×
17.01.2020
220.017.f636

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ТРЕХХЛОРИСТОГО ТИТАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению треххлористого титана, используемого в качестве компонента активного покрытия анодов, катализатора в органическом синтезе, а также в процессах очистки воды. Для получения треххлористого титана проводят восстановление тетрахлорида титана металлом при нагревании. Процесс восстановления ведут анодным растворением металлического электрода в водном растворе тетрахлорида титана с концентрацией 1-60 мас. % при напряжении 2-10 вольт в течение 5-180 минут. В качестве металла используют алюминий, или титан, или железо. Обеспечивается снижение энергозатрат, упрощение технологии при повышении экологической и производственной безопасности. 6 пр.

Изобретение относится к получению треххлористого титана, используемого в качестве компонента активного покрытия анодов, катализатора в органическом синтезе, а также в процессах очистки воды.

Известны способы получения треххлористого титана, включающие взаимодействие металлического титана с водным раствором соляной кислоты концентрацией при нагревании [Пат. РФ 2316475 02.02.2008; JP 080208227, опубл. 13.08.1996].

Недостатками известных способов являются технологические затруднения ведения процесса, сложность и дороговизна аппаратурного оформления, дорогостоящее сырье.

Известны способы получения хлоридов титана (II и III) (ст. Низшие хлориды титана, их свойства, получение и применение (обзор литературы и патентов). - В.Г. Гопиенко, Г.Н. Гопиенко. - Ж. Цветная металлургия. - 1964. - №4, стр. 26-29; ст. Разработка технологии получения и очистки титансодержащих расплавов с применением механического перемешивания. - Р.А. Сандлер, А.И. Гулякин, Д.С. Абрамов, Е.Н. Пинаев, Э.И. Яскеляйнен, Л.М. Бердникова, Г.С. Лукашенко, Б.А. Карпов. - Труды ВАМИ Производство магния и титана, №83, Ленинград, 1972, стр. 94-98; ст. Разработка технологических основ процесса получения низших хлоридов титана. - С.В. Александровский, Л.М. Бердникова, А.И. Гулякин, Е.Н. Пинаев, Д.С. Абрамов. - Ж. Цветная металлургия, №12, 1977, - стр. 29-31; Пат РФ №: 2370445 от 20.10.2009), включающий подачу в герметичный реактор расплава хлоридов металлов, металлического титана (отход) и подачу тетрахлорида титана в реактор. Процесс ведут в инертной атмосфере хлориды титана извлекают из реактора отстаиванием или фильтрованием.

Недостатком данных способов является высокая стоимость сырья, сложность аппаратурной схемы, высокие энергетические затраты (расплав

солей) и значительные количества трудноутилизируемого остатка (сброс в отвал).

Известны способы получения катализатора на основе треххлористого титана (Патент СССР 504496, кл. C08F 10/14, 1972; Патент США 4235745, кл. C08F 4/64, 1980; Патент США 4199474, кл. C08F 4/64, 1980; Патент РФ 2053841, кл. B01J 37/00, 1993), включающие восстановление тетрахлорида титана органическими соединениями.

Недостатками данных способов являются: большая длительность процесса синтеза; низкая стабильность катализатора при его хранении (температура хранения), высокая стоимость исходных реагентов.

Наиболее близким по технической сущности (прототип) и достигаемому результату является способ получения треххлористого титана, включающий обработку концентрированного тетрахлорида титана металлом (алюминий, магний, титан) при температуре от 200 до 900°С (Лучинский Г.П. Химия титана. - М.: Издательство "Химия", 1971. - 471 с.):

Недостатками данного способа являются сложное аппаратурное оформление процесса и высокие энергозатраты на нагрев реакционной смеси. Помимо этого концентрированный тетрахлорид титана не реагирует с металлическим железом даже при температуре каления.

Существенным недостатком прототипа является работа с концентрированным безводным тетрахлоридом титана, который при контакте с воздухом гидролизируются с образованием паров соляной кислоты (белый дым). Образование летучих ядовитых паров, обладающих высокой коррозионной активностью требует применения герметичных реакторов, а также дополнительных мер безопасности персонала.

Задачей данного изобретения является разработка технологии получения треххлористого титана со сниженными энергозатратами, упрощенной аппаратурной схемой и повышенной экологической и производственной безопасностью, который может быть использован в процессах очистки сточных вод.

Поставленная задача решается способом получения треххлористого титана, включающим восстановление тетрахлорида титана металлом, при котором процесс восстановления ведут анодным растворением металлического электрода, в водном растворе тетрахлорида титана с концентрацией 1-60 масс. %., при этом в качестве металла используют алюминий или титан или железо и процесс анодного растворения ведут при напряжении 2-10 вольт в течение 5-180 минут.

К основным достоинствам предлагаемого способа следует отнести снижение энергозатрат (за счет отсутствия нагрева реакционной смеси до высоких температур), а также значительное упрощение аппаратурной схемы процесса, за счет отказа от герметичных сосудов, работающих под высоким давлением и при высокой температуре. Помимо этого становится возможным использование металлических отходов процессов сжигания твердых бытовых отходов. Водные растворы тетрахлорида титана подвержены гидролизу в меньшей степени, а количество выделяемых паров соляной кислоты снижается в 100 и более раз.

Сущность предлагаемого способа и достигаемые результаты более наглядно могут быть проиллюстрированы следующими примерами

Содержание треххлористого титана определяют по данным титрования полученного раствора сульфатом аммония-железа в присутствии индикатора роданида или метиленовой сини (Лучинский Г.П. Химия титана. - М.: Издательство "Химия", 1971. - 471 с; стр. 397)

ПРИМЕР №1

В водный раствор тетрахлорида титана (3 масс. %) массой 250 грамм, погружают железные (Сталь 3) электроды и проводят анодное растворение металла при напряжении 2 В. Реакционную смесь постоянно перешивают в течение 180 минут. Содержание треххлористого титана в полученном растворе 0,025%. Содержание хлорида железа 0,078%. Реагент может быть использован в процессах очистки сточных вод от соединений хрома.

В промывные сточные воды процесса нанесения гальванических покрытий объемом 1 литр и содержанием соединений хрома (VI) - 2,2 мг/л вводят 1,5 мл полученного раствора. Эффективность удаления соединений хрома (VI)составляет 99,9%.

ПРИМЕР №2

В водный раствор тетрахлорида титана (60 масс. %) массой 100 грамм, погружают титановые (ВТ 1-0) электроды и проводят анодное растворение металла при напряжении 10 В. Реакционную смесь постоянно перешивают в течение 90 минут. Содержание треххлористого титана в полученном растворе 48,8%. Содержание примесей других металлов в полученном реагенте не превышает 0,1% (х.ч.). Реагент пригоден для применения в качестве катализатора в органическом синтезе, а также в аналитических целях.

ПРИМЕР №3

В водный раствор тетрахлорида титана (1 масс. %) массой 500 грамм, погружают железные электроды и проводят анодное растворение металла при напряжении 3 В. Реакционную смесь постоянно перешивают в течение 180 минут. Содержание треххлористого титана в полученном растворе 0,008

%. Содержание хлорида железа 1,01%. Реагент может быть использован в процессах очистки сточных вод от соединений хрома.

В промывные сточные воды процесса нанесения гальванических покрытий объемом 1 литр и содержанием соединений хрома (VI) - 0,9 мг/л вводят 1,1 мл полученного раствора. Эффективность удаления соединений хрома (VI) составляет 99,85%.

ПРИМЕР №4

В водный раствор тетрахлорида титана (25 масс. %) массой 150 грамм, погружают алюминиевые электроды и проводят анодное растворение металла при напряжении 4 В. Реакционную смесь постоянно перешивают в течение 120 минут. Содержание треххлористого титана в полученном растворе 20,3%. Содержание хлорида алюминия 12,1%.

В промывные сточные воды процесса нанесения гальванических покрытий объемом 1 литр и содержанием соединений хрома (VI) - 5,4 мг/л вводят 0,25 мл полученного раствора. Эффективность удаления соединений хрома (VI) составляет 99,9%.

ПРИМЕР №5

В водный раствор тетрахлорида титана (15 масс. %) массой 150 грамм, погружают алюминиевые гранулы, разменные в полимерной сетке (анод) размешенные и проводят анодное растворение металла при напряжении 2 В. Реакционную смесь постоянно перешивают в течение 5 минут. Содержание треххлористого титана в полученном растворе 1,3%. Содержание хлорида алюминия 0,6%.

В промывные сточные воды процесса нанесения гальванических покрытий объемом 1 литр и содержанием соединений хрома (VI) - 3,2 мг/л вводят 0,8 мл полученного раствора. Эффективность удаления соединений хрома (VI)составляет 99,9%.

ПРИМЕР №6

В водный раствор тетрахлорида титана (40 масс. %) массой 150 грамм, погружают алюминиевую проволоку (анод) и проводят анодное растворение металла при напряжении 6 В. Реакционную смесь постоянно перешивают в течение 45 минут. Содержание треххлористого титана в полученном растворе 28,3%. Содержание хлорида алюминия 17,1%.

В промывные сточные воды процесса нанесения гальванических покрытий объемом 1 литр и содержанием соединений хрома (VI) - 3,2 мг/л вводят 0,8 мл полученного раствора. Эффективность удаления соединений хрома (VI)составляет 99,9%.

Как видно из примеров технический результат от вышеперечисленного снижение температуры проведения процесса, упрощение аппаратурной схемы (отказ от высоких температур и сосудов, работающих под давлением), а также повышение экологической и производственной безопасности, за счет использования разбавленных растворов. При использовании предлагаемого изобретения возможно получение широкой линейки реагентов для процессов органического синтеза и процессов очистки сточных вод различного происхождения (в т.ч. гальваники).

Помимо этого была установлена возможность использования железа для восстановления тетрахлорида титана, что также отличает предполагаемый способ от прототипа.

Способ получения треххлористого титана, включающий восстановление тетрахлорида титана металлом, отличающийся тем, что процесс восстановления ведут анодным растворением металлического электрода в водном растворе тетрахлорида титана с концентрацией 1-60 мас. %, в качестве металла используют алюминий, или титан, или железо, а процесс анодного растворения ведут при напряжении 2-10 вольт в течение 5-180 минут.
Источник поступления информации: Роспатент

Showing 61-62 of 62 items.
04.06.2023
№223.018.76c0

Способ извлечения рения из водных растворов активным углем

Изобретение относится к сорбционной гидрометаллургии рения и может быть использовано для извлечения рения из водных растворов. Извлечение рения из растворов включает сорбцию рения на активном угле, его промывку и десорбцию рения. В качестве активного угля используют активный уголь,...
Тип: Изобретение
Номер охранного документа: 0002796648
Дата охранного документа: 29.05.2023
19.06.2023
№223.018.8236

Способ получения солей олова (iv) из солей олова (ii)

Изобретение относится к химической промышленности и может быть использовано в производстве керамических материалов и изделий, в научных исследованиях, в аналитической химии, при изготовлении электронных приборов, устройств фотовольтаики и солнечных элементов. Соль олова (II) окисляют в водной...
Тип: Изобретение
Номер охранного документа: 0002797089
Дата охранного документа: 31.05.2023
Showing 31-31 of 31 items.
20.05.2023
№223.018.6749

Универсальный инициатор-резак для бортовых детонационных систем разделения

Изобретение относится к области ракетной и космической техники, в частности к детонационным устройствам. Универсальный инициатор-резак для бортовых детонационных систем разделения, содержащий прочный не разрушаемый при срабатывании металлический корпус цилиндрической формы с внутренней соосной...
Тип: Изобретение
Номер охранного документа: 0002756898
Дата охранного документа: 06.10.2021
+ добавить свой РИД