×
17.01.2020
220.017.f616

Результат интеллектуальной деятельности: Детектор ионизирующих излучений

Вид РИД

Изобретение

Аннотация: Изобретение относится к сцинтилляционным детекторам радиационного излучения. Сущность изобретения заключается в том, что детектор ионизирующих излучений содержит сцинтилляционный детектор радиационного излучения и фотоприемник, между которыми, непосредственно на поверхности сцинтилляционного детектора, расположен прозрачный для оптического излучения монослой мезоразмерных частиц (микрофокусирующих устройств) и с характерным размером не менее λ/2, где λ - длина волны используемого излучения с относительным коэффициентом преломления материала, лежащим в диапазоне от 1,2 до 1,7, формирующие на их внешней границе с противоположной стороны от падающего излучения области с повышенной интенсивностью излучения с поперечными размерами порядка λ/3-λ/4. Технический результат - повышение чувствительности детектора ионизирующих излучений. 2 ил.

Изобретение относится в целом к детекторам радиационного излучения. В частности, изобретение относится к сцинтилляционным детекторам радиационного излучения.

Известные сцинтилляционные детекторы радиационного излучения могут использоваться в качестве портальных охранных детекторов или в медицинских областях применения. Также сцинтилляционные детекторы радиационного излучения могут использоваться в промышленном бурении для регистрации и проведения измерений в процессе бурения, для обнаружения радиоактивных материалов и т.д.

Действие детектора основано на явлениях, возникающих при прохождении ионизирующего излучения через рабочую среду детектора. По физической сущности взаимодействия ионизирующего излучения с рабочим веществом детектора, выделяют следующие типы детекторов:

ионизационный, основанный на способности излучения ионизовать среду, через которую оно проходит;

сцинтилляционный, регистрирующий фотоны света, излучаемые сцинтиллятором вследствие поглощения энергии ионизирующих излучений;

люминесцентный, основанный на эффектах радиолюминесценции и термолюминесценции. Детекторы поглощают и накапливают энергию ионизирующего излучения в молекулярных центрах люминесценции и способны высвечивать накопленную энергию при освещении ультрафиолетовым светом или нагревании.

При взаимодействии с веществом сцинтиллятора заряженные частицы теряют свою энергию на возбуждение и ионизацию атомов среды. Гамма-излучение, как излучение косвенно ионизирующее, само непосредственно ионизацию и возбуждение не производит: ионизируют и возбуждают атомы вещества сцинтиллятора электроны, образованные при взаимодействии γ-излучения с веществом сцинтиллятора. Возникающее при снятии возбуждения атомов излучение выходит из среды в виде световых вспышек-сцинтилляций, число фотонов в которых зависит как от свойства и размеров сцинтиллятора, так и от вида частиц и энергии, передаваемой сцинтиллятору этими частицами.

Сцинтилляторами обычно называют такие вещества, которые под действием ионизирующего излучения испускают фотоны в видимой или ультрафиолетовой части спектра. Причем, при наличии большой вероятности испускания фотонов атомами и молекулами в возбужденных состояниях, вероятность поглощения этих испущенных фотонов самим же сцинтиллирующим веществом должна быть мала: т.е. спектр испускания электромагнитного излучения должен быть сдвинут относительно спектра поглощения.

Все сцинтилляционные вещества можно разделить на три класса: на основе тех или иных органических соединений, неорганические кристаллы и газы.

Из органических соединений чаще всего применяются жидкие и твердые растворы ароматических соединений или монокристаллы антрацена, стильбена, толана и др.

Наиболее распространенными сцинтилляторами из неорганических кристаллов являются иодиты щелочных металлов, активированные таллием, и сульфид цинка, активированный серебром: NaJ(Tl), CsJ(Tl), ZnS(Ag). Чистые неактивированные кристаллы при комнатной температуре не обладают сцинтиллирующими свойствами.

Применяемые сцинтиллирующие неорганические кристаллы (NaJ(Tl), CsJ(Tl), LiJ(Sn), LiJ(Tl), ZnS(Ag)) характеризуются большим световым выходом и временем высвечивания (порядка 10-4 - 10-7 с). Органические кристаллы (стильбен, антрацен и другие) характеризуются не только меньшим световым выходом, чем неорганические, но и меньшим временем высвечивания (порядка 10-8 - 10-9 с). Из органических сцинтиллирующих растворов обычно применяются паратерфенил в ксилоле.

В качестве аналога заявляемого технического решения принято устройство получения рентгеновского изображения (Европейский патент ЕР №0296737), содержащее источник проникающего излучения, люминисцентный экран-преобразователь, работающий на просвет, оптическую систему переноса видимого изображения с экрана на детектор изображений и защиты детектора от рентгеновских лучей, фотоэлектрический детектор изображений (ПЗС-матрица).

Основной недостаток аналога - малая чувствительность детектора, обусловленная неэффективной передачей светового излучения на приемное устройство светового излучения. Снижение эффективности детектора приводит к необходимости повышения доз облучения объектов исследования. В ряде случаев это ограничивает использование устройства или вообще исключает возможность его применения, например, в медицинской рентгенодиагностике.

Известен другой аналог заявляемого технического решения (Патент BY 8898, детектор ионизирующих излучений, МПК G01T 1/00) содержащий, подложку со сцинтиллятором и фотоприемник, при этом подложка выполнена из диэлектрика с высокой прозрачностью в оптическом диапазоне, например, анодного оксида алюминия, имеет перпендикулярные обеим ее поверхностям отверстия, которые заполнены сцинтиллятором, чувствительным к ионизирующим излучениям в широком диапазоне энергий, а диаметр отверстий больше тиаметра частиц сцинтиллятора в три и более раз.

Основной недостаток аналога неэффективность передачи оптического излучения из сцинтиллятора в фотоприемник.

Наиболее близким аналогом (прототипом) принят сцинтилляционный детектор радиационного излучения (Патент РФ №2510519, Узел детектора радиационного излучения) содержащий сцинтилляционный детектор радиационного излучения, предназначенный для генерации светового сигнала, являющегося функцией регистрируемого радиационного излучения, фотоприемник, выполненный с возможностью функционального соединения со сцинтилляционным детектором и предназначенный для приема светового сигнала от указанного детектора и генерации электрического сигнала, являющегося функцией полученного светового сигнала, и кожух фотоприемника, выполненный с возможностью электрического соединения с указанным фотоприемником.

Задачей заявляемого изобретения является разработка детектора ионизирующих излучений, имеющего высокую чувствительность.

Поставленная задача решается тем, что детектор ионизирующих излучений содержит сцинтилляционный детектор радиационного излучения, предназначенный для генерации светового сигнала, являющегося функцией регистрируемого радиационного излучения, фотоприемник, выполненный с возможностью функционального соединения со сцинтилляционным детектором и предназначенный для приема светового сигнала от указанного детектора и генерации электрического сигнала, являющегося функцией полученного светового сигнала, и кожух фотоприемника, выполненный с возможностью электрического соединения с указанным фотоприемником, согласно изобретению между сцинтилляционным детектором и фотоприемником, непосредственно на поверхности сцинтилляционного детектора расположен прозрачный для оптического излучения монослой мезоразмерных частиц (микрофокусирующих устройств) с характерным размером не менее λ/2, где λ - длина волны используемого излучения, с относительным коэффициентом преломления материала лежащего в диапазоне от 1,2 до 1,7, формирующие на их внешней границе с противоположной стороны от падающего излучения области с повышенной интенсивностью излучения с поперечными размерами порядка λ/3-λ/4.

Расположение прозрачного для падающего излучения массива микрофокусирующих устройств (например выполненных из диэлектрика или полупроводника) непосредственно на поверхности сцинтилляционного детектора прозрачного для оптического излучения монослоя мезоразмерных частиц (микрофокусирующих устройств) и с характерным размером не менее λ/2, где λ - длина волны используемого излучения, с относительным коэффициентом преломления материала лежащего в диапазоне от 1,2 до 1,7, формирующие на их внешней границе с противоположной стороны от падающего излучения области с повышенной интенсивностью излучения с поперечными размерами порядка λ/3-λ/4 перед фотоприемником позволяет несколько уменьшить потери на отражение падающего излучения на границе двух сред и увеличить интенсивность оптического излучения попадающего на фотоприемник.

Применение мезоразмерных частиц в качестве фокусирующих устройств позволяет увеличить интенсивность падающего излучения в области фокусировки (фотонной струи) с шагом порядка длины волны падающего излучения.

Известно, что фундаментальный рэлеевский критерий разрешения оптических систем заключается в том, что минимальный размер различимого объекта несколько меньше длины волны используемого излучения и принципиально ограничен дифракцией этого излучения [Борн М., Вольф Э. Основы оптики. - М.: Мир, 1978]. Невозможность сфокусировать свет в свободном пространстве в пятно с размерами меньше некоторого дифракционного предела следует и из соотношения типа соотношения неопределенностей Гейзенберга [Minin I.V., Minin O.V. Experimental verification 3D subwavelength resolution beyond the diffraction limit with zone plate in millimeter wave // Microwave and Optical Technology Letters, Vol. 56, No. 10, October 2014, 2436-24].

Под преодолением дифракционного предела понимается фокусировка излучения в пятно с размерами меньше, чем у пятна Эйри [Борн М., Вольф Э. Основы оптики. - М.: Мир, 1978].

Преодолеть дифракционный предел в оптике можно различными способами, например, с помощью эффекта «фотонной наноструи» (например, см. [A. Heifetz et al. Experimental confirmation of backscattering enhancement induced by a photonic jet // Appl. Phys. Lett., 89, 221118 (2006)]). Поперечный размер фотонной наноструи составляет 1/3…1/4 длины волны излучения, что меньше дифракционного предела классической линзы.

При этом формировать локальные области концентрирования электромагнитной энергии вблизи поверхности мезоразмерных диэлектрических частиц возможно с помощью частиц различной формы, например, в форме сферы, усеченной сферы, куба, пирамиды, конуса, цилиндра, диска и т.д. при облучении их электромагнитной волной с плоским волновым фронтом и т.д. [I.V. Minin and O.V. Minin. Diffractive optics and nanophotonics: Resolution below the diffraction limit, Springer, 2016 http://www.springer.com/us/book/9783319242514#aboutBook].

В результате проведенных исследований было обнаружено, что диэлектрические мезочастицы произвольной формы, например в форме куба или сферы, с характерным размером не менее λ/2, где λ - длина волны используемого излучения, с относительным коэффициентом преломления материала, лежащего в диапазоне от 1,2 до 1,7, при ее облучении электромагнитной волной с плоским волновым фронтом, формируют на ее внешней границе с противоположной стороны от падающего излучения локальную область с повышенной интенсивностью излучения с поперечными размерами порядка λ/3-λ/4, при этом эффект формирования локальной области повышенной интенсивности излучения непосредственно на границе частицы сохраняется в широком диапазоне углом падения излучения.

При коэффициенте преломления материала мезоразмерной частицы менее 1,2 поперечный размер локальной области концентрации поля становится порядка и более дифракционного предела и не обеспечивает значительного повышения интенсивности электромагнитного поля на ее границе. При коэффициенте преломления материала мезоразмерной частицы более 1,7 локальная концентрация электромагнитного поля возникает внутри частицы и не может быть использована для повышения чувствительности детектора ионизирующих излучений.

В результате проведенных исследований, было обнаружено, что при облучении диэлектрических частичек с характерным размером не менее λ/2, где λ - длина волны используемого излучения, с относительным коэффициентом преломления материала не менее 1,7, происходит формирование внутри частицы области с повышенной интенсивностью излучения с поперечными размерами порядка λ/3-λ/4. При этом диэлектрические частицы могут иметь различную форму поверхности: куб, шар, усеченный шар, цилиндр, диск, пирамида, усеченная пирамида и т.д. [И.В. Минин, О.В. Минин. Фотоника изолированных диэлектрических частиц произвольной трехмерной формы - новое направление оптических информационных технологий // "Вестник НГУ. Серия: Информационные технологии". 2014, №4, С. 4-10; Minin I.V., Minin O.V., Kharitoshin N.A. Localized high field enhancements from hemispherical 3D mesoscale dielectric particles in the reflection mode // 16th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices June 29 - July 3, 2015; V. Pacheco-Pena, M. Beruete, I.V. Minin, O.V. Minin. Terajets produced by 3D dielectric cuboids // Appl. Phys. Lett. V. 105, 084102 (2014)].

Для мезоразмерной частицы с характерным размером порядка длины волны излучения интенсивность света непосредственно на границе частицы превосходит падающую интенсивность примерно в 7-8 раз, для частицы с характерными размерами порядка двух длин волн - примерно в 20 раз. Для частиц большего размера величина этого отношения увеличивается еще сильнее.

На основе мезоразмерных диэлектрических частичек, формирующих области с повышенной интенсивностью излучения с поперечными размерами порядка λ/3-λ/4 возможно разработать детектор ионизирующих излучений с высокой эффективностью.

Заявляемый детектор ионизирующих излучений обладает совокупностью существенных признаков, неизвестных из уровня техники для изделий подобного назначения и неизвестен из доступных источников научной, технической и патентной информации на дату подачи заявки на изобретение.

Заявляемое устройство поясняется фиг. 1, 2.

На фиг. 1 схематически приведен в разрезе один вариант реализации заявляемого детектора ионизирующих излучений.

На фиг. 2 приведен пример формирования мезоразмерной частицей в виде сферы (а), куба (б), правильного шестиугольника (в-г) и треугольника (д-е) с характерными размерами равными λ области с повышенной интенсивностью излучения с поперечными размерами порядка λ/3-λ/4 на границе их поверхности.

Обозначения: 1 - падающее ионизирующее излучение, 2 - сцинтилляционный детектор, 3 - монослой мезоразмерных прозрачных для оптического излучения частиц, 4 - область с повышенной интенсивностью излучения с поперечными размерами порядка λ/3-λ/4, 5 - фотоприемник.

Падающее ионизирующее излучение 1 освещает сцинтилляционный детектор 2, где преобразуется в оптическое излучение и попадает на монослой мезоразмерных частиц 3. В результате интерференции и дифракции падающего излучения на частицу, непосредственно на ее границе формируется локальная область повышенной интенсивности излучения 4 и с поперечными размерами порядка λ/3-λ/4, которая далее попадает на фотоприемник 5.

В качестве материала мезоразмерных частиц могут использоваться различные материалы, например, SiO2 с коэффициентом преломления 1,538 на длине волны 0,7 мкм, полиэстер, с коэффициентом преломления 1,59 на длине волны 0,532 мкм, различные виды стекол, ситаллы, кварц, полиметилметакрилат, полистирол, поликарбонаты [Справочник конструктора оптико-механ. приборов / Под ред. В.А. Панова. - Л.: Машиностроение, 1980.] с относительными коэффициентами преломления материала лежащими в диапазоне от 1,2 до 1,7.

Изготовление мезоразмерных частиц возможно, например, методами фотолитографии [патент РФ №2350996], 3D принтера и т.д.

Нанесение тонкого фотоэмиссионного слоя на монослой мезоразмерных частиц возможно одним из известных способов, например приведенных в [патент РФ №1816329, 2248066, Брендель В.М., Букин В.В., Гарнов С.В., Багдасаров В.Х., Денисов Н.Н., Гаранин С.Г., Терехин В.А., Трутнев Ю.А. Метод лазерного напыления УФ фотокатодов на основе галогенидов щелочных металлов // Квантовая электроника, 2012, т. 42, №12, с. 1128-1132].

Достигаемый в такой конструкции фотокатода технический результат выражается в повышенной чувствительности детектора ионизирующих излучений.

Детектор ионизирующих излучений, содержащий сцинтилляционный детектор радиационного излучения, предназначенный для генерации светового сигнала, являющегося функцией регистрируемого радиационного излучения, фотоприемник, выполненный с возможностью функционального соединения со сцинтилляционным детектором и предназначенный для приема светового сигнала от указанного детектора и генерации электрического сигнала, являющегося функцией полученного светового сигнала, и кожух фотоприемника, выполненный с возможностью электрического соединения с указанным фотоприемником, отличающийся тем, что между сцинтилляционным детектором и фотоприемником, непосредственно на поверхности сцинтилляционного детектора, расположен прозрачный для оптического излучения монослой мезоразмерных частиц (микрофокусирующих устройств) и с характерным размером не менее λ/2, где λ - длина волны используемого излучения, с относительным коэффициентом преломления материала, лежащим в диапазоне от 1,2 до 1,7, формирующие на их внешней границе с противоположной стороны от падающего излучения области с повышенной интенсивностью излучения с поперечными размерами порядка λ/3-λ/4.
Детектор ионизирующих излучений
Детектор ионизирующих излучений
Детектор ионизирующих излучений
Источник поступления информации: Роспатент

Showing 1-10 of 26 items.
04.04.2018
№218.016.366e

Способ упорядочения расположения наночастиц на поверхности подложки

Использование: для формирования на подложках структурных образований из микро- и наночастиц. Сущность изобретения заключается в том, что по способу упорядочения расположения наночастиц на поверхности подложки путем их перемещения с помощью лазерного излучения, в соответствии с изобретением,...
Тип: Изобретение
Номер охранного документа: 0002646441
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.47c6

Способ аэрокосмического геоинформационного мониторинга природных и техногенных объектов с применением метода вейвлет-преобразования для аэрокосмических цифровых фотоснимков

По предлагаемому способу аэрокосмического геоинформационного мониторинга природных и техногенных объектов производят аэрокосмическую цифровую фотосъемку заданной территории не менее двух раз с помощью одной и той же съемочной аэрокосмической системы с привязкой к заданной системе координат ПВО....
Тип: Изобретение
Номер охранного документа: 0002650700
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4edb

Способ адекватного измерения s-параметров транзисторов на имитаторе-анализаторе усилителей и автогенераторов свч

Изобретение относится к радиоизмерительной технике СВЧ и может быть использовано для адекватного измерения S-параметров транзисторов, предназначенных для включения в микрополосковую линию. Задачей заявляемого способа является обеспечение адекватного измерения S-параметров транзисторов,...
Тип: Изобретение
Номер охранного документа: 0002652650
Дата охранного документа: 28.04.2018
10.05.2018
№218.016.4f63

Способ геодезического геоинформационного мониторинга природных и техногенных объектов с применением метода автоматизированного дешифрирования многоспектральных цифровых аэрокосмических фотоснимков

Изобретение относится к способам обработки многоспектральных цифровых аэрокосмических фотоснимков и может быть использовано при геодезическом геоинформационном мониторинге природных и техногенных объектов. Сущность: на контролируемом участке выполняют аэрокосмическую цифровую фотосъемку с...
Тип: Изобретение
Номер охранного документа: 0002652652
Дата охранного документа: 28.04.2018
29.05.2018
№218.016.5570

Способ формирования изображения объектов с субдифракционным разрешением в акустическом диапазоне длин волн

Использование: для формирования изображения объектов с субдифракционным разрешением в акустическом диапазоне длин волн. Сущность изобретения заключается в том, что выполняют размещение объекта исследования в фокальной области акустической линзы, при этом между линзой и объектом размещается...
Тип: Изобретение
Номер охранного документа: 0002654387
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.58b2

Способ измерения s-параметров четырехполюсников свч, предназначенных для включения в микрополосковую линию

Изобретение относится к радиоизмерительной технике СВЧ и может быть использовано измерения S-параметров четырехполюсников. Способ измерения S-параметров четырехполюсников СВЧ, предназначенных для включения в микрополосковую линию, заключается в том, что четырехполюсник включают в анализатор,...
Тип: Изобретение
Номер охранного документа: 0002653569
Дата охранного документа: 11.05.2018
09.06.2018
№218.016.5b1f

Способ регистрации электромагнитного излучения в ик, свч и терагерцовом диапазонах длин волн

Изобретение относится к области измерительной техники и касается способа регистрации электромагнитного излучения в ИК, СВЧ и терагерцовом диапазонах длин волн. Способ включает в себя направление электромагнитного излучения на чувствительный элемент приемника излучения, преобразование его в...
Тип: Изобретение
Номер охранного документа: 0002655714
Дата охранного документа: 29.05.2018
04.10.2018
№218.016.8f0f

Способ получения, обработки, отображения и интерпретации геопространственных данных для геодезического мониторинга деформационного состояния инженерного объекта

Изобретение относится к области создания трехмерных цифровых моделей. Технический результат – повышение достоверности и точности получаемых геопространственных данных за счет использования технологий лазерного сканирования в трехмерном пространстве. Способ получения, обработки, отображения и...
Тип: Изобретение
Номер охранного документа: 0002668730
Дата охранного документа: 02.10.2018
23.11.2018
№218.016.9fee

Микроскопное покровное стекло

Изобретение относится к области оптического приборостроения, нанотехнологий в оптике, в частности к области микроскопических исследований биологических объектов, клеток крови и т.д. Устройство микроскопного покровного стекла включает покровное стекло, на заднюю поверхность которого нанесена...
Тип: Изобретение
Номер охранного документа: 0002672980
Дата охранного документа: 21.11.2018
03.03.2019
№219.016.d244

Способ геодезического мониторинга деформационного состояния земной поверхности в сейсмоопасных районах с применением технологии лазерного сканирования

Изобретение относится к области геодезического мониторинга и может быть использовано для геодезического мониторинга деформационного состояния земной поверхности в сейсмоопасных районах, где возведены сложные технологические инженерные объекты. Технический результат: повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002680978
Дата охранного документа: 01.03.2019
Showing 1-10 of 28 items.
10.08.2013
№216.012.5df2

Материал облицовки кумулятивного заряда на основе металла

Изобретение относится к кумулятивным зарядам. Облицовка кумулятивного заряда выполнена из материала на основе железа и содержит предельную массовую долю элементов примеси и легирующих элементов, %, не более: углерод - 0.005, марганец - 0.005, кремний - 0.02, сера - 0.003, фосфор - 0.003, хром -...
Тип: Изобретение
Номер охранного документа: 0002489671
Дата охранного документа: 10.08.2013
27.08.2013
№216.012.6504

Способ и устройство формирования кумулятивных струй с устранением эффекта вращения кумулятивных зарядов

Группа изобретений относится к способу и устройству формирования кумулятивных струй. Способ заключается в том, что кумулятивную выемку выполняют в форме усеченной конической поверхности, покрывают ее вспомогательной облицовкой, с плотностью материала более плотности заряда взрывчатого вещества,...
Тип: Изобретение
Номер охранного документа: 0002491497
Дата охранного документа: 27.08.2013
10.02.2015
№216.013.245a

Взрывной генератор плоской волны для кумулятивных перфораторов

Изобретение относится к нефте- и газодобывающей промышленности и может быть использовано в кумулятивных перфораторах, применяемых для перфорации нефтяных и газовых скважин. Взрывной генератор плоской волны для кумулятивных перфораторов состоит из инициатора, корпуса с размещенными в нем...
Тип: Изобретение
Номер охранного документа: 0002540759
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2947

Способ получения составных кумулятивных струй в зарядах перфоратора

Изобретение относится к области нефтедобывающей промышленности. Преимущественная область использования - формирование кумулятивных струй в перфораторах, предназначенных для вскрытия продуктивного пласта в нефтяных и газовых скважинах. Способ получения составных кумулятивных струй в зарядах...
Тип: Изобретение
Номер охранного документа: 0002542024
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.2f08

Способ создания импульсной плазменной антенны

Изобретение относится к технике радиосвязи, в частности к способам создания плазменных антенн. Способ создания импульсной плазменной антенны включает облицовку внутренней поверхности выемки в заряде взрывчатого вещества, инициирование заряда взрывчатого вещества со стороны, противоположной...
Тип: Изобретение
Номер охранного документа: 0002543508
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.397e

Способ заканчивания скважин

Изобретение относится к нефтегазодобывающей промышленности и предназначено для вскрытия продуктивных пластов в нефтяных и газовых скважинах путем создания перфорационных каналов и дополнительной обработки приканальной зоны химическим реагентом. Способ заканчивания скважин включает инициирование...
Тип: Изобретение
Номер охранного документа: 0002546206
Дата охранного документа: 10.04.2015
27.06.2015
№216.013.5a82

Устройство управления формой фронта детонационной волны

Изобретение относится к вооружению и может быть использовано в кумулятивных боеприпасах. Устройство управления формой фронта детонационной волны содержит осесимметричные промежуточный заряд взрывчатого вещества с детонатором и основной заряд взрывчатого вещества с кумулятивной выемкой, инертную...
Тип: Изобретение
Номер охранного документа: 0002554711
Дата охранного документа: 27.06.2015
20.08.2015
№216.013.6ee9

Способ перфорации скважины сдвоенными гиперкумулятивными зарядами

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам вскрытия продуктивных пластов в нефтяных скважинах. Способ перфорации скважины заключается в соосном расположении в общем герметичном корпусе двух разнесенных в пространстве между собой кумулятивных зарядов,...
Тип: Изобретение
Номер охранного документа: 0002559963
Дата охранного документа: 20.08.2015
20.03.2016
№216.014.c993

Кумулятивный заряд

Изобретение относится к взрывным устройствам для вскрытия продуктивных пластов в нефтяных скважинах и может использоваться в кумулятивных боевых частях. Кумулятивный заряд содержит корпус с размещенной в нем шашкой взрывчатого вещества, имеющей кумулятивную выемку, покрытую облицовкой,...
Тип: Изобретение
Номер охранного документа: 0002577661
Дата охранного документа: 20.03.2016
13.01.2017
№217.015.6770

Устройство квазиоптической линии передачи терагерцовых волн

Устройство квазиоптической линии передачи терагерцовых волн содержит набор диэлектрических линз, пространственно разнесенных между собой и расположенных вдоль направления распространения волн. Причем линзы выполнены в виде кубоида с величиной стенки, лежащей в диапазоне от 0.85λ до 1.3λ, где λ...
Тип: Изобретение
Номер охранного документа: 0002591282
Дата охранного документа: 20.07.2016
+ добавить свой РИД