×
13.01.2020
220.017.f4b9

Результат интеллектуальной деятельности: Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению нанопорошков из отходов свинцовой бронзы, которые могут быть использованы для нанесения износостойких, антифрикционных, коррозионностойких и противозадирных покрытий. Отходы свинцовой бронзы подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 95…105 Гц, напряжении на электродах 190…200 В и емкости конденсаторов 65,5 мкФ, после чего ведут отделение наноразмерных частиц от крупноразмерных центрифугированием раствора. Обеспечивается получение нанопорошков из отходов с невысокими энергетическими затратами и экологической чистотой процесса. 6 ил., 3 пр.

Изобретение относится к области порошковой металлургии, в частности к составам и способам получения бронзового порошка, и может быть использовано для нанесения износостойких, антифрикционных, коррозионностойких и противозадирных покрытий - для восстановления и упрочнения деталей машин горно-металлургической промышленности, автомобильного, трамвайно-троллейбусного и судового транспорта.

Известные марки бронзовых порошков различных форм и размеров получают разнообразными способами:

- посредством механического сухого размола. В этом случае измельчение стружки, обрезков и компактных материалов проводят в шаровых, вихревых, молотковых и других мельницах (Технология неорганических порошковых материалов и покрытий функционального назначения. Удалов Ю.П., Германский A.M., Жабреев В.А. и др. СПб., 2001, 428 с.);

- путем обработки твердых (компактных) металлов резанием. При станочной обработке литых металлов или сплавов подбирают такой режим резания, который обеспечивает образование частиц, а не стружки (Технология неорганических порошковых материалов и покрытий функционального назначения. Удалов Ю.П., Германский A.M., Жабреев В.А. и др. СПб., 2001, 428 с. ).

Известен способ изготовления порошкового материала на основе меди (Патент РФ №2458166, МПК С22С 1/04, B22F 3/12, С22С 9/00), в частности способ изготовления порошковых оловянистых бронз при утилизации отходов порошковых формовок. В высокоэнергетической мельнице активируют предварительно измельченные до размера менее 5 мм и пропитанные керосином отходы порошковых формовок на основе меди с помощью размольных шаров, покрытых ферромарганцем в количестве 10 мас. %, в среде, содержащей 10 мас. % керосина. Недостатком известного способа являются высокая энергоемкость процесса получения порошковых материалов, низкая экологичность, высокая себестоимость.

Наиболее близким к заявляемому является способ получения порошка бронзы (Патент РФ №1208672, МПК B22F 9/04). Согласно данному способу, смешивают порошок меди с частицами дендритной формы с легирующей добавкой в виде металлического порошка или окисла, например порошка олова или окисла олова, смесь подвергают нагреву до 550-600°С в среде осушенного диссоциированного аммиака, выдерживают при этой температуре в течение 3-4 ч и охлаждают в той же среде до 100-150°С, в результате чего получают пористые бронзовые кольца на бронзовых вставках, которые затем подвергают резанию в стружку. Образованная сыпучая стружка размалывается в вихревой мельнице в порошок. Недостатком данного метода получения порошка бронзы является многооперационность, энергозатратность, высокая себестоимость компонентов.

Существенным отличием предложенного способа является то, получение порошкового материала происходит из готового бронзового сплава методов электроэрозионного диспергирования, отсутствует необходимость спекания компонентов для дальнейшего размалывания и получения конечного продукта, что значительно снижает энергозатраты, себестоимость.

Заявляемое изобретение направлено на решение задачи получения нанопорошков из отходов свинцовой бронзы с низкой себестоимостью, невысокими энергетическими затратами и экологической чистотой процесса.

Поставленная задача достигается способом получения металлического нанопорошка из отходов свинцовой бронзы, отличающимся от прототипа тем, что отходы свинцовой бронзы (ГОСТ 493-79) подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 95…105 Гц; напряжении на электродах 190…200 В и емкости конденсаторов 65,5 мкФ, с последующим центрифугированием раствора для отделения наноразмерных частиц от крупноразмерных.

На фигуре 1 описаны этапы получения нанопорошка из отходов свинцовой бронзы; на фигуре 2 - схема процесса ЭЭД, на фигуре 3 - фазовый состав порошка, полученного из отходов свинцовой бронзы, на фигуре 4 - микрофотографии наночастиц полученного порошка; в фигуре 5 - элементный состав порошка, полученного из отходов свинцовой бронзы, на фигуре 6 - микрофотографии наночастиц полученного порошка.

Процесс ЭЭД представляет собой разрушение токопроводящего материала в результате локального воздействия кратковременных электрических разрядов между электродами [Немилов, Е.Ф. Электроэрозионная обработка материалов. Л.: Машиностроение, Ленингр. отд-ние, 1983. - 160 с.]. Получение порошка из отходов свинцовой бронзы на экспериментальной установке для получения нанодисперсных порошков из токопроводящих материалов [Патент RU на изобретение №2449859] проводилось по схеме, представленной на фигуре 1 в четыре этапа:

- 1 этап - подготовка к процессу электроэрозионного диспергирования;

- 2 этап - процесс электроэрозионного диспергирования;

- 3 этап - выгрузка порошка из реактора и его центрифугирование.

- 4 этап - сушка и взвешивание нанопорошка из отходов свинцовой бронзы.

Получаемые этим способом порошковые материалы, имеют в основном сферическую и эллиптическую форму частиц. Причем, изменяя электрические параметры процесса диспергирования (напряжение на электродах, емкость конденсаторов и частоту следования импульсов) можно управлять шириной и смещением интервала размера частиц, а также производительностью процесса. Для отделения наночастиц от крупноразмерных используется центрифуга.

На первом этапе производили сортировку отходов свинцовой бронзы, их промывку, сушку, обезжиривание и взвешивание. Реактор заполняли рабочей средой - дистиллированной водой, отходы загружали в реактор. Монтировали электроды. Смонтированные электроды подключали к генератору. Устанавливали необходимые параметры процесса: частоту следования импульсов, напряжение на электродах, емкость конденсаторов.

На втором этапе - этапе электроэрозионного диспергирования включали установку. Процесс ЭЭД представлен на фигуре 2. Импульсное напряжение генератора 1 прикладывается к электродам 2 и далее к отходам 3 (в качестве электродов так же служили соответственно отходы свинцовой бронзы) в реакторе 4. При достижении напряжения определенной величины происходит электрический пробой рабочей среды 5, находящийся в межэлектродном пространстве, с образованием канала разряда. Благодаря высокой концентрации тепловой энергии, материал в точке разряда плавится и испаряется, рабочая среда испаряется и окружает канал разряда газообразными продуктами распада (газовым пузырем 6). В результате развивающихся в канале разряда и газовом пузыре значительных динамических сил, капли расплавленного материала выбрасываются за пределы зоны разряда в рабочую среду, окружающую электроды, и застывают в ней, образуя каплеобразные частицы порошка 7. Регулятор напряжения 8 предназначен для установки необходимых значений напряжения, а встряхиватель 9 передвигает один электрод, что обеспечивает непрерывное протекание процесса ЭЭД.

На третьем этапе проводится выгрузка рабочей жидкости с порошком из реактора, отделение наночастиц от крупноразмерных с помощью центрифуги. При этом, крупные частицы оседают под действием центробежных сил, а наночастицы остаются в растворе.

На четвертом этапе происходит выпаривание раствора, его сушка, взвешивание, фасовка, упаковка и последующий анализ нанопорошка.

При этом достигается следующий технический результат: получение нанопорошков из отходов свинцовой бронзы с частицами правильной сферической формы с невысокими энергетическими затратами и экологической чистотой процесса способом электроэрозионного диспергирования (ЭЭД).

Способ позволяет получить порошки из отходов свинцовой бронзы без использования химических реагентов, что существенно влияет на себестоимость порошка и позволяет избежать загрязнения рабочей жидкости и окружающей среды химическими веществами.

Средние удельные затраты электроэнергии при производстве электроэрозионного порошка из отходов свинцовой бронзы составляет 2,4 кг/кВт⋅ч, что ниже других способов получения порошков из свинцовой бронзы. Электроэрозионное диспергирование позволяет эффективно утилизировать отходы свинцовой бронзы с невысокими энергетическими затратами и экологической частотой процесса и получать нанопорошок.

Нанопорошковые материалы, получаемые ЭЭД отходов свинцовой бронзы, могут эффективно использоваться для нанесения износостойких, антифрикционных, коррозионностойких и противозадирных покрытий - для восстановления и упрочнения деталей машин горно-металлургической промышленности, автомобильного, трамвайно-троллейбусного и судового транспорта, энергетического и нефтегазового оборудования, а также для напыления декоративных покрытий.

Пример 1

Для получения нанодисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы свинцовой бронзы ГОСТ 493-79 в виде стружки. Стружку загружали в реактор, заполненный рабочей жидкостью дистиллированной водой. При этом использовали следующие электрические параметры установки:

- частота следования импульсов 95…105 Гц;

- напряжение на электродах 190…200 В;

- емкость конденсаторов 65,5 мкФ.

Полученный порошок исследовали различными методами.

Исследование фазового состава порошка проводили методом рентгеновской дифракции на дифрактометре Rigaku Ultima IV в излучении Cu-Kα (длина волны λ=0.154178 нм) с использованием щелей Соллера. На основании фигуры 3 было установлено, что основными фазами в порошке, полученном методом электроэрозионного диспергирования отходов свинцовой бронзы в дистиллированной воде, являются Cu, Pb(Cu2O2), Pb5O8, Pb.

Для изучения элементного состава и морфологии полученного нанопорошка из отходов свинцовой бронзы были выполнены снимки с помощью энерго-дисперсионного анализатора рентгеновского излучения фирмы EDAX, встроенного в растровый электронный микроскоп «QUANTA 200 3D». На основании фигуры 4 нанопорошок, полученный методом ЭЭД из отходов свинцовой бронзы, в основном, состоит из частиц правильной сферической формы (или эллиптической), с включениями частиц неправильной формы (конгломератов). На основании фигуры 5 установлено, что основными элементами являются О (7,77%); Sn (1,77%); Cu (55,59%); Zn (5,86%); Pb (28,10%).

Пример 2

Для получения дисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы свинцовой бронзы ГОСТ 493-79 в виде стружки. Стружку загружали в реактор, заполненный рабочей жидкостью дистиллированной водой. При этом использовали следующие электрические параметры установки:

- частота следования импульсов 95…105 Гц;

- напряжение на электродах 140…160 В;

- емкость конденсаторов 45,5 мкФ.

Для изучения формы и морфологии полученного нанопорошка были выполнены снимки с помощью энерго-дисперсионного анализатора рентгеновского излучения фирмы EDAX, встроенного в растровый электронный микроскоп «QUANTA 200 3D». На основании фигуры 6, порошок, полученный методом ЭЭД из отходов свинцовой бронзы при данных режимах получается с частицами преимущественно неправильной (осколочной) формы, а также при данных параметрах диспергирования производительность процесса в 2,3 раза ниже, чем при параметрах диспергирования, описанных в первом примере.

Пример 3

Для получения дисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы свинцовой бронзы ГОСТ 493-79 в виде стружки. Стружку загружали в реактор, заполненный рабочей жидкостью дистиллированной водой. При этом использовали следующие электрические параметры установки:

- частота следования импульсов 150 Гц;

- напряжение на электродах 210 В;

- емкость конденсаторов 65,5 мкФ.

При данных режимах процесс диспергирования не стабилен и носит взрывной характер.

Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде, отличающийся тем, что отходы свинцовой бронзы подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 95…105 Гц, напряжении на электродах 190…200 В и емкости конденсаторов 65,5 мкФ и последующему отделению наноразмерных частиц от крупноразмерных центрифугированием раствора.
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Источник поступления информации: Роспатент

Showing 11-20 of 320 items.
27.11.2015
№216.013.943c

Способ и ассоциативное матричное устройство для обработки строковых данных

Изобретение относится к вычислительной технике. Технический результат заключается в повышении быстродействия работы устройства для обработки строковых данных. Способ для параллельной обработки строковых данных отличается последовательностью аппаратных шагов параллельного замещения,...
Тип: Изобретение
Номер охранного документа: 0002569567
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9463

Способ выбора оптимальных режимов шлифования детали

Изобретение относится к машиностроению и может быть использовано для выбора оптимальных режимов шлифования. Для этого осуществляют экспресс-контроли режимов шлифования путем обработки детали, закрепленной на координатном столе, имеющем продольное, поперечное и вертикальное перемещения, под...
Тип: Изобретение
Номер охранного документа: 0002569606
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9633

Биотехническая система контроля биоимпеданса

Изобретение относится к медицинской технике. Биотехническая система контроля биоимпеданса состоит из ЭВМ и мобильного блока, содержащего активный и пассивный электроды и их токоподводы, электронный модуль, аккумуляторный блок питания и беспроводный интерфейс, подключенный к выходу электронного...
Тип: Изобретение
Номер охранного документа: 0002570071
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9d06

Электрод свинцово-кислотного аккумулятора (варианты)

Изобретение относится к электротехнической промышленности и касается поточного изготовления поверхностных электродов, используемых в производстве свинцово-кислотных аккумуляторов. Техническим результатом изобретения является одновременное повышение удельной емкости, удельной энергии, удельной...
Тип: Изобретение
Номер охранного документа: 0002571823
Дата охранного документа: 20.12.2015
20.03.2016
№216.014.ca94

Способ получения наночастиц никеля, покрытых слоем углерода

Изобретение может быть использовано в неорганической химии. Для получения наночастиц никеля, покрытых слоем углерода, сухие лепестки китайской розы, пропитанные водным раствором хлорида никеля, подвергают термическому разложению в вакууме 10 мбар. Разложение ведут при нагревании до температуры...
Тип: Изобретение
Номер охранного документа: 0002577840
Дата охранного документа: 20.03.2016
10.04.2016
№216.015.2bd9

Устройство управления дебалансным вибровозбудителем

Изобретение относится к электротехнике, предназначено для управления дебалансным вибровозбудителем, который содержит электродвигатель постоянного тока. Технической результат - снижение пульсаций момента двигателя, повышение точности регулирования, исключение режима прерывистых токов, снижение...
Тип: Изобретение
Номер охранного документа: 0002579456
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd2

Пастила с овощными добавками

Изобретение относится к пищевой промышленности. Предложена пастила, включающая в себя яблочное пюре, овощные добавки, а именно свекольное пюре или морковное пюре в качестве красителя и дополнительного пектина, сахар-песок, воду, яичный белок, агар, лимонную кислоту, ванилин и сахарную пудру при...
Тип: Изобретение
Номер охранного документа: 0002579484
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e36

Фотоэлектрохимическая ячейка

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Фотоэлектрохимическая ячейка содержит фотоэлектроды, электролит и электролитный мостик. При этом фотоэлектроды представляют собой растение с листьями, стволом и корнями, насыщенными наночастицами металлов,...
Тип: Изобретение
Номер охранного документа: 0002579782
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33bb

Способ и многофункциональное ассоциативное матричное устройство для обработки строковых данных и решения задач распознавания образов

Группа изобретений относится к области вычислительной техники, может быть использована в специализированных устройствах аппаратной поддержки типовых операций задач распознавания образов, в аппаратной поддержке в высокопроизводительных системах и устройствах параллельной обработки символьной...
Тип: Изобретение
Номер охранного документа: 0002582053
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3476

Устройство автоматизированного регулирования расхода тепла на отоплениев системах теплоснабжения

Изобретение относится к централизованному теплоснабжению жилых, общественных и промышленных зданий. Технический результат по снижению энергозатрат достигается тем, что устройство для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения содержит подающий и...
Тип: Изобретение
Номер охранного документа: 0002581975
Дата охранного документа: 20.04.2016
Showing 11-20 of 22 items.
17.08.2018
№218.016.7c59

Способ получения мелкокристаллического корунда

Изобретение относится к производству абразивных тугоплавких материалов, в частности к получению порошка - оксида алюминия (корунда), и может быть использовано в металлообрабатывающей, машиностроительной, химико-металлургической промышленности. Отходы электротехнической алюминиевой проволоки,...
Тип: Изобретение
Номер охранного документа: 0002664149
Дата охранного документа: 15.08.2018
23.02.2019
№219.016.c6c6

Способ получения спеченного изделия из порошка кобальтохромового сплава

Изобретение относится к получению спеченного изделия из порошка кобальтохромового сплава. Получают порошок кобальтохромового сплава путем электроэрозионного диспергирования сплава КХМС в бутиловом спирте при емкости разрядных конденсаторов 48 мкФ, напряжении на электродах 140 В и частоте...
Тип: Изобретение
Номер охранного документа: 0002680536
Дата охранного документа: 22.02.2019
08.03.2019
№219.016.d380

Способ получения кобальто-хромовых порошков электроэрозионным диспергированием

Изобретение относится к получению порошка кобальтохромового сплава КХМС. Проводят электроэрозионное диспергирование сплава КХМС в бутаноле посредством воздействия на него кратковременных электрических разрядов между электродами при напряжении на электродах 90-110 В, емкости разрядных...
Тип: Изобретение
Номер охранного документа: 0002681237
Дата охранного документа: 05.03.2019
08.03.2019
№219.016.d39a

Способ получения спеченных изделий из электроэрозионных вольфрамосодержащих нанокомпозиционных порошков

Изобретение относится к получению спеченных изделий из электроэрозионных вольфрамсодержащих нанокомпозиционных порошков. Ведут электроэрозионное диспергирование отходов стали Р6М5 и твердого сплава ВК8 в керосине осветительном. Отходы быстрорежущей стали марки Р6М5 диспергируют при напряжении...
Тип: Изобретение
Номер охранного документа: 0002681238
Дата охранного документа: 05.03.2019
29.03.2019
№219.016.edec

Способ получения порошка псевдосплава w-ni-fe методом электроэрозионного диспергирования в дистиллированной воде

Изобретение относится к получению порошка псевдосплава W-Ni-Fe из отходов. Проводят электроэрозионное диспергирование отходов псевдосплава W-Ni-Fe в виде стружки в дистилированной воде при частоте следования импульсов 156 Гц, напряжении на электродах 100 В и емкости разрядных конденсаторов 65,5...
Тип: Изобретение
Номер охранного документа: 0002683162
Дата охранного документа: 26.03.2019
20.05.2019
№219.017.5d14

Порошковый материал для газодинамического напыления дефектных головок блоков цилиндров

Изобретение относится к порошковым материалам для получения покрытий методом сверхзвукового холодного газодинамического напыления. Порошковый материал для газодинамического напыления дефектных головок блоков цилиндров получен электроэрозионным диспергированием отходов алюминия в...
Тип: Изобретение
Номер охранного документа: 0002688025
Дата охранного документа: 17.05.2019
07.09.2019
№219.017.c87c

Способ получения нихромовых порошков электроэрозионным диспергированием в воде дистиллированной

Изобретение относится к получению нихромовых порошков электроэрозионным диспергированием. Диспергирование сплава Х15Р60 проводят в дистиллированной воде при напряжении на электродах 90-110 В, емкости разрядных конденсаторов 58 мкФ и частоте следования импульсов 110-120 Гц. Обеспечивается...
Тип: Изобретение
Номер охранного документа: 0002699479
Дата охранного документа: 05.09.2019
14.11.2019
№219.017.e1ce

Состав шихты для производства аддитивных изделий

Изобретение относится к порошковой металлургии. Может быть использовано для производства изделий аддитивными технологиями из кобальтохромовых порошковых материалов в условиях массового, серийного и единичного производства. Порошок кобальтохромового сплава для производства аддитивных изделий...
Тип: Изобретение
Номер охранного документа: 0002705837
Дата охранного документа: 12.11.2019
21.12.2019
№219.017.f000

Способ получения вольфрамотитанокобальтовых порошков из отходов сплава т30к4 в спирте

Изобретение относится к получению вольфрамотитанокобальтовых порошков из отходов сплава Т30К4. Ведут электроэрозионное диспергирование отходов сплава Т30К4 в спирте при напряжении на электродах 110…120 В, ёмкости разрядных конденсаторов 48 мкФ и частоте следования импульсов 130...140 Гц....
Тип: Изобретение
Номер охранного документа: 0002709561
Дата охранного документа: 18.12.2019
12.02.2020
№220.018.0183

Способ получения спеченных изделий из изостатически спресованных электроэрозионных нанокомпозиционных порошков свинцовой бронзы

Изобретение относится к получению спеченных изделий из порошков свинцовой бронзы. Проводят электроэрозионное диспергирование отходов свинцовой бронзы в дистиллированной воде на установке электроэрозионного диспергирования при частоте следования импульсов 95…105 Гц, напряжении на электродах...
Тип: Изобретение
Номер охранного документа: 0002713900
Дата охранного документа: 10.02.2020
+ добавить свой РИД