×
22.01.2020
220.017.f85f

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ АБСОЛЮТНОГО ПОЛОЖЕНИЯ УГЛЕДОБЫВАЮЩЕЙ МАШИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу и устройству для определения абсолютного положения угледобывающей машины (комбайна в забое) в составе трехкомпонентного горнодобывающего комплекса, состоящего из комбайна, скрепера и гидравлической крепи. Способ, реализующий устройство для определения абсолютного положения угледобывающей машины, состоит из этапов, характеризующих определение счисленной точки с помощью бесплатформенного инерциального навигационного модуля, определение положения лазерной точки с помощью лазерного излучателя и интеллектуального модуля тахеометра, затем выполняется асинхронное сведение двух результатов определения с использованием алгоритма оптимальной оценки для получения точного абсолютного положения комбайна. В настоящем изобретении для асинхронного сведения двух типов навигационных данных применяется алгоритм оптимальной оценки, в частности, фильтр Калмана, что позволяет получить более точные данные об абсолютном положении комбайна. Технический результат - повышение точности, надежности, автоматизации работы комбайна. 2 н. и 3 з.п. ф-лы, 3 ил.

ОБЛАСТЬ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0001] Настоящее изобретение относится к области определения абсолютного положения выемочного комбайна, в частности, к способу определения абсолютного положения шнекового комбайна, а в общем смысле - к области автоматизации горнодобывающего оборудования.

СУЩЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

[0002] В Китае огромные масштабы добычи и потребления угля. Основным инструментом добычи угля является выемочный комбайн. Работы в забое обычно ведутся вручную и характеризуются высокой трудоемкостью, низкой эффективностью, крайне неблагоприятными и опасными условиями труда. Следовательно, актуальность представляет автоматизация горнодобывающего оборудования. Первостепенная задача в рамках автоматизации работы забоя - решение проблемы определения положения горнодобывающего оборудования. Однако сложные условия на многих шахтах исключают применение большинства распространенных способов позиционирования с соблюдением требования по точности, при этом позиционирование на некоторых участках, например, непосредственно под шахтой и вовсе не представляется возможным. В настоящее время наиболее часто применяются способ подсчета передач, инфракрасное излучение, инерциальная навигация и т.д. Однако многие из этих способов предполагают определение только относительного положения и не предназначены для определения абсолютного положения комбайна в системе координат шахты. Точность таких способов сравнительно низкая и они не могут применяться для автоматизации работы забоя.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Техническая задача

[0003] Задачей настоящего изобретения является сгладить недостатки существующего уровня техники и предложить способ определения абсолютного положения комбайна для получения шестистепенных параметров позиционирования комбайна в абсолютной системе координат шахты. Этот способ эффективен при работе в режиме реального времени и может применяться для обустройства автоматизированного забоя.

Техническое решение

[0004] Для решения поставленной задачи в настоящем изобретении применяется следующее техническое решение:

[0005] Предлагается способ определения абсолютного положения комбайна в составе трехкомпонентного горнодобывающего комплекса, состоящего из комбайна, скрепера и гидравлической крепи; способ состоит из определения счисленной точки с помощью бесплатформенного инерциального навигационного модуля, определения положения лазерной точки с помощью лазерного излучателя и интеллектуального модуля тахеометра, затем выполняется асинхронное сведение двух результатов определения с использованием алгоритма оптимальной оценки, например, фильтра Калмана, для получения точного абсолютного положения комбайна.

[0006] В частности, лазерный излучатель состоит из корпуса, шагового двигателя, механизма шагающего движения, кривошипно-коромыслового механизма, серводвигателя, излучателя и бортового контроллера I, при этом шаговой двигатель представлен в огнестойком исполнении, излучатель представляет собой безопасный, огнестойкий излучатель; шаговый двигатель, механизм шагающего движения и кривошипно-коромысловый механизм смонтированы на корпусе, кривошипно-коромысловый механизм приводится в движение шаговым двигателем, а в его верхней части установлены серводвигатель и излучатель; серводвигатель вращает излучатель, который осуществляет сканирование в диапазоне ±45°, бортовой контроллер I после обработки для придания огнестойкости крепится на корпусе и отвечает за управление шаговым двигателем и определение трехмерных координат излучателя в системе координат лазерного излучателя, а также нормализованного вектора лазерного пучка от излучателя.

[0007] В частности, устройство для приема лазерных лучей состоит из трех лазерных приемников и бортового контроллера II, при этом три лазерных приемника закреплены на корпусе комбайна не в линию; все три лазерных приемника способны принимать пучки лазерных лучей, испускаемые излучателем; бортовой контроллер II после обработки для придания огнестойкости крепится на корпусе и связан как с лазерными приемниками, так и бортовым контроллером I; исходя из данных о сигнале, полученном каждым лазерным приемником, трехмерных координатах излучателя в системе координат излучательного устройства и нормализованном векторе пучка лазерных лучей, испускаемого излучателем, выполняется расчет координат каждого лазерного приемника в системе координат излучательного устройства, что позволяет определить шестиступенные параметры позиционирования комбайна в системе координат лазерного излучателя.

[0008] В частности, тахеометр и лазерный излучатель устанавливаются в одном и том же подземном проходе; бортовой контроллер III после обработки для придания огнестойкости крепится на тахеометре и связан как с тахеометром, так и с бортовым контроллером I; призма позиционирования установлена в нужной точке на лазерном излучателе, при этом определение параметров позиционирования лазерного излучателя в абсолютной системе координат шахты осуществляется с использованием тахеометра с учетом параметров позиционирования комбайна в системе координат излучателя; по параметрам позиционирования лазерного излучателя в абсолютной системе координат шахты определяются параметры позиционирования комбайна в абсолютной системе координат шахты, и этот результат считается итоговым результатом лазерного позиционирования.

[0009] В частности, бесплатформенный инерциальный навигационный модуль крепится на комбайне после обработки для придания огнестойкости, при этом бортовой контроллер II связан с бесплатформенным инерциальным навигационным модулем, по навигационным данным бесплатформенного инерциального навигационного модуля бортовой контроллер II вычисляет параметры позиционирования комбайна в абсолютной системе координат шахты, и этот результат считается итоговым результатом инерциального позиционирования.

[0010] В частности, бортовой контроллер I, бортовой контроллер II и бортовой контроллер III связаны друг с другом с помощью ультраширокополосной беспроводной связи, а для бортового контроллера I и бортового контроллера II выполняется часовая синхронизация.

[0011] В частности, в способе в качестве осевого направления используется направление движения комбайна по скреперу, а в качестве радиального направления - направление движения скольжения гидравлической крепи, при этом сам способ включает в себя следующие этапы:

[0012] (a) после запуска системы в исходном состоянии лазерный излучатель перемещают так, чтобы он располагался на одной линии с выработкой, а затем крепят так, чтобы пучок лучей от излучателя сканировал комбайн; бесплатформенный инерциальный навигационный модуль на комбайне запускают в режиме реального времени и определяют с помощью бортового контроллера II параметры позиционирования комбайна в абсолютной системе координат шахты;

[0013] (b) после прекращения работы лазерного излучателя бортовой контроллер I посылает сигнал на бортовой контроллер III, затем бортовой контроллер III приводит в действие тахеометр, после чего параметры позиционирования лазерного излучателя в абсолютной системе координат шахты, полученные с помощью тахеометра, отправляются на бортовой контроллер I;

[0014] (c) бортовой контроллер I запускает шаговый двигатель и серводвигатель так, чтобы излучатель испускал пучки лазерных лучей под разным углом как минимум в трех разных положениях, при этом в режиме реального времени ведется вычисление нормализованного вектора пучка лучей в системе координат излучателя, а также координат лазерного излучателя в системе координат излучателя; при каждом получении сигнала три лазерных приемника с помощью бортового контроллера II отправляют соответствующий идентификационный номер приемника и время приема на бортовой контроллер I; с помощью бортового контроллера I по параметрам позиционирования лазерного излучателя в абсолютной системе координат шахты определяются параметры позиционирования комбайна в абсолютной системе координат шахты, и этот результат считается итоговым результатом лазерного позиционирования;

[0015] (d) бортовой контроллер II обрабатывает данные и сводит результаты инерциального позиционирования и лазерного позиционирования для получения точного абсолютного положения комбайна; данные об абсолютном положении отправляются на интерфейс «человек-машина» для удаленного контроля, а также на контроллер горнодобывающего оборудования для автоматического управления комбайном;

[0016] (e) повтор этапов (c)-(d) вплоть до завершения комбайном цикла осевой выемки;

[0017] (f) комбайн радиально подает материал на скрепер, бортовой контроллер II посылает сигнал на бортовой контроллер I, чтобы лазерный излучатель продвинулся вперед на среднее расстояние скольжения, затем лазерный излучатель закрепляется на месте;

[0018] (g) повтор этапов (b)-(f) для определения параметров позиционирования в режиме реального времени в процессе работы комбайна.

Полезный эффект

[0019] По сравнению с существующим уровнем техники, способ определения абсолютного положения комбайна согласно настоящему изобретению позволяет получить абсолютный шестистепенный параметр позиционирования комбайна при помощи сочетания технологий инерциальной навигации и лазерного сканирования. Преимущества бесплатформенной инерциальной навигации заключаются в простоте расчетов, способности применения в режиме реального времени и привязке к внешнему ориентиру. Однако у бесплатформенной инерциальной навигации имеется накопление погрешности. При этом способ лазерного позиционирования требует привязки к внешнему ориентиру и малоэффективен в режиме реального времени, но не обладает накоплением погрешности. При сочетании внутреннего и внешнего позиционирования используются преимущества обеих технологий, а сам способ подходит для применения в сложных условиях забоя. Все модули системы представлены в надежном исполнении и связаны между собой посредством ультраширокополосной беспроводной связи. Преимущества настоящего изобретения заключаются в высокой точности определения, применимости для работы в режиме реального времени, надежности и экономичности.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0020] Фигура 1 - схематическое представление фронта очистного забоя при использовании способа определения абсолютного положения комбайна согласно настоящему изобретению;

[0021] Фигура 2 - схематическое представление лазерного излучателя согласно настоящему изобретению;

[0022] Фигура 3 - блок-схема системы согласно настоящему изобретению.

[0023] На чертежах: 1, комбайн, 2, скрепер, 3, гидравлическая крепь, 4, лазерный излучатель, 4-1, механизм шагового движения, 4-2, кривошипно-коромысловый механизм, 4-3, серводвигатель, 4-4, лазерный излучатель, 4-5, шаговый двигатель, 5, тахеометр, 6, угольная шахта.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0024] Далее приводится предпочтительных вариантов осуществления настоящего изобретения.

[0025] Способ определения абсолютного положения комбайна показан на Фигуре 1 и Фигуре 2. Способ заключается в определении положения комбайна 1 в забое в составе трехкомпонентного горнодобывающего комплекса, состоящего из комбайна 1, скрепера 2 и гидравлической крепи 3. Способ состоит из определения счисленной точки с помощью бесплатформенного инерциального навигационного модуля, определения положения лазерной точки с помощью лазерного излучателя 4 и интеллектуального модуля тахеометра 5, затем выполняется асинхронное сведение двух результатов определения с использованием алгоритма оптимальной оценки, для получения точного абсолютного положения комбайна 1.

[0026] Лазерный излучатель 4 состоит из корпуса, шагового двигателя 4-5, механизма шагающего движения 4-1, кривошипно-коромыслового механизма 4-2, серводвигателя 4-3, излучателя 4-4 и бортового контроллера I, при этом шаговой двигатель представлен в огнестойком исполнении, излучатель 4-4 представляет собой безопасный, огнестойкий излучатель; шаговый двигатель 4-5, механизм шагающего движения 4-1 и кривошипно-коромысловый механизм 4-2 смонтированы на корпусе, кривошипно-коромысловый механизм 4-2 приводится в движение шаговым двигателем 4-5, а в его верхней части установлены серводвигатель 4-3 и излучатель 4-4; серводвигатель 4-3 вращает излучатель 4-4, который осуществляет сканирование в диапазоне ±45°, бортовой контроллер I после обработки для придания огнестойкости крепится на корпусе и отвечает за управление шаговым двигателем 4-5 и серводвигателем 4-3 и определение трехмерных координат излучателя 4-4 в системе координат лазерного излучателя, а также нормализованного вектора лазерного пучка от излучателя 4-4.

[0027] Устройство для приема лазерных лучей состоит из трех лазерных приемников и бортового контроллера II, при этом три лазерных приемника закреплены на корпусе комбайна 1 не в линию; все три лазерных приемника способны принимать пучки лазерных лучей, испускаемые излучателем 4-4; бортовой контроллер II после обработки для придания огнестойкости крепится на корпусе комбайна 1 и связан как с лазерными приемниками, так и бортовым контроллером I; исходя из данных о сигнале, полученном каждым лазерным приемником, трехмерных координатах излучателя 4-4 в системе координат излучательного устройства и нормализованном векторе пучка лазерных лучей, испускаемого излучателем 4-4, выполняется расчет координат каждого лазерного приемника в системе координат излучательного устройства, что позволяет определить шестиступенные параметры позиционирования комбайна 1 в системе координат лазерного излучателя.

[0028] Тахеометр 5 и лазерный излучатель 4 устанавливаются в одном и том же подземном проходе; бортовой контроллер III после обработки для придания огнестойкости крепится на тахеометре 5 и связан как с тахеометром 5, так и с бортовым контроллером I; призма позиционирования установлена в нужной точке на лазерном излучателе 4, при этом определение параметров позиционирования лазерного излучателя 4 в абсолютной системе координат шахты осуществляется с использованием тахеометра с учетом параметров позиционирования комбайна 1 в системе координат излучателя; по параметрам позиционирования лазерного излучателя 4 в абсолютной системе координат шахты определяются параметры позиционирования комбайна 1 в абсолютной системе координат шахты, и этот результат считается итоговым результатом лазерного позиционирования.

[0029] В частности, бесплатформенный инерциальный навигационный модуль крепится на комбайне 1 после обработки для придания огнестойкости, при этом бортовой контроллер II связан с бесплатформенным инерциальным навигационным модулем, по навигационным данным бесплатформенного инерциального навигационного модуля бортовой контроллер II вычисляет параметры позиционирования комбайна 1 в абсолютной системе координат шахты, и этот результат считается итоговым результатом инерциального позиционирования.

[0030] Бортовой контроллер I, бортовой контроллер II и бортовой контроллер III связаны друг с другом с помощью ультраширокополосной беспроводной связи, а для бортового контроллера I и бортового контроллера II выполняется часовая синхронизация.

[0031] В способе в качестве осевого направления используется направление движения комбайна 1 по скреперу 2, а в качестве радиального направления - направление движения скольжения гидравлической крепи 3, при этом сам способ включает в себя следующие этапы:

[0032] (a) после запуска системы в исходном состоянии лазерный излучатель 4 перемещают так, чтобы он располагался на одной линии с выработкой, а затем крепят так, чтобы пучок лучей от излучателя 4-4 сканировал комбайн 1; бесплатформенный инерциальный навигационный модуль на комбайне 1 запускают в режиме реального времени и определяют с помощью бортового контроллера II параметры позиционирования комбайна 1 в абсолютной системе координат шахты;

[0033] (b) после прекращения работы лазерного излучателя 4 бортовой контроллер I посылает сигнал на бортовой контроллер III, затем бортовой контроллер III приводит в действие тахеометр 5, после чего параметры позиционирования лазерного излучателя в абсолютной системе координат шахты, полученные с помощью тахеометра 5, отправляются на бортовой контроллер I;

[0034] (c) бортовой контроллер I запускает шаговый двигатель 4-5 и серводвигатель 4-3 так, чтобы излучатель 4-4 испускал пучки лазерных лучей под разным углом как минимум в трех разных положениях, при этом в режиме реального времени ведется вычисление нормализованного вектора пучка лучей в системе координат излучателя, а также координат лазерного излучателя 4-4 в системе координат излучателя; при каждом получении сигнала три лазерных приемника с помощью бортового контроллера II отправляют соответствующий идентификационный номер приемника и время приема на бортовой контроллер I; с помощью бортового контроллера I по параметрам позиционирования лазерного излучателя 4-4 в абсолютной системе координат шахты определяются параметры позиционирования комбайна 1 в абсолютной системе координат шахты, и этот результат считается итоговым результатом лазерного позиционирования;

[0035] (d) бортовой контроллер II обрабатывает данные и сводит результаты инерциального позиционирования и лазерного позиционирования для получения точного абсолютного положения комбайна 1; данные об абсолютном положении отправляются на интерфейс «человек-машина» для удаленного контроля, а также на контроллер горнодобывающего оборудования для автоматического управления комбайном 1;

[0036] (e) повтор этапов (c)-(d) вплоть до завершения комбайном 1 цикла осевой выемки;

[0037] (f) комбайн 1 радиально подает материал на скрепер 2, бортовой контроллер II посылает сигнал на бортовой контроллер I, чтобы лазерный излучатель 4 продвинулся вперед на среднее расстояние скольжения, затем лазерный излучатель 4 закрепляется на месте;

[0038] (g) повтор этапов (b)-(f) для определения параметров позиционирования в режиме реального времени в процессе работы комбайна 1.

[0039] Выше приводится предпочтительный вариант осуществления изобретения. В варианты осуществления настоящего изобретения специалисты могут вносить различные изменения и улучшения, а любые представленные здесь описания не могут считаться ограничивающими смысл настоящего изобретения.

Источник поступления информации: Роспатент

Showing 1-3 of 3 items.
05.09.2019
№219.017.c728

Система позиционирования экскаватора и способ строительства подземного прохода криволинейного профиля

Группа изобретений относится к системе и способу позиционирования экскаватора для строительства подземного прохода криволинейного профиля. Система состоит из модуля связи и управления, модуля бесплатформенной инерциальной навигационной системы, датчика наклона с двумя измерительными осями и...
Тип: Изобретение
Номер охранного документа: 0002699091
Дата охранного документа: 03.09.2019
24.10.2019
№219.017.da44

Устройство для определения износа скользящей муфты направляющего подъемника стального троса шахтного ствола и способ его определения

Настоящее изобретение раскрывает устройство для определения износа скользящей муфты направляющего подъемника стального троса шахтного ствола и способ его определения. Устройство включает в себя множество элементов плоского FPC-кабеля, множество участков цепи обнаружения напряжения, систему...
Тип: Изобретение
Номер охранного документа: 0002704092
Дата охранного документа: 23.10.2019
27.11.2019
№219.017.e715

Устройство для регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины и способ такого регулирования

Группа изобретений относится к устройству для регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины и способу такого регулирования. Устройство состоит из прибора для сбора сигналов со стороны комбайна, прибора для сбора сигналов со...
Тип: Изобретение
Номер охранного документа: 0002707218
Дата охранного документа: 25.11.2019
Showing 11-20 of 59 items.
10.08.2016
№216.015.560e

Устройство для крепления двигателя и машина, оборудованная таким устройством

Изобретение относится к устройству для крепления двигателя, а более конкретно к устройству для крепления двигателя, которое неподвижно соединено с разными участками двигателя с помощью соединительных элементов, оказывающих различные эффекты ослабления вибрации. Устройство для крепления...
Тип: Изобретение
Номер охранного документа: 0002593726
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5928

Тормозная буферная система предотвращения падения для высокоскоростного шахтного лифта

Настоящее изобретение относится к тормозной буферной системе предотвращения падения для высокоскоростного шахтного лифта. Система содержит тормозной трос (2), зафиксированный с двух сторон кабины (5). Один конец тормозного троса (2) зафиксирован наверху шахтного ствола (6), а другой конец...
Тип: Изобретение
Номер охранного документа: 0002588358
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.8cb6

Устройство для регулирования положения промежуточной корпусной детали крупной двухуровневой клети и способ регулирования и перемещения этой детали

Изобретение относится к устройству для регулирования положения промежуточной корпусной детали двухуровневой клети и способу регулирования этой детали. Устройство для регулирования положения промежуточной корпусной детали (2) крупной двухуровневой клети содержит направляющую балку для...
Тип: Изобретение
Номер охранного документа: 0002604905
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.a2f1

Крупнотоннажный устанавливаемый на криволинейной направляющей разгрузочный скип, имеющий внешний привод и удлиненную конструкцию

Настоящее изобретение раскрывает крупнотоннажный устанавливаемый на направляющей разгрузочный скип, имеющий внешний привод и удлиненную конструкцию, содержащий верхний корпус (1) кузова и нижний корпус (2) кузова. Кузов содержит внутреннюю и наружную футеровочные плиты, скрепленные друг с...
Тип: Изобретение
Номер охранного документа: 0002607137
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.afc9

Устройство и способ определения натяжения на направляющем канате висячих подмостей при строительстве шахты

Настоящее изобретение относится к строительству шахтной системы, в частности к устройству и способу определения натяжения на направляющем канате висячих подмостей при строительстве шахты. Заявлено устройство для определения натяжения на направляющем канате висячих подмостей при строительстве...
Тип: Изобретение
Номер охранного документа: 0002611092
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.ba21

Многоточечное уплотнительное устройство вспомогательного водомета высокого давления для механизма резки, используемого в горном оборудовании

Изобретение относится к механизму резки водомета высокого давления, используемого в горном оборудовании. Технический результат - уплотнение с длительным сроком и повышение эффективности вспомогательной резки водометом высокого давления. Многоточечное уплотнительное устройство вспомогательного...
Тип: Изобретение
Номер охранного документа: 0002615546
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.ba5a

Ручной тормоз

Изобретение относится к области железнодорожного транспорта, в частности к ручным тормозам. Ручной тормоз содержит штурвал, цепь, корпус, приводной вал в сборе, зубчатое колесо и основание в сборе. Штурвал соединен с приводным валом в сборе и главным валом зубчатого колеса. Один конец цепи...
Тип: Изобретение
Номер охранного документа: 0002615583
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bb4f

Устройство для контроля крутящего момента главного вала подъемной машины, основанное на измерении угла кручения

Заявленное изобретение относится к устройству для контроля крутящего момента главного вала подъемной машины, основанному на измерении угла кручения. Заявленное устройство для контроля крутящего момента главного вала подъемной машины содержит первое основание, второе основание, генераторный блок...
Тип: Изобретение
Номер охранного документа: 0002615793
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bca8

Ведущая система текущего контроля для зарядки суперконденсатора

Использование: в области электротехники. Технический результат – повышение эффективности работы системы и уменьшение нагрузки на сеть связи. Система текущего контроля для зарядки суперконденсатора содержит линию питания, подсистемы для текущего контроля мономерных суперконденсаторов и ведущую...
Тип: Изобретение
Номер охранного документа: 0002616186
Дата охранного документа: 13.04.2017
26.08.2017
№217.015.e7fc

Ограничительное устройство для ручного тормоза

Изобретение относится к области тормозного оборудования железнодорожного транспорта. Ограничительное устройство содержит подшипник I, пружину, держатель пружины, направляющую пластину и держатель направляющей пластины. Направляющая пластина и держатель направляющей пластины последовательно...
Тип: Изобретение
Номер охранного документа: 0002626834
Дата охранного документа: 04.08.2017
+ добавить свой РИД