×
24.12.2019
219.017.f1b5

Результат интеллектуальной деятельности: Способ получения композиций на основе оксидов циркония и церия

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при получении трехмаршрутных катализаторов для очистки выхлопных газов. Способ получения композиций на основе оксидов циркония и церия, применяемых в составе трехмаршрутных катализаторов, включает приготовление раствора, содержащего нитраты циркония, церия, лантана и другого редкоземельного элемента, выбранного из иттрия и неодима. Готовят суспензию путем смешения вышеуказанного раствора и основного соединения. Концентрация оксидов металлов в растворе, содержащем нитраты циркония, церия, лантана и другого редкоземельного элемента, находится на уровне от 20 до 30 г/дм в пересчете на конечную композицию. Перед осаждением в раствор вводят нитрат аммония до достижения концентрации от 0,5 до 1 моль/дм. Приготовление суспензии осуществляют при перемешивании и поддержании значения рН на уровне 8-10 за счет контролируемого одновременного дозирования раствора, содержащего нитраты циркония, церия, лантана и другого редкоземельного элемента, а также нитрата аммония и водного раствора аммиака в общий реакционный объем. Проводят гидротермальную обработку с выдержкой при температуре 70-160°С в течение 0,25-48 ч. В суспензию добавляют ПАВ, фильтруют, сушат и обжигают полученный осадок при 500-1000°С. Изобретение позволяет увеличить удельную поверхность продукта, снизить количество используемого ПАВ, повысить устойчивость композиции к воздействию высоких температур. 1 табл., 7 пр.

Изобретение относится к технологии получения композиций на основе церия с повышенной устойчивостью к воздействию высоких температур предназначенного для применения в составе трехмаршрутных катализаторах.

Для очистки выхлопных газов автомобилей с бензиновыми двигателями применяются трехмаршрутные катализаторы, функция которых одновременная конверсия загрязняющих веществ, а именно, окисление углеводородов и угарного' газа, а также восстановление оксидов азота. Выполнение данной функции возможно только при стехиометрическом соотношении окислителей и восстановителей в газовой фазе. Для поддержания стехиометрического соотношения газовой фазы, в составе трехмаршрутных катализаторах применяются материалы способные поглощать и высвобождать кислород из своей кристаллической решетки, тем самым поддерживать стабильность газовой фазы. В составе композиций применяются оксид церия, обуславливающий способность материалов обратим высвобождать кислород, а также оксиды циркония, иттрия и оксиды других редкоземельных элементов необходимые для повышения устойчивости к воздействию высоких температур.

Современной тенденцией является перемещение систем очистки ближе к двигателю, это приводит к решению проблемы холодного пуска и повышению температуры эксплуатации катализаторов. Длительная эксплуатация автомобильных катализаторов в условиях воздействия повышенных температур на уровне 1000°С приводит к укрупнению частиц материалов носителей, спеканию частиц благородных металлов, что ведет к снижению доступной площади поверхности благородных металлов и соответственно к снижению удельной каталитической активности. Таким образом, материалы, используемые в составе трехмаршрутных катализаторов, должны обладать высокой устойчивостью к воздействию высоких температур. Именно поэтому, актуальным является разработка новых способов получения композиций, состоящих из оксидов церия и циркония, а также по крайней мере оксида одного редкоземельного элемента, выбранного из иттрия, лантана и неодима, обеспечивающих устойчивость композиций к воздействию высоких температур, которая проявляется в сохранении высокой удельной поверхности на уровне не ниже 50 м2/г после обжига при температуре 1000°С в течение 4 часов.

Наиболее близким к данному изобретению является способ получения композиции на основе церия и циркония с добавлением по меньшей мере одного редкоземельного элемента, который описан в патенте [RU 2648072, приор, от 06.05.2010, опубл. 10.10.2014, МПК C01G 25/00 и др.]. Согласно изобретению способ включает приготовление раствора содержащего соединения циркония, церия, лантана и другого редкоземельного элемента, приготовление суспензии путем смешения указанного выше раствора и основного соединения, нагрев полученной суспензии, добавление ПАВа в суспензию, фильтрацию суспензии, сушку и обжиг полученного осадка.

Технической проблемой, на решение которой направленно данное изобретение, является необходимость использовать большое количество ПАВ, промывку осадка, а также низкое значение удельной поверхности конечной композиции.

Технический результат, достигаемый при реализации изобретения, заключается в преодоление вышеописанных недостатков: повышение уровня удельной поверхности системы при том же количестве используемого ПАВ или существенное снижение количества, необратимо теряемого ПАВ для достижения одного и того же уровня удельной поверхности за счет модификации процесса гидролиза солей металлов на стадии осаждения.

Заявленный способ получения композиций из оксидов церия и циркония, а также по крайней мере одного редкоземельного элемента, выбранного из иттрия, лантана и неодима, обеспечивающий высокую устойчивость к воздействию высоких температур, включает в себя:

- приготовление общего раствора, содержащего растворимые соли циркония, церия, а также одного или нескольких редкоземельных элементов, выбранных из иттрия, лантана и неодима с концентрацией от 2 0 до 30 г/дм3 в пересчете на конечную композицию;

- введение нитрата аммония в общий раствор до достижения концентрации нитрата аммония от 0,5 до 1 моль/дм3;

- введение дистиллированной воды в реакционный объем, осаждение гидратированных оксидов церия, циркония, а также по крайней мере одного редкоземельного элемента, выбранного из иттрия, лантана или неодима, путем дозирования указанного выше общего раствора в реакционный объем, в котором поддерживается постоянное значение рН на уровне от 8 до 10 включительно, предпочтительно от 8,5 до 9,5, за счет контролируемого введения реагента-осадителя основного характера в реакционный объем;

- проведение гидротермальной обработки суспензии при температурах от 70°С до 160°С, предпочтительно от 120°С до 130°С, с выдержкой при заданной температуре в течение от 0,25 до 4 8 часов, предпочтительно от 0,25 до 1 часа;

- отделение осадка от жидкой части любым известным способом, предпочтительно методом фильтрации на нутч-фильтре;

- добавка к осадку ПАВ из группы анионных поверхностно-активных вещества, неионогенных поверхностно-активных веществ, полиэтиленгликолей, предельных спиртов, карбоновых кислот и их солей;

- сушка и обжиг полученного осадка.

Соотношение церия, циркония и одного или нескольких редкоземельных элементов, выбранных из иттрия, лантана и неодима, выражается общей формулой: Ce1-n-mZrnLnmOx, где Ln - оксид или оксиды редкоземельных элементов, выбранных из иттрия, лантана и неодима, n - массовая доля оксида циркония, которая варьируется от 0,1 до 0,9, по предпочтительному способу получения n=0,5; m - массовая доля оксида или оксидов редкоземельных элементов, выбранных из иттрия, лантана и неодима, которая варьируется от 0,1 до 0,2, по предпочтительному способу получения композиции m=0,1.

Авторы нашли, что введение нитрата аммония в общий раствор, содержащий растворимые соли циркония, церия, а также одного или нескольких редкоземельных элементов, выбранных из иттрия, лантана и неодима, позволяет модифицировать процесс гидролиза солей металлов на стадии осаждения, что в конечном счете позволяет получить композиции устойчивые к воздействию высоких температур.

Без модифицирования процесса осаждения путем введения нитрата аммония, формирующиеся в процессе гидролиза зародыши гидратированных оксидов металлов в результате процессов коагуляции собираются в плотные агломераты, формирующие при последующей термической обработке композицию с меньшей устойчивостью к воздействию высоких температур, чем композиция, для которой процесс осаждения вели в присутствии нитрата аммония.

При введении нитрата аммония в общий раствор, удается модифицировать процесс гидролиза солей металлов, при этом нитрат аммония проявляет буферное действие и подавляет процессы коагуляции зародышей гидратированных оксидов металлов за счет увеличения времени нейтрализации капли по мере ее распространения в реакционном объеме. В данном случае зародыши гидратированных оксидов металлов собираются в рыхлые агрегаты, формирующие при последующей термической обработке композиции с высокой устойчивостью к воздействию высоких температур, характеризующиеся развитой фрактальной пористостью. Однако превышение концентрации нитрата аммония в общем растворе критического значения может привести к интенсификации процессов коагуляции, что в конечном счете приводит к формированию композиций с низкой устойчивостью к воздействию высоких температур.

Сущность изобретения поясняется фигурами, где изображено:

- на фиг. 1 - таблица значений удельной поверхности образцов, полученных по различным примерам,

На первой стадии получения композиций на основе циркония, церия с добавкой одного или нескольких редкоземельных элементов, выбранных из иттрия, лантана и неодима, готовят общий раствор заявленных элементов в жидкой среде с концентрацией от 20 до 30 г/дм3 в пересчете на конечную композицию. Использование общего раствора с концентрацией ниже 20 г/дм3 в пересчете на конечную композицию требует аппаратов большого объема, что не целесообразно с технологической точки зрения, а использование раствора с концентрацией выше 30 г/дм3 в пересчете на конечную композицию не позволяет достигнуть заявленного технического результата из-за повышения влияния солевого фона. В качестве жидкой среды может выступать любая жидкость, по преимущественному способу реализации изобретения жидкой средой является вода. В качестве соединений могут быть использованы соли циркония и РЗЭ, в том числе нитраты, хлориды, сульфаты, ацетаты. Также возможно приготовление солей циркония и РЗЭ путем растворения карбонатов или оксидов в различных минеральных кислотах. По преимущественному способу реализации изобретения для приготовления раствора соли циркония и церия используются карбонаты заявленных металлов и концентрированная азотная кислота, для получения растворов других редкоземельных элементов, выбранных из иттрия, лантана и неодима, используются оксиды редкоземельных металлов и концентрированная азотная кислота.

На второй стадии к приготовленному на первой стадии общему раствору солей добавляют нитрат аммония до достижения концентрации в растворе от 0,5 до 1 моль/дм3. При концентрации нитрата аммония в общем растворе ниже 0,5 моль/дм3 снижается влияние буферного эффекта, при этом уменьшается время нейтрализации капли и повышается активность процессов коагуляции, а при концентрации выше 1 моль/дм3 происходит интенсификация процессов коагуляции, за счет эффекта сжатия двойного электрического слоя, что приводит к формированию композиций с низкой устойчивостью к воздействию высоких температур.

На третьей стадии готовят исходный реакционный объем который представляет из себя дистиллированную воду. Далее проводят осаждение гидратированных оксидов церия, циркония, а также одного или нескольких редкоземельных элементов, выбранных из иттрия, лантана или неодима. Осаждение проводят путем одновременного дозирования общего раствора и основного соединения в указанный выше исходный реакционный объем, при этом рН реакционной смеси поддерживают на уровне от 8 до 10, предпочтительно от 8,5 до 9,5, за счет регулирования скоростей подачи общего раствора и основного соединения. В качестве основного соединения могут быть использованы растворы аммиака, гидроксида натрия или калия, тетраметиламина и других соединений, по предпочтительному способу реализации изобретения используется водный раствор аммиака.

На четвертой стадии проводят нагрев полученного на предыдущей стадии осадка в жидкой среде. Осадок нагревают до температуры не менее 70°С, обычно до температуры от 100°С до 160°С.Операцию нагрева предпочтительно проводит в закрытом сосуде типа автоклав. Продолжительность нагрева может варьироваться в широких пределах, например, от 0,25 до 48 часов, предпочтительно от 0,25 до 1 часа. Скорость нагрева не является критичной.

На пятой стадии проводят отделение осадка от жидкой части любым известным способом, предпочтительно использовать фильтрацию с помощью нутч-фильтра.

На шестой стадии к полученному на предыдущем этапа осадку добавляют ПАВ из группы анионных ПАВ, неионных ПАВ, полиэтиленгликолей и карбоновых кислот и их солей, а также ПАВов типа этоксилатов жирных карбоксиметилированных спиртов и предельных спиртов.

Завершающей стадией проводят сушку и обжиг полученного осадка. Режим сушки осадка не является критичным. Обычно сушку проводят при температуре от комнатной до 200°С до полного удаления влаги из осадка. Далее проводят обжиг полученного после сушки осадка. Температура обжига может варьироваться от 500 до 1000°С.

Пример 1

Этот пример относится к композиции из 50% массовых диоксида циркония, 40% диоксида церия 5% оксида иттрия и 5% оксида лантана.

В химический стакан при перемешивании вводят 40 см3 нитрата цирконила (158 г/дм3 в пересчете на ZrO2), 31 см3 нитрата церия (163 г/дм3 в пересчете на CeO2), 4,1 см3 нитрата лантана (152 г/дм3 в пересчете на La2O3) и 3,7 см3 нитрата иттрия (166 г/дм3 в пересчете на Y2O3). Затем добавляют дистиллированную воду, чтобы получить 500 см3 общего азотнокислого раствора с концентрацией 25 г/дм3 в пересчете на Zr0.5Ce0.4Y0.05La0.05Ox. В полученный раствор добавляют 40 г нитрата аммония, для получения общего раствора с концентрацией нитрата аммония в нем 1 моль/дм3. Параллельно с этим готовят реакционный объем путем введения 200 см3 дистиллированной воды в реактор с мешалкой и датчиком рН. Далее проводят одновременное дозирование общего раствора и 10%-го водного раствора аммиака в реакционный объем, при этом значение рН в реакционной смеси поддерживают на уровне 9.

Полученную суспензию помещают в автоклав и нагревают до температуры 120°С и выдерживают при заданной температуре 15 минут.

Полученную таким образом суспензию фильтруют на вакуумном нутч-фильтре. Далее осадок помещают в химический стакан и при перемешивании обрабатывают изопропанолом до достижения концентрации изопропанола в жидкой части суспензии значения 90±1% массовых.

Затем водно-спиртовую суспензию фильтруют на вакуумном нутч-фильтре, полученный осадок сушат при 120°С в течение 2 часов и обжигают при температуре 500°С и 1000°С в течение 2 часов и 4 часов соответственно.

Пример 2

Этот пример относится к композиции из 50% массовых диоксида циркония, 30% диоксида церия, 10% оксида лантана и 10% оксида неодима.

В химический стакан при перемешивании вводят 40 см3 нитрата цирконила (158 г/дм3 в пересчете на ZrO2), 23 см3 нитрата церия (163 г/ дм3 в пересчете на CeO2), 8 см3 нитрата лантана (152 г/дм3 в пересчете на La2O3) и 7 см3 нитрата неодима (167 г/дм3 в пересчете на Nd2O3). В полученный раствор добавляют 40 г нитрата аммония, для получения общего раствора с концентрацией нитрата аммония в нем 1 моль/дм3. Затем добавляют дистиллированную воду, чтобы получить 500 см3 общего азотнокислого раствора с концентрацией 25 г/дм3 в пересчете на Zr0.5Ce0.3La0.1Nd0.1Ox.

Дальнейшие операции проводят так же как описано в примере 1.

Пример 3

Состав такой же как в примере 1.

Исходный раствор содержащий ионы церия, цирконила, иттрия и лантана готовят так же как в примере 1. В полученный раствор добавляют 20 г нитрата аммония, для получения общего раствора с концентрацией нитрата аммония в нем 0,5 моль/дм3.

Последующие операции проводятся так же как в примере 1.

Пример 4

Состав такой же как в примере 1.

В химический стакан при перемешивании вводят 31 см3 нитрата цирконила (158 г/дм3 в пересчете на ZrO2), 24 мл нитрата церия (163 г/дм3 в пересчете на CeO2), 3,2 см3 нитрата лантана (152 г/дм3 в пересчете на La2O3) и 3 см3 нитрата иттрия (166 г/дм3 в пересчете на Y2O3). Затем добавляют дистиллированную воду, чтобы получить 500 см3 общего азотнокислого раствора с концентрацией 20 г/дм3 в пересчете на Zr0.5Ce0.4Y0.05La0.05Ox.

Последующие операции проводятся так же как в примере 1.

Пример 5 (сравнительный). Состав такой же как в примере 1

Исходный раствор содержащий ионы церия, цирконила, иттрия и лантана готовят так же как в примере 1, только в полученный раствор не добавляют нитрат аммония.

Последующие операции проводятся так же как в примере 1.

Пример 6 (сравнительный)

Состав такой же как в примере 1

Исходный раствор, содержащий ионы церия, цирконила, иттрия и лантана, готовят так же как в примере 1. В полученный раствор добавляют 80 г нитрата аммония, для получения общего раствора с концентрацией нитрата аммония в нем 2 моль/дм3.

Последующие операции проводятся так же как в примере 1.

Пример 7 (сравнительный)

Состав такой же, как в примере 1

В химический стакан при перемешивании вводят 78 см3 нитрата цирконила (158 г/дм3 в пересчете на ZrO2), 46 см3 нитрата церия (163 г/дм3 в пересчете на СеО2), 16 см3 нитрата лантана (152 г/дм3 в пересчете на La2O3) и 15 см3 нитрата иттрия (166 г/дм3 в пересчете на Y2O3). Затем добавляют дистиллированную воду, чтобы получить 500 см3 общего азотнокислого раствора с концентрацией 50 г/дм3 в пересчете на Zr0.5Ce0.4Y0.05La0.05Ox

Последующие операции проводятся так же, как в примере 1.

Для определения устойчивости композиций к воздействию высоких температур все образцы подвергались термической обработке при температуре 1000°С в течение 4 часов. Результаты определения удельной поверхности представлены на фиг. 1. Определение удельной поверхности композиций проводилось с использованием низкотемпературной адсорбции азота (-196°С) на приборе NOVA Quantachrorae 1200Е. Показано, что ведение процесса осаждения гидратированных оксидов в условиях когда концентрация исходного общего азотнокислого раствора находится в диапазоне от 20-30 г/дм3 в пересчете на конечный продукт, а концентрация нитрата аммония в исходном растворе варьируется от 0,5 до 1 моль/дм3 приводит к росту удельной поверхности формируемых композиций после обжига 1000°С в течение 4 часов, что определяет выгоду от использования предложенного способа.

Способ получения композиций на основе оксидов циркония и церия, предназначенных для применения в составе трехмаршрутных катализаторов, включающий приготовление раствора, содержащего нитраты циркония, церия, лантана и другого редкоземельного элемента, приготовление суспензии путем смешения указанного выше раствора и основного соединения, проведения гидротермальной обработки при температуре 70-160°С с выдержкой при этой температуре в течение 0,25-48 ч, добавление ПАВ в суспензию, фильтрацию суспензии, сушку и обжиг полученного осадка при 500-1000°С, отличающийся тем, что концентрация оксидов металлов в приготовленном растворе, содержащем нитраты циркония, церия, лантана и другого редкоземельного элемента, находится на уровне от 20 до 30 г/дм в пересчете на конечную композицию, и перед осаждением в указанный выше раствор вводят нитрат аммония до достижения концентрации последнего от 0,5 до 1 моль/дм, приготовление суспензии осуществляют при перемешивании и поддержании постоянного значения рН на уровне от 8 до 10 включительно за счет контролируемого одновременного дозирования раствора, содержащего нитраты циркония, церия, лантана и другого редкоземельного элемента, а также нитрат аммония, и водного раствора аммиака в общий реакционный объем.
Способ получения композиций на основе оксидов циркония и церия
Источник поступления информации: Роспатент

Showing 1-10 of 207 items.
20.08.2016
№216.015.4acb

Способ удаления мелких частиц из крупнозернистого слоя сыпучих материалов

Изобретение относится к области разделения компонентов дисперсной сыпучей среды, различающихся размером, и может быть использовано в сельском хозяйстве для удаления посторонних примесей при очистке сельскохозяйственных зерновых культур (пшеница, рожь, ячмень и др.) от мелкодисперсной среды...
Тип: Изобретение
Номер охранного документа: 0002594494
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e31

Реактор для аэробной ферментации биомассы

Изобретение используется в сельском и лесном хозяйстве. Цилиндрический термостатированный корпус реактора установлен вертикально и содержит трубу загрузочного устройства, соединенную через подшипниковые узлы с кольцевой пустотелой трубой мешалки, на выходе которой подключена гребенка с...
Тип: Изобретение
Номер охранного документа: 0002595143
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e4e

Система управления тепловым режимом в комплексе "печь ванюкова - котел-утилизатор"

Изобретение относится к области металлургии и может быть использовано, например, в печи Ванюкова. Система дополнительно снабжена корректирующим регулятором соотношения шихта/кислородно-воздушная смесь по температуре в котле-утилизаторе, датчиком температуры котла-утилизатора, установленным на...
Тип: Изобретение
Номер охранного документа: 0002595188
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4f6a

Способ упрочнения поверхности деталей обработкой трением с перемешиванием вращающимся инструментом

Изобретение относится к упрочнению плоских поверхностей заготовок. Осуществляют перемещение вращающегося упрочняющего инструмента по всей поверхности механически обработанной заготовки с установленными нагрузкой и скоростью по заданной траектории. Используют упрочняющий инструмент с рабочим...
Тип: Изобретение
Номер охранного документа: 0002595191
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.548e

Способ улучшения энергетического разрешения сцинтилляционного гамма-спектрометра

Изобретение относится к гамма-спектрометрам с неорганическими сцинтилляторами, имеющими зависимость световыхода от энергии образованных в них гамма-квантами вторичных электронов. Способ улучшения энергетического разрешения сцинтилляционного гамма-спектрометра включает преобразование с помощью...
Тип: Изобретение
Номер охранного документа: 0002593617
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5571

Способ получения извести

Изобретение относится к технологиям производства извести различного назначения, включая производство строительных материалов, и рекомендуется для предприятий мощностью от 10 до 300 тыс т в год. Технический результат заключается в повышении химической активности, улучшении технических и...
Тип: Изобретение
Номер охранного документа: 0002593396
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5d60

Валковый пресс для брикетирования

Изобретение относится к области обработки давлением и может быть использовано в оборудовании для брикетирования. Валковый пресс содержит станину, на которой размещены с возможностью вращения от привода валки. Валки выполнены с рядом формующих ячеек в форме плоского овала, последовательно...
Тип: Изобретение
Номер охранного документа: 0002590435
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e53

Брикет для легирования алюминиевого сплава

Изобретение относится к брикетам для легирования при выплавке алюминиевых сплавов. Брикет содержит стружку сплава алюминия с медью и частицы меди в количестве 20-40 мас.% от общей массы брикета. Частицы меди могут быть использованы в виде стружки. Обеспечивается погружение брикета в расплав при...
Тип: Изобретение
Номер охранного документа: 0002590441
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5fd3

Способ обработки металлов

Изобретение относится к области обработки металлов давлением. Способ включает формоизменение заготовки протягиванием ее через деформирующий инструмент с нагревом от тепла деформации и трения за счет повышения скольжения на поверхности контакта между деформирующим инструментом и заготовкой, с...
Тип: Изобретение
Номер охранного документа: 0002590437
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.669c

Волновая электростанция

Изобретение предназначено для выработки электрической энергии от движения волн в морях и океанах. Волновая электростанция содержит платформу на понтонах с размещенными на ней электрическим генератором и штангой с шестерней. На платформе с помощью стоек размещено дугообразное зубчатое коромысло....
Тип: Изобретение
Номер охранного документа: 0002592094
Дата охранного документа: 20.07.2016
Showing 1-10 of 36 items.
27.01.2013
№216.012.200f

Способ извлечения редкоземельных элементов из фосфогипса

Изобретение относится к технологии получения соединений редкоземельных элементов (РЗЭ) при комплексной переработке апатитов, в частности к извлечению РЗЭ из фосфогипса. Способ включает приготовление пульпы из фосфогипса и сорбцию редкоземельных элементов на сорбенте. Приготовление пульпы ведут...
Тип: Изобретение
Номер охранного документа: 0002473708
Дата охранного документа: 27.01.2013
10.06.2013
№216.012.4896

Способ извлечения редкоземельных элементов из технологических и продуктивных растворов и пульп

Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов при комплексной переработке технологических и продуктивных растворов. Способ извлечения редкоземельных элементов из растворов, содержащих железо(III) и алюминий, включает сорбцию...
Тип: Изобретение
Номер охранного документа: 0002484162
Дата охранного документа: 10.06.2013
10.08.2013
№216.012.5d51

Способ извлечения концентрата природного урана из сернокислых растворов подземного выщелачивания и установка для его осуществления

Изобретения относятся к гидрометаллургии и могут быть использованы для извлечения урана из продуктивных растворов и пульп, в частности для получения концентратов природного урана при сернокислотном подземном выщелачивании с использованием нитратно-сернокислотной десорбции анионита. Способ...
Тип: Изобретение
Номер охранного документа: 0002489510
Дата охранного документа: 10.08.2013
10.07.2014
№216.012.da14

Способ утилизации сбросных растворов в производстве тетрафторида урана

Изобретение относится к гидрометаллургии урана и может быть использовано для утилизации маточников, образующихся при получении тетрафторида урана из азотнокислых растворов с использованием процессов экстракции, реэкстракции и термообработки соединений урана, получаемых из реэкстрактов с...
Тип: Изобретение
Номер охранного документа: 0002521606
Дата охранного документа: 10.07.2014
20.01.2016
№216.013.a134

Способ выщелачивания урана из руд

Изобретение относится к гидрометаллургическим способам переработки руд и может быть использовано для извлечения урана из рудных материалов подземным (ПВ) выщелачиванием. Новым в способе является дополнительная обработка предварительно приготовленного с нитритом натрия выщелачивающего раствора...
Тип: Изобретение
Номер охранного документа: 0002572910
Дата охранного документа: 20.01.2016
13.01.2017
№217.015.8752

Способ извлечения скандия и редкоземельных элементов из красных шламов

Изобретение относится к извлечению скандия и редкоземельных элементов (РЗЭ) из красных шламов. Распульповку красного шлама проводят при рН=0,5-1. Пульпу подвергают механоактивации, сорбционное выщелачивание скандия ведут с органическим сорбентом, в поры которого импрегнирован эфир фосфорной...
Тип: Изобретение
Номер охранного документа: 0002603418
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8b81

Способ получения урановых концентратов из кислых растворов

Изобретение относится к области гидрометаллургии и может быть использовано для производства урановых концентратов в технологии природного урана и оборотного ядерного топлива. Способ получения урановых концентратов из кислых растворов после десорбции урана с анионита заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002604154
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.ab6e

Способ извлечения скандия из скандийсодержащего продуктивного раствора

Изобретение относится к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов, образующихся после извлечения урана при его добыче методом подземного выщелачивания. Способ включает сорбцию скандия из скандийсодержащего раствора на твердом экстрагенте с...
Тип: Изобретение
Номер охранного документа: 0002612107
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b162

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. В способе извлечения скандия из скандийсодержащего продуктивного раствора используют ионит...
Тип: Изобретение
Номер охранного документа: 0002613238
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.be4b

Установка для получения урановых концентратов из кислых растворов

Изобретение относится к гидрометаллургии. Установка содержит сборник уранового регенерата, каскад реакторов осаждения уранового концентрата для получения осадка уранового концентрата, коллектор с трубопроводами раздачи нейтрализующего реагента в реакторы осаждения уранового концентрата,...
Тип: Изобретение
Номер охранного документа: 0002616744
Дата охранного документа: 18.04.2017
+ добавить свой РИД