×
22.01.2020
220.017.f7e1

Результат интеллектуальной деятельности: АМИНОПЛАСТИЧНЫЕ СМОЛЫ ДЛЯ СЛОИСТЫХ ПЛАСТИКОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области высокомолекулярных соединений, а именно к конденсационным полимерам альдегидов или кетонов с двумя или более прочими мономерами, и может быть использовано в качестве конструкционного материала как самостоятельно, так и в составе композитов. Аминопластичная смола состоит из меламина и замещенного гликолурила, сшитых альдегидами и отверждаемых нагреванием при рН 3-6, и стабилизатора. В качестве сшивающего агента используют 36,6% формалин. В качестве замещенного гликолурила используют 1,5-диметилгликолурил, 1,5-дифенил-2,6-диметилгликолурил, 1,5-дифенилгликолурил, 2,6-диметилгликолурил или 1,2,5,6-тетраметилгликолурил. Технический результат – повышение термической и механической прочности аминопластичной смолы. 5 з.п. ф-лы, 2 табл., 5 пр.

Изобретение относится к области высокомолекулярных соединений, а именно, к конденсационным полимерам альдегидов или кетонов с двумя или более прочими мономерами, и может быть использовано в качестве конструкционного материала как самостоятельно, так и в составе композитов.

Известен конденсационный полимер альдегидов и кетонов с двумя и более прочими мономерами, применяемый для покрытия термочувствительных поверхностей [1]. Среди недостатков известного полимера можно выделить использование таких относительно дорогих и вредных исходных реагентов, как метанол и пропиональдегид. Кроме того, требуется вакуумная сушка синтезированного полимера, что значительно усложняет процесс производства. Не известны случаи применения полимера для получения композиционных материалов.

Также известны полимеры, применяемые в качестве сшивающего агента для целлюлозы [2]. Однако известные смолы получают с помощью дорогостоящих альдегидов формулы R-CHO в течение относительно большого промежутка времени (60-600 мин).

Наиболее близкими к предлагаемому изобретению по технической сущности и достигаемому результату являются выбранные в качестве прототипа аминопластичные смолы, применяемые для получения ДСП-композиций с низкой эмиссией формальдегида (супер Е0) [3]. Существенным отличием данного изобретения является то, что в качестве замещенных гликолурилов используется тетраметилолгликолурил (ТМГУ), вводимый в мочевино-формальдегидную смолу или меламино-мочевино-формальдегидную смолу. Значительным недостатком данного изобретения является то, что вводимый ТМГУ не способен связывать избыточный формальдегид в процессе получения смол. Кроме того, использование ТМГУ вместо гликолурила предполагает многостадийность процесса производства смол, одновременно негативно влияя на их механическую прочность.

Задачей настоящего изобретения является получение группы прочных полимерных связующих, отличающихся повышенной устойчивостью к воздействию высоких температур.

Решение поставленной задачи достигается введением замещенных гликолурилов в состав меламино-формальдегидной смолы. В результате сополиконденсации получаются прозрачные или полупрозрачные полимеры, каждый из которых обладает уникальными свойствами.

1) R1, R2=CH3; 2) R1=CH3, R2=H; 3) R1=H, R2=CH3; 4) R16H5, R2=CH3, 5) R16H5, R2=H.

В результате сравнения заявляемого технического решения с прототипом установлено, что заявленное изобретение отличается по химическому составу, а именно присутствием в матрице полимера метил- и фенил- производных гликолурилов вместо ТМГУ; условиями проведения реакции сополиконденсации. Таким образом, заявляемое решение соответствует критерию изобретения «новизна».

Аминопластичные смолы, состоящие из меламина и замещенного гликолурила, сшитых альдегидами и отверждаемых нагреванием при рН 3-6, где в качестве сшивающего агента используют 36,6 % формалин, при следующем соотношении компонентов, мас. %:

меламин – 31.82-32.91;

замещенный гликолурил – 2.56-5.79;

стабилизатор – 0.41-0.43;

отвердитель – 4.13-4.96;

формалин – остальное.

В качестве замещенного гликолурила может использоваться 1,5-диметилгликолурил в количестве 5.78 мас.%, 1,5-дифенил-2,6-диметилгликолурил в количестве 5.79 мас.%., 1,5-дифенилгликолурил в количестве 2.56 мас.%, 2,6-диметилгликолурил в количестве 5.00 мас.%, 1,2,5,6-тетраметилгликолурил в количестве 4,96 мас.%.

В промышленности широко распространены способы получения аминопластичных смол, в состав которых входят аминопроизводное, представленное мочевиной или меламином, и альдегидное производное, представленное формальдегидом и его гомологами, или глиоксалем [4]. Известные смолы находят свое применение, в основном, при производстве ДСП-плит. Процесс получения мочевино- и меламиноформальдегидных смол включает стадии: 1) получение олигомерных продуктов в нейтральной или слабощелочной среде (рН 7-8) взаимодействием мочевины и/или меламина с альдегидами; 2) поликонденсацию олигомерных продуктов в слабокислой среде (рН 5-7), либо при нагревании до 140-180°С, с образованием твердого продукта. В случае быстрого отверждения смолы при нагревании не происходит образования значительного количества межмолекулярных связей, что выражается в виде большой усадки и хрупкости получаемых материалов. Повышенная термодеформация при этом вызвана образованием метиленовых связей из эфирных. Таким образом, область применения вышеуказанных смол ограничивается производством ДСП-плит и слоистых пластиков. В большинстве случаев уже при 250°С наблюдается термодеструкция смол за счет разрыва эфирных связей и удаления летучих из массы полимера.

В результате решения вышеуказанных проблем обнаружено, что аминопластичные смолы, представляющие собой сополиконденсационный полимер меламина, производных гликолурила и формальдегида, обладают рядом практичных свойств. В связи с этим, предметом настоящего изобретения является синтез новых меламиноформальдегидных смол (МФС). Отличительной особенностью изобретения является внедрение производных гликолурила в полимерную матрицу МФС, а также условия получения и отверждения полученных полимерных продуктов, обладающих заданными свойствами.

Пример 1:

Для получения полимера в 7 мл 36,6 % (0.0854 моль) щелочного раствора формалина (рН=9) растворяли 0.70 г (0.0041 моль) 1,5-диметилгликолурила и 3.87 г (0.0307 моль) меламина при перемешивании при температуре 65-70°С.

Через 20-30 минут, после гомогенизации, охлаждали раствор до 55-60°С, после чего добавляли отвердитель – 0.5 мл 85 % (0.0092 моль) муравьиной кислоты. Через 80 с наблюдается желатинизация раствора, а спустя 120 с – отверждение.

Пример 2:

Для получения полимера в 7 мл 36,6 % (0.0854 моль) щелочного раствора формалина (рН=9) растворяли 0.70 г (0.0022 моль) 1,5-дифенил-2,6-диметилгликолурила и 3.85 г (0.0306 моль) меламина при перемешивании при температуре 60-65°С.

Через 25 минут раствор подвергали быстрой горячей (65 ̊С) фильтрации, после чего добавляли отвердитель – 0.5 мл 85% (0.0092 моль) муравьиной кислоты. Через 40 с наблюдается желатинизация раствора, а спустя 60 с – отверждение.

Пример 3:

Для получения полимера в 7 мл 36,6% (0.0854 моль) щелочного раствора формалина (рН=9) растворяли 0.30 г (0.0010 моль) 1,5-дифенилгликолурила и 3.85 г (0.0306 моль) меламина при перемешивании при температуре 60-65°С.

Через 40 минут раствор подвергали быстрой горячей (65 ̊С) фильтрации, после чего добавляли отвердитель – 0.5 мл 85 % (0.0092 моль) муравьиной кислоты. Через 30 с наблюдается желатинизация раствора, а спустя 90 с – отверждение.

Пример 4:

Для получения полимера в 7 мл 36,6% (0.0854 моль) щелочного раствора формалина (рН=9) растворяли 0.60 г (0.0035 моль) 2,6-диметилгликолурила и 3.85 г (0.0306 моль) меламина при перемешивании при температуре 65-70°С.

Через 30 минут, после гомогенизации, охлаждали раствор до 55-60 ̊С, после чего добавляли отвердитель – 0.5 мл 85% (0.0092 моль) муравьиной кислоты. Через 100 с наблюдается желатинизация раствора, а спустя 120 с – отверждение.

Пример 5:

Для получения полимера в 7 мл 36,6% (0.0854 моль) щелочного раствора формалина (рН=9) растворяли 0.60 г (0.0035 моль) 1,2,5,6-тетраметилгликолурила и 3.85 г (0.0306 моль) меламина при перемешивании при температуре 65-70°С.

Через 20-30 минут, после гомогенизации, охлаждали раствор до 55-60°С, после чего добавляли отвердитель – 0.6 мл 85 % (0.0092 моль) муравьиной кислоты. Через 60 с наблюдается желатинизация раствора, а спустя 100 с – отверждение.

Способом заливки в горячую форму получены опытные изделия из индивидуальных полимеров с целью проведения физико-механических испытаний. С помощью разрывной машины GOTECH AI-7000M и GOTECH GT-7045-HMH получены значения прочности на разрыв, прочности на изгиб, ударной вязкости и модуля упругости для каждого полимера (таблица 1).

Значения модуля упругости для образцов получены при проведении испытаний прочности на разрыв.

Исходя из результатов, полученных в результате физико-механических испытаний, можно утверждать, что полученные смолы (в особенности с 1,5-диметилгликолурилом и 1,2,5,6-тетраметилгликолурилом) обладают повышенной механической прочностью, уступая аналогу лишь в ударной вязкости.

Таблица 1 – Физико-механические свойства смол с замещенными гликолурилами и меламино-формальдегидной смолы (МФС)

В таблице 2 приведены значения температуры деструкции полимеров, полученные методом дифференциальной сканирующей калориметрии и термогравиметрии (ДСК+ТГ), а также горючесть по ГОСТ 17088-71.

Таблица 2 – Температура деструкции и горючесть смол с замещенными гликолурилами

Результаты ДСК+ТГ, полученные на приборе NETZSCH STA 409 PC/PG, подтверждают относительно высокие значения температуры деструкции отвержденных смол с замещенными гликолурилами. Кроме того, до температуры 400°С в атмосфере воздуха не происходит возгорания полимеров. Быстрое нагревание полимеров до температуры деструкции сопровождается выделением летучих и, соответственно, потерей массы без процессов разрушения. Введение фенильных фрагментов, посредством замещенных гликолурилов, в структуру смолы способствует повышению температуры деструкции. Термическое (как и механическое) разрушение полимерной матрицы сопровождается выделением таких низкомолекулярных веществ, как аммиак и формальдегид.

Вышеуказанное подтверждают испытания на горючесть, согласно которым после нахождения в течение 60 с в пламени газовой (метан) горелки не наблюдается самостоятельного горения образцов после удаления пламени. В то же время, наблюдается растрескивание образцов и образование тонкого слоя пенококса. Применение ближайшего аналога - меламино-формальдегидной смолы, обычно ограничевается температурой 250°°С.

Настоящее изобретение отличается рядом преимуществ. Во-первых, использование в синтезе смолы таких производных гликолурила, как 1,2,5,6-тетраметилгликолурил и 1,5-диметилгликолурил, сопровождается значительным увеличением прочности получаемых изделий, в особенности композитов, к воздействию тянущих (разрывных) и изгибающих нагрузок. В свою очередь это способствует широкому применению изделий на основе смол в автомобильной, авиационной, строительной промышленностях в качестве альтернативы менее прочным используемым пластикам, а также в качестве легкой замены тяжелым бетонным и металлическим конструкциям.

Во-вторых, применение негорючих материалов с высокой температурой деструкции ведет к повышению безопасности конструкций, в составе которых могут быть применены данные смолы. Благодаря дополнительной стабилизации радикалов, образующихся при термодеструкции, полученные смолы отлично подходят для применения в пожаро-, взрывоопасных областях техники, а также в качестве электроизоляторов. Принимая во внимание низкую плотность материала и простоту синтеза смол с замещенными гликолурилами, можно с уверенностью сказать, что разработанные смолы могут быть применены в тех областях техники, где применение известных полимеров считалось невозможным.

С целью удешевления конечной продукции целесообразно использование смол совместно с наполнителями. В отличие от состава, описанного в прототипе, разработанные нами смолы отличаются повышенной термической и механической прочностью. Использование, при этом, гликолурилов со свободными аминогруппами позволяет дополнительно связывать формальдегид, способный дополнительно выделяться при термодеструкции используемого в прототипе тетраметилолгликолурила.

Источники информации:

1. EP 1608692 (В1), IPC C08G012/40, опубл. 25.12.2013 г.

2. EP 698627 (В1), IPC C08B15/10, опубл. 04.03.1998 г.

3. KR 20150012800 (A), IPC C08L2203/12, опубл. 04.02.2015 г.

4. Препаративные методы синтеза азотсодержащих соединений на основе мочевин / А. А. Бакибаев [и др.]. – Томск: Аграф-Пресс, 2007. – С. 61-64.

Источник поступления информации: Роспатент

Showing 51-60 of 173 items.
25.08.2017
№217.015.9d6a

Способ получения нанодисперсных оксидных материалов в виде сферических агрегатов

Изобретение относится к области синтеза оксидных многофункциональных металлов сложного состава в нанодисперсном состоянии. Описан способ получения нанодисперсных оксидных материалов в виде сферических агрегатов, включающий приготовление раствора, в состав которого входят растворимые соли,...
Тип: Изобретение
Номер охранного документа: 0002610762
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e02

Стенд для исследования высокоскоростного соударения мелких частиц с преградой

Изобретение относится к экспериментальной технике, а именно к стендам для исследования высокоскоростных взаимодействий тел с преградами. Стенд для исследования высокоскоростного соударения мелких частиц с преградой включает ствольную метательную установку с размещёнными в её разгонном стволе...
Тип: Изобретение
Номер охранного документа: 0002610790
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e80

Способ твердофазной экстракции красителя толуидинового синего

Изобретение относится к области аналитической химии и может быть использовано для твердофазной экстракции основного тиазинового красителя толуидинового синего из водных растворов. Способ включает взаимодействие полимерной матрицы со сшитой внутренней структурой с аналитом, последующее ее...
Тип: Изобретение
Номер охранного документа: 0002605965
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a751

Способ получения композитного каталитического материала в виде слоистых полых сфер

Изобретение относится к области химической технологии, а именно к производству новых форм зерен каталитических материалов в виде слоистых полых сфер или других полых структур для процессов превращения углеводородов, в том числе парциального окисления алифатических углеводородов. Способ...
Тип: Изобретение
Номер охранного документа: 0002608125
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.aa05

Алюмооксидный носитель и способ его получения

Изобретение относится к области химической технологии и каталитической химии и может найти применение в производстве катализаторов для различных отраслей химической и нефтехимической промышленности, а именно изобретение относится к способу получения алюмооксидного носителя для катализатора,...
Тип: Изобретение
Номер охранного документа: 0002611618
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.abbb

Способ получения антитурбулентной присадки для углеводородных ракетных топлив

Изобретение относится к способам получения антитурбулентных присадок на основе (со)полимеров высших альфа-олефинов и может быть использовано в топливных магистралях жидкостных ракетных двигателей (ЖРД). Способ осуществляют (со)полимеризацией высших α-олефинов в присутствии микросферического...
Тип: Изобретение
Номер охранного документа: 0002612135
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.aedd

Способ определения наночастиц au, ni и cu в жидких объектах

Использование: для количественного химического анализа с использованием электрохимических методов. Сущность изобретения заключается в том, что способ заключается в получении циклических вольтамперограмм с последующим расчетом концентрации наночастиц в образце по значениям тока аналитического...
Тип: Изобретение
Номер охранного документа: 0002612845
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b07c

Способ определения меди(ii) и марганца(ii) индикаторной трубкой при их совместном присутствии в растворах для анализа природных вод

Изобретение может быть использовано для полуколичественного определения марганца(II) и меди(II) в водных растворах, в частности в природных и сточных водах в полевых условиях. Способ включает наполнение стеклянной трубки с внутренним диаметром 0,5 см Na-формой макросетчатого карбоксильного...
Тип: Изобретение
Номер охранного документа: 0002613407
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b139

Лазерный газоанализатор

Изобретение относится к измерительной технике и может быть использовано для проведения качественного и количественного анализа газовых сред. Лазерный газоанализатор содержит непрерывный лазер, фокусирующую линзу, газовую кювету с входным окном для ввода лазерного излучения и окном для вывода...
Тип: Изобретение
Номер охранного документа: 0002613200
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b428

Способ определения суммы металлов с использованием полиметакрилатной матрицы

Изобретение относится к области аналитической химии и касается способа определения суммарного содержания ионов металлов (Fe, Cd, Co, Zn, Pb, Ni, Cu, Mn). Способ включает приготовление раствора суммы металлов (Fe, Cd, Co, Zn, Pb, Ni, Cu, Mn) с равным содержанием всех металлов, извлечение...
Тип: Изобретение
Номер охранного документа: 0002613762
Дата охранного документа: 21.03.2017
Showing 1-1 of 1 item.
10.08.2019
№219.017.bd80

Аминопластичная смола

Изобретение относится к аминопластичной смоле, используемой в качестве конструкционного материала как самостоятельно, так и в составе композитов. Аминопластичная смола состоит из меламина и гликолурила, сшитых альдегидами и отверждаемых нагреванием при рН=3-6. В качестве сшивающего агента...
Тип: Изобретение
Номер охранного документа: 0002696859
Дата охранного документа: 07.08.2019
+ добавить свой РИД