×
17.01.2020
220.017.f610

СПОСОБ ПЕРЕРАБОТКИ БОКСИТОВ НА ГЛИНОЗЕМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к цветной металлургии. Способ переработки бокситов на глинозем по параллельной схеме Байер-спекание включает ветвь Байера и ветвь спекания. Ветвь Байера включает дробление и последующий размол боксита в оборотном растворе, автоклавное выщелачивание, сгущение пульпы с получением алюминатного раствора и красного шлама, промывку красного шлама, декомпозицию алюминатного раствора с получением гидроксида алюминия и маточного раствора, выпарку маточного раствора, кальцинацию гидроксида алюминия с получением глинозема. Ветвь спекания включает подготовку шихты, спекание шихты с получением спека и пыли электрофильтров, выщелачивание полученного спека с получением алюминатного раствора, содержащего кремнезем, и красного шлама спекательного передела, обескремнивание алюминатного раствора с получением белого шлама и обескремненного алюминатного раствора, декомпозицию обескремненного алюминатного раствора с получением гидроксида алюминия и маточного раствора, выпарку с получением оборотного раствора, направляемого в ветвь Байера на размол боксита. Пыль электрофильтров подвергают выщелачиванию с получением красного шлама электрофильтрации и щелочно-алюминатного раствора электрофильтрации, которые разделяют фильтрацией. Щелочно-алюминатный раствор электрофильтрации направляют на операцию смешения с обескремненным алюминатным раствором ветви спекания. Из красного шлама электрофильтрации выделяют редкоземельные элементы. Технический результат состоит в извлечении соединений редкоземельных элементов из пыли электрофильтров процесса переработки бокситового сырья. 3 табл., 2 пр.
Реферат Свернуть Развернуть

Изобретение относится к области цветной металлургии, в частности, к технологии производства глинозема из бокситов.

Из уровня техники известен способ переработки бокситов по параллельной схеме Байер-спекание [1, с.570-572, 2, 3]. В байеровской ветви перерабатывается малокремнистый боксит, а в спекательной ветви – высококремнистый. Практика работы глиноземных производств показала, что на операции спекания кроме спека получается большое количество пыли, содержащей ценные компоненты. Приведенная в упомянутом источнике технологическая схема не содержит сведений о путях утилизации этого продукта. Наиболее ценные компоненты в виде перечня редкоземельных элементов, содержащиеся в бокситовом сырье заводов Урала, описаны в публикациях [4-6].

В описании к патенту US5296177 [7] предлагалось пыль печей кальцинации подвергать агломерации и возвращать обратно в производственный процесс. При этом не ставился вопрос об извлечении редкоземельных элементов.

Известен также способ переработки бокситов на глинозем по параллельной схеме Байер-спекание, описанный в патенте РФ № 2232716 [8].

Способ включает в ветви Байера размол боксита в оборотном растворе, выщелачивание, сгущение с получением алюминатного раствора и красного шлама, промывку красного шлама, декомпозицию алюминатного раствора с получением гидроксида алюминия и маточного раствора, выпарку маточного раствора с получением оборотного раствора, кальцинацию гидроксида алюминия с получением глинозема. В ветви спекания производят подготовку шихты, направление шихты на спекание, спекание шихты, выщелачивание полученного спека с получением алюминатного раствора, содержащего кремнезем, и красного шлама, обескремнивание алюминатного раствора с получением белого шлама и обескремненного алюминатного раствора, подачу его в ветвь Байера на декомпозицию, переработку белого шлама ветви спекания. Шихту, направляемую на спекание, готовят смешиванием красного шлама, боксита и оборотного раствора с дозировкой в оборотный раствор свободной щелочи для достижения молярного отношения Na2О/(Аl2О3+SiO2) = 1-1,2 и достижения молярного отношения Аl2О3/Fe2О3=0,33-0,5, спекание осуществляют при температуре 350-450оС. Способ по аналогу позволяет обеспечить экономию боксита и снизить удельный расход топлива. Однако способ не предусматривает использование пыли, образующейся при выполнении операции спекания.

Известен способ выщелачивания глиноземсодержащих спеков по патенту РФ 2424981 [9]. Глиноземсодержащие спеки подвергают классификации по фракции 0,5 мм, фракцию мельче 0,5 мм соединяют с аспирационной спековой пылью, смешивают с подшламовой водой, проводят агитационное выщелачивание смеси и затем направляют на совместную промывку со шламом от выщелачивания фракции крупнее 0,5 мм. Изобретение позволяет уменьшить потери глинозема в процессе выщелачивания глиноземсодержащих спеков.

Следует отметить, что объект по аналогу описывает технологию переработки нефелинового сырья, а не бокситов. Это следует из описания опытов, выполненных авторами: они применили сырье Ачинского глиноземного комбината, работающего исключительно на нефелиновой руде. Одно из отличий состоит в том, что нефелины не содержат в своем составе достаточно большие количества редкоземельных элементов. Кроме того, в упомянутом патенте описан вариант переработки аспирационной спековой пыли, которая получается в результате дробления и механического рассева спека. При исследованиях, выполненных для создания заявляемого объекта, было выявлено, что физико-химические свойства пылей, получаемых на различных этапах переработки сырья, оказываются различными. Таким образом, недостатками объекта – аналога является применение для исследований не бокситового сырья, а также использование пылей иного вида, чем это сделано в заявляемом объекте.

В статье [10] выполнено изучение физико-химических свойств возвратной пыли печей спекания бокситовых шихт, и было показано, что пыль может обладать высокой реакционной способностью. Несмотря на применение устройств улавливания пыли, часть ее попадает в окружающую среду с отходящими газами, что создает экологические проблемы [11].

Наиболее близким по технической сущности к предлагаемому объекту является способ переработки бокситов на глинозем по параллельной схеме Байер-спекание, описанный в книге [2, с.163].

Известный способ переработки бокситов на глинозем включает в ветви Байера дробление и последующий размол боксита в оборотном растворе, автоклавное выщелачивание, сгущение пульпы с получением алюминатного раствора и красного шлама автоклавного выщелачивания, промывку красного шлама автоклавного выщелачивания, декомпозицию алюминатного раствора с получением гидроксида алюминия и маточного раствора, выпарку маточного раствора с получением оборотного раствора, кальцинацию гидроксида алюминия с получением глинозема, в ветви спекания подготовку шихты, спекание шихты с получением спека и пыли электрофильтров, выщелачивание полученного спека с получением алюминатного раствора, содержащего кремнезем, и красного шлама спекательного передела, обескремнивание алюминатного раствора с получением белого шлама и обескремненного алюминатного раствора, декомпозицию обескремненного алюминатного раствора с получением гидроксида алюминия и маточного раствора, выпарку с получением оборотного раствора, направляемого в ветвь Байера на размол боксита. Пыль после операции спекания возвращается вновь на операцию спекания [2, c.131]. Количество пыли достигает 30-70 % от массы получаемого спека. Возврат пыли в технологическую схему позволяет сократить потери ценных компонентов. Однако при этом большая часть пылевидной фракции шихты вновь удаляется из процесса в виде пыли на этой же операции спекания, что делает такой возврат малоэффективным приемом обработки.

Пыль электрофильтров наравне с другими видами пылей возвращается в технологический цикл спекания подачей ее в печь.

Недостатком способа является наличие потерь ценных компонентов в виде соединений редкоземельных элементов, содержащихся в пыли электрофильтров.

Задачей, на решение которой направлено заявляемое изобретение, является извлечение соединений редкоземельных элементов из пыли электрофильтров процесса переработки бокситового сырья.

Предлагаемый способ переработки бокситов на глинозем включает в ветви Байера дробление и последующий размол боксита в оборотном растворе, автоклавное выщелачивание, сгущение пульпы с получением алюминатного раствора и красного шлама автоклавного выщелачивания, промывку красного шлама автоклавного выщелачивания, декомпозицию алюминатного раствора с получением гидроксида алюминия и маточного раствора, выпарку маточного раствора с получением оборотного раствора, кальцинацию гидроксида алюминия с получением глинозема, в ветви спекания подготовку шихты, спекание шихты с получением спека и пыли электрофильтров, выщелачивание полученного спека с получением алюминатного раствора, содержащего кремнезем, и красного шлама спекательного передела, обескремнивание алюминатного раствора с получением белого шлама и обескремненного алюминатного раствора, декомпозицию обескремненного алюминатного раствора с получением гидроксида алюминия и маточного раствора, выпарку с получением оборотного раствора, направляемого в ветвь Байера на размол боксита.

Способ отличается тем, что пыль электрофильтров подвергают выщелачиванию водой или обескремненным алюминатным раствором с получением красного шлама электрофильтрации и щелочно-алюминатного раствора электрофильтрации, разделяют фильтрацией красный шлам электрофильтрации и щелочно-алюминатный раствор электрофильтрации, щелочно-алюминатный раствор электрофильтрации направляют на смешение с обескремненным алюминатным раствором ветви спекания, а красный шлам электрофильтрации направляют на выделение из него редкоземельных элементов.

Исследуя реальную картину работы ветвей спекания Уральских заводов, авторы обратили внимание на образование большого количества пыли в процессе получения спека. Данная пыль является балластом, снижающим КПД печи спекания и процесса в целом. При попадании шихты в печь спекания происходят различные физико-химические превращения. В связи с этим часть продуктов реакций из различных зон печи увлекается отходящими газами и в виде пыли выносится во внепечное пространство, где улавливается системой газоочистки.

В силу технологических особенностей работы трубчатых печей спекания всю пыль вывести из процесса спекания нельзя, поэтому была поставлена задача по поиску возможности утилизации в цикле Байера только самой проблемной части – пыли электрофильтров (ПЭ), так как электрофильтрами улавливается только самые мелкие частицы. Кратность пылевозврата этих фильтров самая высокая из всех агрегатов системы пылеулавливания (батарейных циклонов, пылевой камеры) и, в связи с этим, нагрузка на данный фильтр чрезмерна.

Исследование возвратной пыли электрофильтров двух и трех компонентных шихт печей спекания уральских заводов на вещественный и количественный состав было проведено методами ИК–спектроскопии и рентгенодифрактометрии, а также методом рентгеноспектрального флуоресцентного анализа. В таблице 1 представлен количественный анализ ПЭ двухкомпонентной шихты, для сравнения также показан химический состав получаемого спека.

Таблица 1 – Химический состав пыли электрофильтров (ПЭ) и спека, полученных в технологическом цикле из двухкомпонентной шихты, %

Элементы ППП Al2O3 SiO2 Na2O K2O MgO CaO Fe2O3
ПЭ 24,8 25,5 2,49 28,3 0,44 0,1 2,5 12,2
Спёк 0,1 33,1 5,12 27,5 0,32 2,0 11,2 14,8

Как видно по данным таблицы, химический состав ПЭ и спека значительно отличаются друг от друга. В первую очередь это связано с незавершенностью процесса спекания пыли, которая достаточно легкая и очень быстро проходит горячие зоны печи. Различие в составе ПЭ и спека также подтверждается результатами ИК-спектроскопии и рентгенофазового анализа.

Данные ИК-спектроскопии показали, что валентные и деформационные колебания химических связей пыли электрофильтров соответствуют следующим минеральным соединениям:

2Na2O· 2SiO2·2H2O (натриевый гидросиликат) с максимумом 1100-1000см-1, AlOOH (бёмит или диаспор) в зависимости от спекаемого боксита 1145 – 1152см-1, CaCO3 880см-1 (кальцит или арагонит), а так же Na2O·Al2O3·3H2O – 630см-1, 525-580см-1. Рентгеноструктурный анализ подтвердил наличие в составе возвратной пыли небольшого количества алюминатов и ферритов натрия. Вещественный состав полученных спеков показал, что они полностью состоят из ферритов (Na2O·Fe2O3) и алюминатов натрия (Na2O·Al2O3), а также силиката натрия (Na2O·SiO2), полученных после завершения спекообразования шихты в технологическом цикле.

Выявленные довольно сильные отличия в химическом составе ПЭ и спека, которые ранее считались одинаковыми материалами, привел к необходимости проверки отличий в концентрации редкоземельных элементов (РЗЭ). Эти отличия показаны в таблице 2.

Таблица 2 – Химический состав содержания редкоземельных элементов (РЗЭ) в пыли электрофильтров и спека, полученных в технологическом цикле при спекании двухкомпонентной шихты, г/т

Элементы Sc Sr Y La Ce Nd Sm Eu
ПЭ 20,9 372,8 50,8 68,4 142,3 56,0 9,8 1,8
Спёк 42,4 756,3 103,3 96.5 172,8 113,6 20,2 3.7

Из приведенных данных видно, что пыли электрофильтров спекательного передела содержат также РЗЭ. Поэтому данная пыль электрофильтров может являться источником сырья для выделения из нее редкоземельных элементов, ее рекомендуется перерабатывать отдельно, выводя из технологического цикла.

Именно поэтому предлагается пыль электрофильтров подвергнуть выщелачиванию водой или обескремненным алюминатным раствором с получением красного шлама электрофильтрации и щелочно-алюминатного раствора электрофильтрации. Затем следует разделть фильтрацией красный шлам электрофильтрации и щелочно-алюминатный раствор электрофильтрации, щелочно-алюминатный раствор электрофильтрации направить на смешение с обескремненным алюминатным раствором ветви спекания, а красный шлам электрофильтрации направить на выделение из него редкоземельных элементов. Получаемый эффект будет показан в примерах реализации.

Пример 1.

В лабораторных условиях проводили исследования с пылью электрофильтров, полученной в промышленных условиях на переделе спекания Уральского алюминиевого завода. Выщелачивание навески пыли электрофильтров при ж:т = 10:1 проводили при температуре 95оС в дистиллированной воде в течение 60 минут. После выщелачивания отделяли полученный красный шлам электрофильтров от алюминатного раствора. После его промывки и сушки определяли в нем содержание редкоземельных элементов с применением метода индуктивно связанной плазменной спектрометрии (ISP-MS) на приборе NIOX300D (таблица 3). Рассчитывали извлечение редкоземельных элементов в полученный красный шлам. Оно составило 80-90% от исходной пыли электрофильтров.

Пример 2.

В лабораторных условиях проводили исследования с пылью электрофильтров, полученной в промышленных условиях на переделе спекания Уральского алюминиевого завода. Выщелачивание навески пыли электрофильтров при ж:т = 10:1 проводили при температуре 95оС в алюминатном растворе в течение 60 минут. Алюминатный раствор имел следующий химический состав: Na2O = 120,1 г/дм3, Al2O3 = 118,6 г/дм3.После выщелачивания отделяли полученный красный шлам электрофильтров от алюминатного раствора. После его промывки и сушки определяли в нем содержание редкоземельных элементов с применением метода индуктивно связанной плазменной спектрометрии (ISP-MS) на приборе NIOX300D (таблица 3). Рассчитывали извлечение редкоземельных элементов в полученный красный шлам. Оно составило 50-60% от исходной пыли электрофильтров. Более низкое извлечение РЗЭ во втором примере объясняется наличием в алюминатном растворе каустической щелочи, что приводит к частичному растворению минералов, содержащих РЗЭ и разубоживанию их в полученном красном шламе.

Таблица 3 – Химический состав содержания редкоземельных элементов в красном шламе, полученном после выщелачивания пыли электрофильтров в воде и алюминатном растворе, г/т

Элементы Sc Sr Y La Ce Nd Sm Eu
Красный шлам, полученный после выщелачивания пыли электрофильтров в воде 269,0 3397,5 701,8 1103,6 2083,3 718,7 109,8 19,3
Красный шлам, полученный после выщелачивания пыли электрофильтров в алюминатном растворе 180,9 2701,2 312,1 343,6 693,2 265,6 46,1 8,6

Как видно из таблицы 3, общее количество РЗЭ, которое удалось выделить в красном шламе после выщелачивания пыли электрофильтров в первом примере составило свыше 8000 г/т, а во втором примере более 4000 г/т. Тем самым показано достижение технического результата - извлечение соединений редкоземельных элементов из пыли электрофильтров процесса переработки бокситового сырья. Извлечение дополнительных компонентов из природного сырья позволяет повысить эффективность переработки бокситового сырья в целом.

Библиографические данные источников информации

1. Лайнер А.И. Производство глинозема. М.: Металлургиздат, 1961. 620с.

2. Троицкий И.А., Железнов В.А. Металлургия алюминия. М.: Металлургия, 1977. 392с.

3. Логинова И.В., Кырчиков А.В. Аппаратурно-технологические схемы в производстве глинозема. Екатеринбург: УрФУ. 2012. 233 с.

4. Логинова И.В., Корюков В.Н., Лебедев В.А., Ракипов Д.Ф. Распределение редкоземельных элементов в сырье и продуктах глиноземного производства Уральских заводов. Известия вузов. Цветная металлургия. 1997. №1. С.19-20.

5. Логинов Ю.Н., Буркин С.П., Логинова И.В., Щипанов А.А. Восстановительная плавка красных шламов глиноземного производства. Сталь. 1998. № 8. С. 74-77.

6. Буркин С.П., Логинов Ю.Н., Щипанов А.А., Жуков С.С., Логинова И.В. Переработка железоглиноземистых техногенных отходов. Сталь. 1996. № 6. С. 77-80.

7. Патент US5296177. Process for producing agglomerates from dusts. Патентообладатель ALCAN INT LTD. Опубл. 1994-03-22. МПК C01F7/02; C22B1/24, B29B9/08. Заявка US19920972506 от 1992.11.06.

8. Патент РФ № 2232716. МПК C01F7/38. Способ переработки бокситов на глинозем/ И.В. Логинова; Ю.Н. Логинов; С.Ф. Ордон; В.А. Лебедев; заявитель ГОУ ВПО "Уральский государственный технический университет - УПИ". Опубл. 2004.07.20.

9. Патент RU 2424981. Способ выщелачивания глиноземсодержащих спеков. Заявка: 2009103355/05 от 02.02.2009. Опубл.: 27.07.2011. Бюл. № 21. Патентообладатель: ОАО «РУСАЛ ВАМИ» (RU). МПК C01F7/38, C01F7/06.

10. Логинова И.В., Шопперт А.А., Чайкин Л.И. Изучение физико-химических свойств возвратной пыли печей спекания бокситовых шихт. Вестник Иркутского государственного технического университета. 2016. № 2 (109). С. 100-106.

11. Чжен В.А., Буркат В.С., Утков В.А., Самбуева Е.А. Минимизация негативного воздействия предприятий алюминиевой промышленности на окружающую среду. Металлург. 2008. № 11. С. 41-45.

Источник поступления информации: Роспатент

Showing 1-10 of 207 items.
20.08.2016
№216.015.4acb

Способ удаления мелких частиц из крупнозернистого слоя сыпучих материалов

Изобретение относится к области разделения компонентов дисперсной сыпучей среды, различающихся размером, и может быть использовано в сельском хозяйстве для удаления посторонних примесей при очистке сельскохозяйственных зерновых культур (пшеница, рожь, ячмень и др.) от мелкодисперсной среды...
Тип: Изобретение
Номер охранного документа: 0002594494
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e31

Реактор для аэробной ферментации биомассы

Изобретение используется в сельском и лесном хозяйстве. Цилиндрический термостатированный корпус реактора установлен вертикально и содержит трубу загрузочного устройства, соединенную через подшипниковые узлы с кольцевой пустотелой трубой мешалки, на выходе которой подключена гребенка с...
Тип: Изобретение
Номер охранного документа: 0002595143
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e4e

Система управления тепловым режимом в комплексе "печь ванюкова - котел-утилизатор"

Изобретение относится к области металлургии и может быть использовано, например, в печи Ванюкова. Система дополнительно снабжена корректирующим регулятором соотношения шихта/кислородно-воздушная смесь по температуре в котле-утилизаторе, датчиком температуры котла-утилизатора, установленным на...
Тип: Изобретение
Номер охранного документа: 0002595188
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4f6a

Способ упрочнения поверхности деталей обработкой трением с перемешиванием вращающимся инструментом

Изобретение относится к упрочнению плоских поверхностей заготовок. Осуществляют перемещение вращающегося упрочняющего инструмента по всей поверхности механически обработанной заготовки с установленными нагрузкой и скоростью по заданной траектории. Используют упрочняющий инструмент с рабочим...
Тип: Изобретение
Номер охранного документа: 0002595191
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.548e

Способ улучшения энергетического разрешения сцинтилляционного гамма-спектрометра

Изобретение относится к гамма-спектрометрам с неорганическими сцинтилляторами, имеющими зависимость световыхода от энергии образованных в них гамма-квантами вторичных электронов. Способ улучшения энергетического разрешения сцинтилляционного гамма-спектрометра включает преобразование с помощью...
Тип: Изобретение
Номер охранного документа: 0002593617
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5571

Способ получения извести

Изобретение относится к технологиям производства извести различного назначения, включая производство строительных материалов, и рекомендуется для предприятий мощностью от 10 до 300 тыс т в год. Технический результат заключается в повышении химической активности, улучшении технических и...
Тип: Изобретение
Номер охранного документа: 0002593396
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5d60

Валковый пресс для брикетирования

Изобретение относится к области обработки давлением и может быть использовано в оборудовании для брикетирования. Валковый пресс содержит станину, на которой размещены с возможностью вращения от привода валки. Валки выполнены с рядом формующих ячеек в форме плоского овала, последовательно...
Тип: Изобретение
Номер охранного документа: 0002590435
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e53

Брикет для легирования алюминиевого сплава

Изобретение относится к брикетам для легирования при выплавке алюминиевых сплавов. Брикет содержит стружку сплава алюминия с медью и частицы меди в количестве 20-40 мас.% от общей массы брикета. Частицы меди могут быть использованы в виде стружки. Обеспечивается погружение брикета в расплав при...
Тип: Изобретение
Номер охранного документа: 0002590441
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5fd3

Способ обработки металлов

Изобретение относится к области обработки металлов давлением. Способ включает формоизменение заготовки протягиванием ее через деформирующий инструмент с нагревом от тепла деформации и трения за счет повышения скольжения на поверхности контакта между деформирующим инструментом и заготовкой, с...
Тип: Изобретение
Номер охранного документа: 0002590437
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.669c

Волновая электростанция

Изобретение предназначено для выработки электрической энергии от движения волн в морях и океанах. Волновая электростанция содержит платформу на понтонах с размещенными на ней электрическим генератором и штангой с шестерней. На платформе с помощью стоек размещено дугообразное зубчатое коромысло....
Тип: Изобретение
Номер охранного документа: 0002592094
Дата охранного документа: 20.07.2016
Showing 1-10 of 24 items.
20.02.2015
№216.013.2a0c

Способ получения цилиндрической заготовки в виде прутка из металлического армированного композиционного материала

Изобретение относится к области металлургии, а именно к методам получения заготовок типа прутков из композиционных материалов литейными технологиями. Способ включает размещение в цилиндрической емкости проволоки из упрочняющего металлического материала, расплавление металла матрицы, заполнение...
Тип: Изобретение
Номер охранного документа: 0002542221
Дата охранного документа: 20.02.2015
20.01.2016
№216.013.a04f

Способ получения литой цилиндрической заготовки

Предлагаемое изобретение относится к литейному производству и может быть использовано для получения заготовок типа дисков или колец из композиционных материалов. Способ включает получение расплавленного металлического материала матрицы, погружение в расплав трубки из кварцевого стекла, в...
Тип: Изобретение
Номер охранного документа: 0002572681
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a050

Способ получения многослойной полой заготовки

Изобретение относится к области металлургии и может быть использовано при получении многослойных полых заготовок. Первую полую заготовку исходных размеров подвергают прокатке на кольцепрокатном стане с получением заготовки первого перехода. Внутренний диаметр указанной заготовки увеличен до...
Тип: Изобретение
Номер охранного документа: 0002572682
Дата охранного документа: 20.01.2016
10.04.2016
№216.015.2b7a

Способ получения полос из немерных отрезков труб

Изобретение относится к методам утилизации немерных концов труб предпочтительно из нержавеющей стали. Способ включает разделку исходной трубы на мерные и немерные отрезки, плющение отрезков с получением плоского профиля. Получение товарного продукта без применения энергоемких процессов...
Тип: Изобретение
Номер охранного документа: 0002579856
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2eb1

Способ получения изделий типа стакан из немерных концов труб

Изобретение относится к области металлургии, а точнее к методам утилизации немерных концов труб, предпочтительно из нержавеющей стали. Способ включает разделку исходной трубы на мерные и немерные отрезки. При этом немерные отрезки дополнительно нарезают на заготовки определенной длины....
Тип: Изобретение
Номер охранного документа: 0002580257
Дата охранного документа: 10.04.2016
12.01.2017
№217.015.5d60

Валковый пресс для брикетирования

Изобретение относится к области обработки давлением и может быть использовано в оборудовании для брикетирования. Валковый пресс содержит станину, на которой размещены с возможностью вращения от привода валки. Валки выполнены с рядом формующих ячеек в форме плоского овала, последовательно...
Тип: Изобретение
Номер охранного документа: 0002590435
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e53

Брикет для легирования алюминиевого сплава

Изобретение относится к брикетам для легирования при выплавке алюминиевых сплавов. Брикет содержит стружку сплава алюминия с медью и частицы меди в количестве 20-40 мас.% от общей массы брикета. Частицы меди могут быть использованы в виде стружки. Обеспечивается погружение брикета в расплав при...
Тип: Изобретение
Номер охранного документа: 0002590441
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5fd3

Способ обработки металлов

Изобретение относится к области обработки металлов давлением. Способ включает формоизменение заготовки протягиванием ее через деформирующий инструмент с нагревом от тепла деформации и трения за счет повышения скольжения на поверхности контакта между деформирующим инструментом и заготовкой, с...
Тип: Изобретение
Номер охранного документа: 0002590437
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.9e8e

Способ комплексной переработки золы от сжигания углей

Изобретение относится к комплексной переработке зол от сжигания углей. Способ включает шихтовку золы с гидроксидом натрия, спекание при температуре 150-200°С, выщелачивание спека, разделение фаз, обескремнивание раствора путем добавки в раствор гидроалюмосиликата натрия. Согласно способу перед...
Тип: Изобретение
Номер охранного документа: 0002605987
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b171

Литая латунь

Изобретение относится к области металлургии, в частности к составу многокомпонентных деформируемых медных сплавов, содержащих Zn, Mn, Al, Si, Ni, Cr и предназначенных для получения литых заготовок, подвергающихся пластической обработке для изготовления деталей, работающих в условиях повышенного...
Тип: Изобретение
Номер охранного документа: 0002613234
Дата охранного документа: 15.03.2017
+ добавить свой РИД