отсутствуют.

Источник поступления информации: Роспатент

Showing 101-110 of 207 items.
21.03.2019
№219.016.eb67

Комплекс для переработки бокситов

Изобретение относится к комплексу для переработки бокситов с получением из них глинозема. Комплекс содержит последовательно расположенные мельницу для размола боксита в оборотном растворе, сушилку, первую мешалку для выщелачивания, сгуститель, промыватель, вторую мешалку для обескремнивания,...
Тип: Изобретение
Номер охранного документа: 0002682359
Дата охранного документа: 19.03.2019
21.03.2019
№219.016.eb72

Устройство для пассивного отвода избыточной тепловой энергии из внутреннего объема защитной оболочки объекта (варианты)

Изобретение относится к устройству для пассивного отбора избыточной тепловой энергии от промышленных объектов, АЭС и ТЭЦ без использования внешних источников энергии и оборудования. В кольцевом двухфазном термосифоне, заполненном рабочей жидкостью, испарительный теплообменник размещен в...
Тип: Изобретение
Номер охранного документа: 0002682331
Дата охранного документа: 19.03.2019
21.03.2019
№219.016.ebc7

Способ переработки сурьмусодержащего сырья

Изобретение относится к переработке сурьмусодержащего сырья. Способ включает приведение в контакт исходного сурьмусодержащего сырья и алюминиевой стружки с водным раствором щелочи в режиме перколяции с обеспечением цементации сурьмы из сурьмусодержащих соединений алюминием. Расход алюминия...
Тип: Изобретение
Номер охранного документа: 0002682365
Дата охранного документа: 19.03.2019
23.03.2019
№219.016.ec8c

Система регулируемого аварийного отвода энерговыделений активной зоны реактора аэс

Изобретение относится к атомной энергетике, а именно к системам аварийного отвода энерговыделений активной зоны ядерного реактора с жидкометаллическим теплоносителем. Система регулируемого аварийного отвода энерговыделений активной зоны реактора АЭС содержит автономный контур воздушного...
Тип: Изобретение
Номер охранного документа: 0002682722
Дата охранного документа: 21.03.2019
06.04.2019
№219.016.fda5

Флюс для защитного покрытия расплава латуни

Изобретение относится к области металлургии и может быть использовано при защите расплава латуни в кристаллизаторе установки вертикального непрерывного литья. Флюс содержит, мас.%: фритту бесфтористой силикатной эмали 10-15, октаборат натрия - остальное. Изобретение позволяет устранить дефекты,...
Тип: Изобретение
Номер охранного документа: 0002684132
Дата охранного документа: 04.04.2019
13.04.2019
№219.017.0c67

Система коррекции ошибок инс летательного аппарата по дорожной карте местности

Изобретение относится к области навигационного приборостроения и может быть использовано для полета и наведения летательных аппаратов (ЛА) посредством сопоставления реальных данных дистанционного зондирования подстилающей поверхности с дорожной картой местности и предназначено для применения на...
Тип: Изобретение
Номер охранного документа: 0002684710
Дата охранного документа: 11.04.2019
13.04.2019
№219.017.0c72

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. В способе извлечения скандия из скандийсодержащего продуктивного раствора согласно...
Тип: Изобретение
Номер охранного документа: 0002684663
Дата охранного документа: 11.04.2019
29.04.2019
№219.017.3e30

Блочная быстросъемная защита трубопроводов аэс

Изобретение относится к области теплоэнергетики, в частности к оборудованию АЭС, и касается тепловой изоляции и радиационной защиты трубопроводов, осуществляемых одновременно. Блочная быстросъемная защита трубопроводов АЭС содержит скрепленные замками теплоизоляционные блоки, расположенные на...
Тип: Изобретение
Номер охранного документа: 0002686428
Дата охранного документа: 25.04.2019
01.05.2019
№219.017.47eb

Решётчатая аэродинамическая поверхность

Решетчатая аэродинамическая поверхность содержит силовую раму, состоящую из двух боковин, корневого и концевого планов в виде металлических пластин, и опоры крепления силовой рамы к механизму управления решетчатой аэродинамической поверхностью. Внутри силовой рамы, выполненной с пазами,...
Тип: Изобретение
Номер охранного документа: 0002686593
Дата охранного документа: 29.04.2019
01.05.2019
№219.017.481d

Комплекс для испытания алгоритмов управления электроэнергетической системой

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении надежности электроэнергетической системы. Комплекс для испытания алгоритмов управления ЭЭС содержит: блок моделирования, аналоговый усилитель и блок управления, при этом блок моделирования...
Тип: Изобретение
Номер охранного документа: 0002686641
Дата охранного документа: 29.04.2019
Showing 11-14 of 14 items.
25.08.2017
№217.015.b452

Способ количественного определения триазавирина методом вольтамперометрии (варианты)

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения лекарственного препарата триазавирина. Способ может быть использован для количественного определения указанного соединения в порошке и его лекарственных формах. Изобретение может быть...
Тип: Изобретение
Номер охранного документа: 0002614022
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b595

Способ определения антиоксидантной активности с использованием метода электронно-парамагнитной резонансной спектроскопии

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет количественного определения антиоксидантной активности (АОА). Сущность заявляемого способа заключается в том, что определение АОА проводят по разности количества парамагнитных частиц...
Тип: Изобретение
Номер охранного документа: 0002614365
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.c4e3

Способ определения антиоксидантной активности с использованием радикальных инициаторов

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет определения антиоксидантной активности. Изобретение может быть использовано в научно-исследовательских лабораториях для изучения антиоксидантных свойств различных природных,...
Тип: Изобретение
Номер охранного документа: 0002618426
Дата охранного документа: 03.05.2017
19.06.2019
№219.017.8a92

Способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей и устройство для его осуществления

Изобретение относится к медицине и описывает способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей, включающий введение исследуемого объекта в контакт с электропроводящей средой, содержащей медиаторную систему и оценку...
Тип: Изобретение
Номер охранного документа: 0002433405
Дата охранного документа: 10.11.2011
+ добавить свой РИД